Smooth quartic surfaces with 352 conics

W. Barth, Th. Bauer

April 14, 1994

0. Introduction

The aim of this note is to show the existence of smooth quartic surfaces in \mathbb{P}_3 on which there lie

- 16 mutually disjoint smooth conics,
- altogether exactly $352 = 22 \cdot 16$ smooth conics.

Up to now the maximal number of smooth conics, that can lie on a smooth quartic surface, seems not to be known. So our number 352 should be compared with 64, the maximal number of lines that can lie on a smooth quartic [S].

We construct the surfaces as Kummer surfaces of abelian surfaces with a polarization of type (1,9). Using Saint-Donat's technique [D] we show that they embed in \mathbb{P}_3 . In this way we only prove their existence and do, unfortunately, not find their explicit equations.

So there are the following obvious questions, which we cannot answer at the moment:

- What is the maximal number of smooth conics (or more general: of smooth rational curves of given degree d) on a smooth quartic surface in \mathbb{P}_3 ?
- What are the equations of the quartics in our (three–dimensional) family of surfaces, which contain 352 smooth conics?
- Using abelian surfaces with other polarizations, it is easy to write down candidates for Kummer surfaces containing 16 skew smooth rational curves of degree $d \ge 2$. Do they embed as smooth quartics in \mathbb{P}_3 ?

The authors are indebted to I. Naruki for helpful conversations.

Acknowledgement. This research was supported by DFG contract Ba 423-3/4and EG contract SC1-0398-C(A).

1. Preliminaries

To describe the relation between an abelian surface A and its (desingularized) Kummer surface X we always use the following notation:

where

A is the abelian surface,

 $e_1, ..., e_{16} \in A$ the half-periods,

 $E_1, ..., E_{16} \subset \widetilde{A}$ are the blow–ups of $e_1, ..., e_{16}$,

 $\widetilde{A} \longrightarrow X$ is the double cover branched over $D_1, ..., D_{16}$, induced by the involution $a \longmapsto -a$ on A,

 $E_i \longrightarrow D_i$ is bijective.

If $C \subset X$ is an irreducible curve, not one of the D_i , then its self-intersection is related to the self-intersection of the corresponding curve $F := \sigma \gamma^*(C) \subset A$ as follows: Let $m_i := C.D_i = \gamma^*C.E_i$. Then $\gamma^*C + \sum m_iE_i \subset \widetilde{A}$ descends to A, i.e. $\sigma^*F = \gamma^*C + \sum m_iE_i$ with m_i the multiplicity of F at e_i . This implies

$$F^{2} = (\sigma^{*}F)^{2} = (\gamma^{*}C + \sum m_{i}E_{i})^{2} = 2C^{2} + \sum m_{i}^{2}.$$
 (1)

We shall consider a line bundle \mathcal{M} on X with $\mathcal{M}.D_i = 2$ for i = 1, ..., 16. Then $\gamma^* \mathcal{M} \otimes \mathcal{O}_{\widetilde{A}}(2 \sum E_i)$ descends to a line bundle \mathcal{L} on A and

$$\mathcal{L}.F = (\gamma^* \mathcal{M} \otimes \mathcal{O}_{\widetilde{A}}(2\sum E_i)).(\gamma^* C \otimes \mathcal{O}_{\widetilde{A}}(\sum m_i E_i)) = 2(\mathcal{M}.C + \sum m_i).$$
(2)

Sometimes we use the sloppy notation $\mathcal{L} - \sum m_i e_i$ to denote the sheaf $\prod \mathcal{I}_{e_i}^{m_i} \cdot \mathcal{L}$ on A, respectively the line bundle $\sigma^* \mathcal{L} \otimes \mathcal{O}_{\widetilde{A}}(\sum m_i E_i)$ on \widetilde{A} .

2. Sixteen skew conics

First we analyze the

Situation: $X \subset \mathbb{P}_3$ is a smooth quartic surface with sixteen mutually disjoint conics $D_1, ..., D_{16} \subset X$.

By Nikulin's theorem [N] there is a diagram (*) representing X as the Kummer surface of an abelian surface A. We denote by $\tilde{\mathcal{L}}$ on \tilde{A} the pull-back of the line bundle $\mathcal{O}_X(1)$. Then the self-intersection numbers are

$$(\mathcal{O}_X(1).\mathcal{O}_X(1)) = 4, \quad (\widetilde{\mathcal{L}}.\widetilde{\mathcal{L}}) = 8.$$

Since

$$(E_i.E_i) = -1$$
 and $(\mathcal{L}.E_i) = (\mathcal{O}_X(1).D_i) = 2$

the line bundle $\tilde{\mathcal{L}} \otimes \mathcal{O}_{\widetilde{A}}(2E_1 + ... + 2E_{16})$ descends to a symmetric line bundle \mathcal{L} on A with self-intersection

$$(\mathcal{L}.\mathcal{L}) = (\widetilde{\mathcal{L}} \otimes \mathcal{O}_{\widetilde{A}}(2\sum E_i).\widetilde{\mathcal{L}} \otimes \mathcal{O}_{\widetilde{A}}(2\sum E_i)) = 8 + 8 \cdot 16 - 4 \cdot 16 = 72.$$

The general linear polynomial in $H^0(\mathcal{O}_X(1))$ induces a section in \mathcal{L} vanishing at each e_i to the second order. Therefore the line bundle \mathcal{L} is totally symmetric. So $\mathcal{L} = \mathcal{O}_A(2\Theta)$ where $\mathcal{O}_A(\Theta)$ is a symmetric line bundle on A of type

$$(3,3)$$
 or $(1,9)$

The map

$$A \leftarrow \widetilde{A} \to X \subset \mathbb{P}_3$$

is given by a linear system consisting of (symmetric or anti-symmetric) sections in \mathcal{L} vanishing at the half-periods to the order two precisely. This implies that these sections are *symmetric*. The map therefore is given by some linear subsystem of

$$H^0(\mathcal{L}^{\otimes 2} - 2(e_1 + \dots + e_{16}))^+.$$

First we exclude the case (3, 3):

Claim 1: Assume that $\Theta = 3T$ with a symmetric divisor $T \subset A$ defining a principal polarization on A. Then the linear system $|\mathcal{L}^{\otimes 2} - 2\sum e_i|$ induces a linear system on the (nonsingular) Kummer surface X, which is not very ample.

Proof. We show, that the linear system is not ample on the translates of T by half-periods. In fact, if T is irreducible, then it contains six half-periods, hence

$$(\mathcal{L}^{\otimes 2} - 2\sum e_i).T = 12 - 12 = 0.$$

And if $T = T_1 + T_2$ with two elliptic curves T_j , then

$$(\mathcal{L}^{\otimes 2} - 2\sum e_i).T_j = 6 - 8 < 0$$

3. Abelian surfaces of type (1,9)

Here we show, that the general surface of type (1, 9) indeed leads to a smooth quartic surface with 16 skew conics. To be precise, we assume: A is an abelian surface with Néron-Severi group of rank 1, generated by the class of the (symmetric) line bundle \mathcal{L} of type (1, 9). We use the notation of diagram (*).

Claim 2: The linear system $|\mathcal{L}^{\otimes 2} - 2\sum e_i|^+$ is free of (projective) dimension three.

Proof. Since $h^0(\mathcal{L}^{\otimes 2})^+ = 20$ we have

$$h^{0}(\mathcal{L}^{\otimes 2} - 2\sum e_{i})^{+} = h^{0}(\mathcal{L}^{\otimes 2} - \sum e_{i})^{+} \ge 20 - 16 = 4$$

On the (nonsingular) Kummer surface X of A there is a line bundle \mathcal{M} with

$$\sigma^*(\mathcal{L}^{\otimes 2} - 2\sum e_i) = \gamma^*(\mathcal{M}), \quad \sigma^* H^0(\mathcal{L}^{\otimes 2} - 2\sum e_i)^+ = \gamma^* H^0(\mathcal{M}).$$

If $|\mathcal{M}|$ has base points, then by [D, Corollary 3.2] it also has a base curve. This corresponds to a base curve $B \subset A$ of the linear system $|\mathcal{L}^{\otimes 2} - 2\sum e_i|^+$. Since the linear system is symmetric and invariant under all half-period translations, so is B. This implies $B \simeq 2k\Theta$. If k > 0, then the class $\mathcal{L}^{\otimes 2} - 2\sum e_i - B = -2(k-1)B - 2\sum e_i$ cannot be effective. So B = 0 and the base locus on X can consist of curves D_i only. Since it is invariant under half-period translations, it is of the form $k \cdot \sum D_i$, i.e.

$$h^{0}(\mathcal{L}^{\otimes 2} - 2\sum e_{i})^{+} = h^{0}(\mathcal{L}^{\otimes 2} - (2+k)\sum e_{i})^{+} \ge 4.$$

But this is impossible for $k \geq 1$, because then the bundle $\mathcal{L}^{\otimes 2} - (2+k) \sum e_i$ has negative self-intersection.

So far we showed that our linear system is free. I.e., as a linear system on X it is big and nef. Then by Ramanujam's vanishing theorem [R] it has no higher cohomology and from Riemann-Roch we find:

$$h^0(\mathcal{L}^{\otimes 2} - 2 \cdot \sum e_i)^+ = 4.$$

Claim 3: The line bundle \mathcal{M} on X is ample.

Proof. We have to show that there is no irreducible curve $C \subset X$ with intersection number $\mathcal{M}.C = 0$. Any such curve would be a (-2)-curve different from $D_1, ..., D_{16}$. For each i = 1, ..., 16 we use the Hodge index inequality

$$\mathcal{M}^2 (C + D_i)^2 \leq (\mathcal{M}C + \mathcal{M}D_i)^2$$

= $(\mathcal{M}D_i)^2$
= 4,
 $-4 + 2C.D_i \leq 1$

to find

$$m_i := C.D_i \le 2$$

Let $F \subset A$ be the curve $\sigma \gamma^*(C)$. It is symmetric and has at $e_i \in A$ the multiplicity m_i . This implies

$$F^{2} = 2C^{2} + \sum m_{i}^{2}$$
$$= -4 + \sum m_{i}^{2}$$
$$F.\Theta = \sum m_{i}.$$

by (1) and (2). Since Θ generates the Néron–Severi group of A, the curve F is homologous to $d\Theta$ for some $1 \leq d \in \mathbb{Z}$. From

$$18 \cdot d = F \cdot \Theta = \sum m_i \le 32$$

we conclude d = 1 and

$$\sum m_i = 18, \quad \sum m_i^2 = 22.$$

This implies that two of the multiplicities are 2, while the other fourteen are 1. The symmetric line bundle $\mathcal{O}_A(F)$ would have 14 odd half-periods, a contradiction with [LB, Proposition 4.7.5]

Now we finally can prove

Claim 4: The bundle \mathcal{M} on X is very ample.

Proof. By [D, Theorem 6.1.iii] it remains to show that \mathcal{M} defines a morphism of degree 1. By [D, Theorem 5.2] we have to exclude the possibilities that there is

either an elliptic curve $C \subset X$ with $\mathcal{M}.C = 2$,

or an irreducible curve $H \subset X$ with $H^2 = 2$ and $\mathcal{M} = \mathcal{O}_X(2H)$.

The latter, however, cannot happen because $\mathcal{M}^2 = 4$. So let $C \subset X$ be elliptic with $\mathcal{M}.C = 2$ and $F \subset A$ the symmetric curve $\sigma \gamma^*(C)$. Let again $m_i = C.D_i$ be the multiplicity of F at e_i . For each i we use the Hodge index inequality

$$4(2C+D_i)^2 = \mathcal{M}^2(2C+D_i)^2 \le (2\mathcal{M}.C+\mathcal{M}.D_i)^2 = 36$$

to conclude again $m_i \leq 2$.

As above we find

$$F.\Theta = 2 + \sum m_i$$
 and $F^2 = \sum m_i^2$.

Again we assume F is homologous with $d\Theta, 1 \leq d \in \mathbb{Z}$. Hence

$$18d = 2 + \sum m_i \le 34$$
 and $d = 1$.

So we find

$$\sum m_i = 16$$
 and $\sum m_i^2 = 18.$

This implies that one of the multiplicities is 2, while one is 0 and the other fourteen ones are 1. This leads to the same kind of contradiction as above. \Box

4. Conics on the surface

Here we assume that X = Km(A) is a surface as considered in the preceding section, by the linear system $|\mathcal{M}|$ embedded in \mathbb{P}_3 as a smooth quartic surface.

First we prove

Claim 5: There are no lines on a quartic surface X as above.

Proof. Assume that $C \subset X$ is a line, i.e. $\mathcal{M}C = 1$. This implies for the symmetric pre-image $F = \sigma \gamma^* C \subset A$

$$\Theta F = 1 + \sum m_i.$$

As F is homologous to some $d\Theta$, $d \ge 1$, the intersection number $\Theta F = 18d$ is even and $\sum m_i$ is odd. But on the other hand, by Riemann-Roch on \tilde{A} the Euler-Poincare-characteristic of $\gamma^* C$ is

$$\chi(\gamma^*C) = \frac{1}{2}\gamma^*C(\gamma^*C - \sum E_i) + \chi(\mathcal{O}_{\widetilde{A}}) = C^2 - \frac{1}{2}\sum CD_i + \chi(\mathcal{O}_{\widetilde{A}}),$$

which implies that $\sum m_i = \sum CD_i$ is even, a contradiction.

Now we specify several divisors on X:

i) For each i = 1, ..., 16 the exceptional curve E_i over e_i maps bijectively into \mathbb{P}_3 Because of

$$(\mathcal{L}^{\otimes 2} - 2 \cdot \sum_{1}^{16} E_i) \cdot E_i = 2$$

the image curve D_i is a conic.

ii) That a divisor $L \in |\mathcal{L}^{\otimes 2} - 2 \sum e_j|^+$ may have not only a double point, but a triple point in e_i , this imposes three additional conditions on L. So for each i = 1, ..., 16 there is a divisor

$$L_i \in |(\mathcal{L}^{\otimes 2} - 2\sum e_j) - 2 \cdot e_i| = |\mathcal{L}^{\otimes 2} - 2 \cdot \sum_{j \neq i} E_j - 4 \cdot E_i|$$

Because of

$$(\mathcal{L}^{\otimes 2} - 2 \cdot \sum E_j) \cdot L_i = 72 - 4 \cdot 15 - 8 = 4$$

the proper transform of L_i in A maps two-to-one to a conic in \mathbb{P}_3 , which we denote by C_i .

iii) Let $e_1, ..., e_6 \in A$ be the odd half-periods and $e_7, ..., e_{16}$ be the even ones. All odd sections from $H^0(\mathcal{L})^-$ vanish in the ten even half-periods. As $h^0(\mathcal{L})^- = 4$, we may impose three conditions on such a section. So for each triplet $i, j, k \subset$ $\{1, ..., 6\}$ of numbers there is a divisor $L_{i,j,k} \in |\mathcal{L}|^-$ passing through e_i, e_j and e_k , and having then double points in these three half-periods. Because of

$$[\mathcal{L}^{\otimes 2} - 2 \cdot \sum E_i] \cdot [\mathcal{L} - (E_7 + \dots + E_{16}) - 2 \cdot (E_i + E_j + E_k)] = 36 - 2 \cdot 10 - 4 \cdot 3 = 4$$

the proper transform of $L_{i,j,k}$ in \widetilde{A} maps two-to-one to a conic $C_{i,j,k} \subset \mathbb{P}_3$.

Claim 6: The curves $C_{ijk} \subset X$ are uniquely determined by the triplet $\{i, j, k\}$. For $\{i, j, k\} \neq \{l, m, n\}$ the curves C_{ijk} and C_{lmn} are different.

Proof. If there would be two different curves $L_{ijk} \in |\mathcal{L}|^-$ through the same odd half-periods e_i, e_j, e_k , or if $L_{ijk} = L_{lmn}$ for $\{i, j, k\} \neq \{l, m, n\}$, then there would be some divisor $L \in |\mathcal{L}|^-$ passing through four odd half-periods e_i, e_j, e_k, e_l . Choose some half-period e such that $e_j = e_i + e$. The divisor L + e then passes

- twice through e_i and e_j ,
- once through the four odd half-periods $e_m, i, j \neq m = 1, ..., 6$,
- twice through the even half-periods $e_k + e, e_l + e$,
- once through six more even half-periods.

This shows

$$L.(L+e) \ge \underbrace{2 \cdot 4}_{e_i, e_j} + \underbrace{2}_{e_k, e_l} + \underbrace{2 \cdot 2}_{e_k + e_l + e} + 6 = 20.$$

Since L is irreducible, we conclude L = L + e is invariant under translation by e. So L would descend to some curve L' on A/e of self-intersection 18/2 = 9, a contradiction.

By construction

$$L_i + 2E_i \equiv L_{ijk} + L_{lmn} \in |\mathcal{L}^{\otimes 2} - 2\sum E_{\nu}|^+$$

for $\{i, j, k, l, m, n\} = \{1, ..., 6\}$. So the pairs of conics $C_i + D_i$ and $C_{ijk} + C_{lmn}$ lie in the same plane.

The sixteen conics C_i as well as the sixteen conics D_i form an orbit under the half-period translation group of A. Each conic C_{klm} however creates a whole orbit of sixteen conics C_{klm}^i . All curves in the orbit are different, because the line bundle \mathcal{L} does not admit half-period translations. Altogether we found

$$(2 + \begin{pmatrix} 6\\3 \end{pmatrix}) \cdot 16 = 22 \cdot 16 = 352$$

smooth conics on the quartic surface X, falling into 22 orbits of 16 ones.

It is a natural question to ask, whether the 16 conics C_{klm}^i , i = 1, ..., 16 in the same orbit are skew or not. In fact we have:

Claim 7: In the orbit of sixteen conics C_{klm}^i , i = 1, ..., 16 each conic is disjoint from three other ones and meets 12 other ones in two points.

Proof. After reordering of subscripts we may assume $\{k, l, m\} = \{1, 2, 3\}$. It suffices to consider $C_{123} \cap C_{123}^i$ for all half-periods $e_i \neq 0$. Now translation by e_i maps the

sixtuplet $e_1, ..., e_6$ of odd half-periods to a sixtuplet $e_1 + e_i, ..., e_6 + e_i$ containing two odd and four even half-periods. Then there are the following two possibilities:

1) The triplet $e_1 + e_i, e_2 + e_i, e_3 + e_i$ meets the triplet e_1, e_2, e_3 in two points, say

$$e_2 = e_1 + e_i, \quad \{e_7, ..., e_{10}\} = \{e_3 + e_i, ..., e_6 + e_i\}, \quad \{e_{11}, ..., e_{16}\} = \{e_{11} + e_i, ..., e_{16} + e_i\}$$

up to reordering. (This happens for three different e_i). Then the curves L_{123} and L_{123}^i have the following multiplicities at the half-periods

	L_{123}	L_{123}^{i}	intersection
e_1, e_2	2	2	$2 \cdot 4$
e_3	2	1	2
e_7	1	2	2
$e_{11},, e_{16}$	1	1	$6 \cdot 1$

The intersection multiplicities add up to $18 = L_{123} L_{123}^i$. The proper transforms of these curves on \tilde{A} therefore are disjoint.

2) The triplets $e_1 + e_i, e_2 + e_i, e_3 + e_i$ and e_1, e_2, e_3 are disjoint, say

$$e_1 + e_i = e_4, \quad e_2 + e_i = e_7, e_3 + e_i = e_8, e_5 + e_i = e_9, e_6 + e_i = e_{10},$$
$$\{e_{11} + e_i, \dots, e_{16} + e_i\} = \{e_{11}, \dots, e_{16}\}$$

up to renumbering. Now the multiplicities

$$\begin{array}{cccccc} & L_{123} & L_{123}^i & \text{intersection} \\ e_2, e_3 & 2 & 1 & 2 \cdot 2 \\ e_7, e_8 & 1 & 2 & 2 \cdot 2 \\ e_{11}, \dots, e_{16} & 1 & 1 & 6 \cdot 1 \end{array}$$

add up to 14. This implies that the conics C_{123} and C_{123}^i meet in two points.

The 352 conics we found so far are all the conics which there are on the surface:

Claim 8: A quartic surface X as considered above contains exactly 352 smooth conics.

Proof. Let $C \subset X$ be some smooth conic. We show that C is one of the curves $D_i, C_i, C_{k,l,m}^i$. The conic C satisfies

$$\mathcal{M}C = 2$$
 and $C^2 = -2$.

If C is different from $D_1, ..., D_{16}$, then by (1) and (2), for its symmetric pre-image $F = \sigma \gamma^* C \subset A$ we find

$$\Theta F = 2 + \sum m_i$$
 and $F^2 = -4 + \sum m_i^2$.

Using that F is homologous to $d\Theta$ for some $d \ge 1$ we get

$$18d = 2 + \sum m_i$$
 and $18d^2 = -4 + \sum m_i^2$.

Both C and D_i are conics, so $m_i = CD_i \leq 4$. If $m_i \geq 3$, then C and D_i lie in the same plane, hence $C = C_i$. Therefore we may assume $m_i \leq 2$. This implies d = 1 and we find

$$\sum m_i = 16$$
 and $\sum m_i^2 = 22$.

Then necessarily three of the multiplicities m_i are 2, while ten of them are 1 and the other three are 0. Since $\mathcal{O}_A(F)$ is one of the 16 symmetric translates of $\mathcal{O}_A(\Theta)$ this implies that F is one of the curves $C_{k,l,m}^i$.

References

- [B] Bauer, Th.: Projective images of Kummer surfaces. Math. Ann. 299, 155-170 (1994)
- [D] Saint-Donat, B.: Projective models of K3-surfaces. Amer. J. of Math. 96, 602-639 (1974)
- [LB] Lange, H., Birkenhake, Ch.: Complex abelian varieties. Springer Grundlehren 302 (1992)
- [N] Nikulin, V.V.: On Kummer surfaces. Transl. to English, Math. USSR. Izv. 9, 261-275 (1975)
- [R] Ramanujam, C.P.: Supplement to the article 'Remarks on the Kodaira vanishing theorem'. J. of the Indian Math. Soc. 38, 121-124 (1974)
- [S] Segre, B.: The maximum number of lines lying on a quartic surface. Oxf. Quart. J. 14, 86-96 (1943)

W. Barth, Th. Bauer Mathematisches Institut der Universität Bismarckstraße $1\frac{1}{2}$ D-91054 Erlangen