Smooth quartic surfaces with 352 conics

W. Barth, Th. Bauer

April 14, 1994

0. Introduction

The aim of this note is to show the existence of smooth quartic surfaces in \mathbb{P}_{3} on which there lie

- 16 mutually disjoint smooth conics,
- altogether exactly $352=22 \cdot 16$ smooth conics.

Up to now the maximal number of smooth conics, that can lie on a smooth quartic surface, seems not to be known. So our number 352 should be compared with 64 , the maximal number of lines that can lie on a smooth quartic $[\mathrm{S}]$.

We construct the surfaces as Kummer surfaces of abelian surfaces with a polarization of type (1,9). Using Saint-Donat's technique [D] we show that they embed in \mathbb{P}_{3}. In this way we only prove their existence and do, unfortunately, not find their explicit equations.

So there are the following obvious questions, which we cannot answer at the moment:

- What is the maximal number of smooth conics (or more general: of smooth rational curves of given degree d) on a smooth quartic surface in \mathbb{P}_{3} ?
- What are the equations of the quartics in our (three-dimensional) family of surfaces, which contain 352 smooth conics?
- Using abelian surfaces with other polarizations, it is easy to write down candidates for Kummer surfaces containing 16 skew smooth rational curves of degree $d \geq 2$. Do they embed as smooth quartics in \mathbb{P}_{3} ?

The authors are indebted to I. Naruki for helpful conversations.
Acknowledgement. This research was supported by DFG contract Ba 423-3/4 and EG contract SC1-0398-C(A).

1. Preliminaries

To describe the relation between an abelian surface A and its (desingularized) Kummer surface X we always use the following notation:

where
A is the abelian surface,
$e_{1}, \ldots, e_{16} \in A$ the half-periods,
$E_{1}, \ldots, E_{16} \subset \widetilde{A}$ are the blow-ups of e_{1}, \ldots, e_{16},
$\widetilde{A} \longrightarrow X$ is the double cover branched over D_{1}, \ldots, D_{16}, induced by the involution $a \longmapsto-a$ on A,
$E_{i} \longrightarrow D_{i}$ is bijective.
If $C \subset X$ is an irreducible curve, not one of the D_{i}, then its self-intersection is related to the self-intersection of the corresponding curve $\underset{\sim}{F}:=\sigma \gamma^{*}(C) \subset A$ as follows: Let $m_{i}:=C . D_{i}=\gamma^{*} C . E_{i}$. Then $\gamma^{*} C+\sum m_{i} E_{i} \subset \widetilde{A}$ descends to A, i.e. $\sigma^{*} F=\gamma^{*} C+\sum m_{i} E_{i}$ with m_{i} the multiplicity of F at e_{i}. This implies

$$
\begin{equation*}
F^{2}=\left(\sigma^{*} F\right)^{2}=\left(\gamma^{*} C+\sum m_{i} E_{i}\right)^{2}=2 C^{2}+\sum m_{i}^{2} . \tag{1}
\end{equation*}
$$

We shall consider a line bundle \mathcal{M} on X with $\mathcal{M} . D_{i}=2$ for $i=1, \ldots, 16$. Then $\gamma^{*} \mathcal{M} \otimes \mathcal{O}_{\widetilde{A}}\left(2 \sum E_{i}\right)$ descends to a line bundle \mathcal{L} on A and

$$
\begin{equation*}
\mathcal{L} . F=\left(\gamma^{*} \mathcal{M} \otimes \mathcal{O}_{\widetilde{A}}\left(2 \sum E_{i}\right)\right) \cdot\left(\gamma^{*} C \otimes \mathcal{O}_{\widetilde{A}}\left(\sum m_{i} E_{i}\right)\right)=2\left(\mathcal{M} . C+\sum m_{i}\right) . \tag{2}
\end{equation*}
$$

Sometimes we use the sloppy notation $\mathcal{L}-\sum m_{i} e_{i}$ to denote the sheaf $\Pi \mathcal{I}_{e_{i}}^{m_{i}} \cdot \mathcal{L}$ on A, respectively the line bundle $\sigma^{*} \mathcal{L} \otimes \mathcal{O}_{\widetilde{A}}\left(\sum m_{i} E_{i}\right)$ on \widetilde{A}.

2. Sixteen skew conics

First we analyze the
Situation: $X \subset \mathbb{P}_{3}$ is a smooth quartic surface with sixteen mutually disjoint conics $D_{1}, \ldots, D_{16} \subset X$.

By Nikulin's theorem [N] there is a diagram (*) representing X as the Kummer surface of an abelian surface A. We denote by $\widetilde{\mathcal{L}}$ on \widetilde{A} the pull-back of the line bundle $\mathcal{O}_{X}(1)$. Then the self-intersection numbers are

$$
\left(\mathcal{O}_{X}(1) \cdot \mathcal{O}_{X}(1)\right)=4, \quad(\widetilde{\mathcal{L}} \cdot \widetilde{\mathcal{L}})=8
$$

Since

$$
\left(E_{i} \cdot E_{i}\right)=-1 \quad \text { and } \quad\left(\widetilde{\mathcal{L}} \cdot E_{i}\right)=\left(\mathcal{O}_{X}(1) \cdot D_{i}\right)=2,
$$

the line bundle $\widetilde{\mathcal{L}} \otimes \mathcal{O}_{\widetilde{A}}\left(2 E_{1}+\ldots+2 E_{16}\right)$ descends to a symmetric line bundle \mathcal{L} on A with self-intersection

$$
(\mathcal{L} \cdot \mathcal{L})=\left(\widetilde{\mathcal{L}} \otimes \mathcal{O}_{\widetilde{A}}\left(2 \sum E_{i}\right) \cdot \widetilde{\mathcal{L}} \otimes \mathcal{O}_{\widetilde{A}}\left(2 \sum E_{i}\right)\right)=8+8 \cdot 16-4 \cdot 16=72 .
$$

The general linear polynomial in $H^{0}\left(\mathcal{O}_{X}(1)\right)$ induces a section in \mathcal{L} vanishing at each e_{i} to the second order. Therefore the line bundle \mathcal{L} is totally symmetric. So $\mathcal{L}=\mathcal{O}_{A}(2 \Theta)$ where $\mathcal{O}_{A}(\Theta)$ is a symmetric line bundle on A of type

$$
(3,3) \text { or }(1,9) .
$$

The map

$$
A \leftarrow \tilde{A} \rightarrow X \subset \mathbb{P}_{3}
$$

is given by a linear system consisting of (symmetric or anti-symmetric) sections in \mathcal{L} vanishing at the half-periods to the order two precisely. This implies that these sections are symmetric. The map therefore is given by some linear subsystem of

$$
H^{0}\left(\mathcal{L}^{\otimes 2}-2\left(e_{1}+\ldots+e_{16}\right)\right)^{+}
$$

First we exclude the case $(3,3)$:
Claim 1: Assume that $\Theta=3 T$ with a symmetric divisor $T \subset A$ defining a principal polarization on A. Then the linear system $\left|\mathcal{L}^{\otimes 2}-2 \sum e_{i}\right|$ induces a linear system on the (nonsingular) Kummer surface X, which is not very ample.

Proof. We show, that the linear system is not ample on the translates of T by half-periods. In fact, if T is irreducible, then it contains six half-periods, hence

$$
\left(\mathcal{L}^{\otimes 2}-2 \sum e_{i}\right) \cdot T=12-12=0 .
$$

And if $T=T_{1}+T_{2}$ with two elliptic curves T_{j}, then

$$
\left(\mathcal{L}^{\otimes 2}-2 \sum e_{i}\right) \cdot T_{j}=6-8<0 .
$$

3. Abelian surfaces of type $(1,9)$

Here we show, that the general surface of type $(1,9)$ indeed leads to a smooth quartic surface with 16 skew conics. To be precise, we assume: A is an abelian surface with Néron-Severi group of rank 1, generated by the class of the (symmetric) line bundle \mathcal{L} of type (1,9). We use the notation of diagram (*).

Claim 2: The linear system $\left|\mathcal{L}^{\otimes 2}-2 \sum e_{i}\right|^{+}$is free of (projective) dimension three.
Proof. Since $h^{0}\left(\mathcal{L}^{\otimes 2}\right)^{+}=20$ we have

$$
h^{0}\left(\mathcal{L}^{\otimes 2}-2 \sum e_{i}\right)^{+}=h^{0}\left(\mathcal{L}^{\otimes 2}-\sum e_{i}\right)^{+} \geq 20-16=4 .
$$

On the (nonsingular) Kummer surface X of A there is a line bundle \mathcal{M} with

$$
\sigma^{*}\left(\mathcal{L}^{\otimes 2}-2 \sum e_{i}\right)=\gamma^{*}(\mathcal{M}), \quad \sigma^{*} H^{0}\left(\mathcal{L}^{\otimes 2}-2 \sum e_{i}\right)^{+}=\gamma^{*} H^{0}(\mathcal{M}) .
$$

If $|\mathcal{M}|$ has base points, then by [D, Corollary 3.2] it also has a base curve. This corresponds to a base curve $B \subset A$ of the linear system $\left|\mathcal{L}^{\otimes 2}-2 \sum e_{i}\right|^{+}$. Since the linear system is symmetric and invariant under all half-period translations, so is B. This implies $B \simeq 2 k \Theta$. If $k>0$, then the class $\mathcal{L}^{\otimes 2}-2 \sum e_{i}-B=-2(k-1) B-2 \sum e_{i}$ cannot be effective. So $B=0$ and the base locus on X can consist of curves D_{i} only. Since it is invariant under half-period translations, it is of the form $k \cdot \sum D_{i}$, i.e.

$$
h^{0}\left(\mathcal{L}^{\otimes 2}-2 \sum e_{i}\right)^{+}=h^{0}\left(\mathcal{L}^{\otimes 2}-(2+k) \sum e_{i}\right)^{+} \geq 4 .
$$

But this is impossible for $k \geq 1$, because then the bundle $\mathcal{L}^{\otimes 2}-(2+k) \sum e_{i}$ has negative self-intersection.

So far we showed that our linear system is free. I.e., as a linear system on X it is big and nef. Then by Ramanujam's vanishing theorem $[\mathrm{R}]$ it has no higher cohomology and from Riemann-Roch we find:

$$
h^{0}\left(\mathcal{L}^{\otimes 2}-2 \cdot \sum e_{i}\right)^{+}=4
$$

Claim 3: The line bundle \mathcal{M} on X is ample.
Proof. We have to show that there is no irreducible curve $C \subset X$ with intersection number $\mathcal{M} . C=0$. Any such curve would be a (-2)-curve different from D_{1}, \ldots, D_{16}. For each $i=1, \ldots, 16$ we use the Hodge index inequality

$$
\begin{aligned}
\mathcal{M}^{2}\left(C+D_{i}\right)^{2} & \leq\left(\mathcal{M} C+\mathcal{M} D_{i}\right)^{2} \\
& =\left(\mathcal{M} D_{i}\right)^{2} \\
& =4 \\
-4+2 C \cdot D_{i} & \leq 1
\end{aligned}
$$

to find

$$
m_{i}:=C . D_{i} \leq 2 .
$$

Let $F \subset A$ be the curve $\sigma \gamma^{*}(C)$. It is symmetric and has at $e_{i} \in A$ the multiplicity m_{i}. This implies

$$
\begin{aligned}
F^{2} & =2 C^{2}+\sum m_{i}^{2} \\
& =-4+\sum m_{i}^{2} \\
F . \Theta & =\sum m_{i} .
\end{aligned}
$$

by (1) and (2). Since Θ generates the Néron-Severi group of A, the curve F is homologous to $d \Theta$ for some $1 \leq d \in \mathbb{Z}$. From

$$
18 \cdot d=F . \Theta=\sum m_{i} \leq 32
$$

we conclude $d=1$ and

$$
\sum m_{i}=18, \quad \sum m_{i}^{2}=22 .
$$

This implies that two of the multiplicities are 2, while the other fourteen are 1. The symmetric line bundle $\mathcal{O}_{A}(F)$ would have 14 odd half-periods, a contradiction with [LB, Proposition 4.7.5]

Now we finally can prove
Claim 4: The bundle \mathcal{M} on X is very ample.
Proof. By [D, Theorem 6.1.iii] it remains to show that \mathcal{M} defines a morphism of degree 1. By [D, Theorem 5.2] we have to exclude the possibilities that there is
either an elliptic curve $C \subset X$ with $\mathcal{M} . C=2$, or an irreducible curve $H \subset X$ with $H^{2}=2$ and $\mathcal{M}=\mathcal{O}_{X}(2 H)$.

The latter, however, cannot happen because $\mathcal{M}^{2}=4$. So let $C \subset X$ be elliptic with $\mathcal{M} . C=2$ and $F \subset A$ the symmetric curve $\sigma \gamma^{*}(C)$. Let again $m_{i}=C . D_{i}$ be the multiplicity of F at e_{i}. For each i we use the Hodge index inequality

$$
4\left(2 C+D_{i}\right)^{2}=\mathcal{M}^{2}\left(2 C+D_{i}\right)^{2} \leq\left(2 \mathcal{M} \cdot C+\mathcal{M} \cdot D_{i}\right)^{2}=36
$$

to conclude again $m_{i} \leq 2$.
As above we find

$$
F . \Theta=2+\sum m_{i} \quad \text { and } \quad F^{2}=\sum m_{i}^{2} .
$$

Again we assume F is homologous with $d \Theta, 1 \leq d \in \mathbb{Z}$. Hence

$$
18 d=2+\sum m_{i} \leq 34 \quad \text { and } \quad d=1 .
$$

So we find

$$
\sum m_{i}=16 \quad \text { and } \quad \sum m_{i}^{2}=18 .
$$

This implies that one of the multiplicities is 2 , while one is 0 and the other fourteen ones are 1 . This leads to the same kind of contradiction as above.

4. Conics on the surface

Here we assume that $X=\operatorname{Km}(A)$ is a surface as considered in the preceding section, by the linear system $|\mathcal{M}|$ embedded in \mathbb{P}_{3} as a smooth quartic surface.

First we prove
Claim 5: There are no lines on a quartic surface X as above.
Proof. Assume that $C \subset X$ is a line, i.e. $\mathcal{M} C=1$. This implies for the symmetric pre-image $F=\sigma \gamma^{*} C \subset A$

$$
\Theta F=1+\sum m_{i}
$$

As F is homologous to some $d \Theta, d \geq 1$, the intersection number $\Theta F=18 d$ is even and $\sum m_{i}$ is odd. But on the other hand, by Riemann-Roch on \widetilde{A} the Euler-Poincare-characteristic of $\gamma^{*} C$ is

$$
\chi\left(\gamma^{*} C\right)=\frac{1}{2} \gamma^{*} C\left(\gamma^{*} C-\sum E_{i}\right)+\chi\left(\mathcal{O}_{\widetilde{A}}\right)=C^{2}-\frac{1}{2} \sum C D_{i}+\chi\left(\mathcal{O}_{\widetilde{A}}\right)
$$

which implies that $\sum m_{i}=\sum C D_{i}$ is even, a contradiction.
Now we specify several divisors on X :
i) For each $i=1, \ldots, 16$ the exceptional curve E_{i} over e_{i} maps bijectively into \mathbb{P}_{3} Because of

$$
\left(\mathcal{L}^{\otimes 2}-2 \cdot \sum_{1}^{16} E_{i}\right) \cdot E_{i}=2
$$

the image curve D_{i} is a conic.
ii) That a divisor $L \in\left|\mathcal{L}^{\otimes 2}-2 \sum e_{j}\right|^{+}$may have not only a double point, but a triple point in e_{i}, this imposes three additional conditions on L. So for each $i=1, \ldots, 16$ there is a divisor

$$
L_{i} \in\left|\left(\mathcal{L}^{\otimes 2}-2 \sum e_{j}\right)-2 \cdot e_{i}\right|=\left|\mathcal{L}^{\otimes 2}-2 \cdot \sum_{j \neq i} E_{j}-4 \cdot E_{i}\right| .
$$

Because of

$$
\left(\mathcal{L}^{\otimes 2}-2 \cdot \sum E_{j}\right) \cdot L_{i}=72-4 \cdot 15-8=4
$$

the proper transform of L_{i} in \widetilde{A} maps two-to-one to a conic in \mathbb{P}_{3}, which we denote by C_{i}.
iii) Let $e_{1}, \ldots, e_{6} \in A$ be the odd half-periods and e_{7}, \ldots, e_{16} be the even ones. All odd sections from $H^{0}(\mathcal{L})^{-}$vanish in the ten even half-periods. As $h^{0}(\mathcal{L})^{-}=4$, we may impose three conditions on such a section. So for each triplet $i, j, k \subset$ $\{1, \ldots, 6\}$ of numbers there is a divisor $L_{i, j, k} \in|\mathcal{L}|^{-}$passing through e_{i}, e_{j} and e_{k}, and having then double points in these three half-periods. Because of
$\left[\mathcal{L}^{\otimes 2}-2 \cdot \sum E_{i}\right] \cdot\left[\mathcal{L}-\left(E_{7}+\ldots+E_{16}\right)-2 \cdot\left(E_{i}+E_{j}+E_{k}\right)\right]=36-2 \cdot 10-4 \cdot 3=4$ the proper transform of $L_{i, j, k}$ in \widetilde{A} maps two-to-one to a conic $C_{i, j, k} \subset \mathbb{P}_{3}$.

Claim 6: The curves $C_{i j k} \subset X$ are uniquely determined by the triplet $\{i, j, k\}$. For $\{i, j, k\} \neq\{l, m, n\}$ the curves $C_{i j k}$ and $C_{l m n}$ are different.

Proof. If there would be two different curves $L_{i j k} \in|\mathcal{L}|^{-}$through the same odd half-periods e_{i}, e_{j}, e_{k}, or if $L_{i j k}=L_{l m n}$ for $\{i, j, k\} \neq\{l, m, n\}$, then there would be some divisor $L \in|\mathcal{L}|^{-}$passing through four odd half-periods $e_{i}, e_{j}, e_{k}, e_{l}$. Choose some half-period e such that $e_{j}=e_{i}+e$. The divisor $L+e$ then passes

- twice through e_{i} and e_{j},
- once through the four odd half-periods $e_{m}, i, j \neq m=1, \ldots, 6$,
- twice through the even half-periods $e_{k}+e, e_{l}+e$,
- once through six more even half-periods.

This shows

$$
L .(L+e) \geq \underbrace{2 \cdot 4}_{e_{i}, e_{j}}+\underbrace{2}_{e_{k}, e_{l}}+\underbrace{2 \cdot 2}_{e_{k}+e, e_{l}+e}+6=20 .
$$

Since L is irreducible, we conclude $L=L+e$ is invariant under translation by e. So L would descend to some curve L^{\prime} on A / e of self-intersection $18 / 2=9$, a contradiction.

By construction

$$
L_{i}+2 E_{i} \equiv L_{i j k}+L_{l m n} \in\left|\mathcal{L}^{\otimes 2}-2 \sum E_{\nu}\right|^{+}
$$

for $\{i, j, k, l, m, n\}=\{1, \ldots, 6\}$. So the pairs of conics $C_{i}+D_{i}$ and $C_{i j k}+C_{l m n}$ lie in the same plane.

The sixteen conics C_{i} as well as the sixteen conics D_{i} form an orbit under the half-period translation group of A. Each conic $C_{k l m}$ however creates a whole orbit of sixteen conics $C_{k l m}^{i}$. All curves in the orbit are different, because the line bundle \mathcal{L} does not admit half-period translations. Altogether we found

$$
\left(2+\binom{6}{3}\right) \cdot 16=22 \cdot 16=352
$$

smooth conics on the quartic surface X, falling into 22 orbits of 16 ones.
It is a natural question to ask, whether the 16 conics $C_{k l m}^{i}, i=1, \ldots, 16$ in the same orbit are skew or not. In fact we have:

Claim 7: In the orbit of sixteen conics $C_{k l m}^{i}, i=1, \ldots, 16$ each conic is disjoint from three other ones and meets 12 other ones in two points.

Proof. After reordering of subscripts we may assume $\{k, l, m\}=\{1,2,3\}$. It suffices to consider $C_{123} \cap C_{123}^{i}$ for all half-periods $e_{i} \neq 0$. Now translation by e_{i} maps the
sixtuplet e_{1}, \ldots, e_{6} of odd half-periods to a sixtuplet $e_{1}+e_{i}, \ldots, e_{6}+e_{i}$ containing two odd and four even half-periods. Then there are the following two possibilities:

1) The triplet $e_{1}+e_{i}, e_{2}+e_{i}, e_{3}+e_{i}$ meets the triplet e_{1}, e_{2}, e_{3} in two points, say $e_{2}=e_{1}+e_{i}, \quad\left\{e_{7}, \ldots, e_{10}\right\}=\left\{e_{3}+e_{i}, \ldots, e_{6}+e_{i}\right\}, \quad\left\{e_{11}, \ldots, e_{16}\right\}=\left\{e_{11}+e_{i}, \ldots, e_{16}+e_{i}\right\}$ up to reordering. (This happens for three different e_{i}). Then the curves L_{123} and L_{123}^{i} have the following multiplicities at the half-periods

	L_{123}	L_{123}^{i}	intersection
e_{1}, e_{2}	2	2	$2 \cdot 4$
e_{3}	2	1	2
e_{7}	1	2	2
e_{11}, \ldots, e_{16}	1	1	$6 \cdot 1$

The intersection multiplicities add up to $18=L_{123} \cdot L_{123}^{i}$. The proper transforms of these curves on \widetilde{A} therefore are disjoint.
2) The triplets $e_{1}+e_{i}, e_{2}+e_{i}, e_{3}+e_{i}$ and e_{1}, e_{2}, e_{3} are disjoint, say

$$
\begin{array}{r}
e_{1}+e_{i}=e_{4}, \quad e_{2}+e_{i}=e_{7}, e_{3}+e_{i}=e_{8}, e_{5}+e_{i}=e_{9}, e_{6}+e_{i}=e_{10} \\
\left\{e_{11}+e_{i}, \ldots, e_{16}+e_{i}\right\}=\left\{e_{11}, \ldots, e_{16}\right\}
\end{array}
$$

up to renumbering. Now the multiplicities

	L_{123}	L_{123}^{i}	intersection
e_{2}, e_{3}	2	1	$2 \cdot 2$
e_{7}, e_{8}	1	2	$2 \cdot 2$
e_{11}, \ldots, e_{16}	1	1	$6 \cdot 1$

add up to 14. This implies that the conics C_{123} and C_{123}^{i} meet in two points.
The 352 conics we found so far are all the conics which there are on the surface:
Claim 8: A quartic surface X as considered above contains exactly 352 smooth conics.

Proof. Let $C \subset X$ be some smooth conic. We show that C is one of the curves $D_{i}, C_{i}, C_{k, l, m}^{i}$. The conic C satisfies

$$
\mathcal{M} C=2 \quad \text { and } \quad C^{2}=-2 .
$$

If C is different from D_{1}, \ldots, D_{16}, then by (1) and (2), for its symmetric pre-image $F=\sigma \gamma^{*} C \subset A$ we find

$$
\Theta F=2+\sum m_{i} \quad \text { and } \quad F^{2}=-4+\sum m_{i}^{2} .
$$

Using that F is homologous to $d \Theta$ for some $d \geq 1$ we get

$$
18 d=2+\sum m_{i} \quad \text { and } \quad 18 d^{2}=-4+\sum m_{i}^{2}
$$

Both C and D_{i} are conics, so $m_{i}=C D_{i} \leq 4$. If $m_{i} \geq 3$, then C and D_{i} lie in the same plane, hence $C=C_{i}$. Therefore we may assume $m_{i} \leq 2$. This implies $d=1$ and we find

$$
\sum m_{i}=16 \quad \text { and } \quad \sum m_{i}^{2}=22
$$

Then necessarily three of the multiplicities m_{i} are 2 , while ten of them are 1 and the other three are 0 . Since $\mathcal{O}_{A}(F)$ is one of the 16 symmetric translates of $\mathcal{O}_{A}(\Theta)$ this implies that F is one of the curves $C_{k, l, m}^{i}$.

References

[B] Bauer, Th.: Projective images of Kummer surfaces. Math. Ann. 299, 155-170 (1994)
[D] Saint-Donat, B.: Projective models of K3-surfaces. Amer. J. of Math. 96, 602-639 (1974)
[LB] Lange, H., Birkenhake, Ch.: Complex abelian varieties. Springer Grundlehren 302 (1992)
[N] Nikulin, V.V.: On Kummer surfaces. Transl. to English, Math. USSR. - Izv. 9, 261-275 (1975)
[R] Ramanujam, C.P.: Supplement to the article 'Remarks on the Kodaira vanishing theorem'. J. of the Indian Math. Soc. 38, 121-124 (1974)
[S] Segre, B.: The maximum number of lines lying on a quartic surface. Oxf. Quart. J. 14, 86-96 (1943)
W. Barth, Th. Bauer

Mathematisches Institut der Universität
Bismarckstraße $1 \frac{1}{2}$
D-91054 Erlangen

