Higher order embeddings of abelian varieties

Th. Bauer¹ and T. Szemberg²

August 1, 1995

0. Introduction

In recent years several concepts of higher order embeddings have been introduced and studied by Beltrametti, Francia, Sommese and others: k-spannedness, k-very ampleness and k-jet ampleness (see [BFS], [BeSo1], [BeSo2], [BeSo3]).

First recall the definitions:

Definition. Let X be a smooth projective variety and L a line bundle on X.

(a) L is called k-very ample (resp. k-spanned), if for any zero-dimensional subscheme (Z, \mathcal{O}_Z) of X of length k + 1 (resp. for any curvilinear zero-dimensional subscheme (Z, \mathcal{O}_Z) of X of length k + 1) the restriction map

$$H^0(L) \longrightarrow H^0(L \otimes \mathcal{O}_Z)$$

is surjective. Here a subscheme is called *curvilinear*, if it is locally contained in a smooth curve.

(b) L is called k-jet ample, if the restriction map

$$H^0(L) \longrightarrow H^0\left(L \otimes \mathcal{O}_X / \left(\mathfrak{m}_{y_1}^{k_1} \otimes \ldots \otimes \mathfrak{m}_{y_r}^{k_r}\right)\right)$$

is surjective for any choice of distinct points y_1, \ldots, y_r in X and positive integers k_1, \ldots, k_r with $\sum k_i = k + 1$.

The strongest notion is k-jet ampleness; it implies k-very ampleness (cf. [BeSo2, Proposition 2.2]) which of course implies k-spannedness. For k = 0 or k = 1 all the three notions are equivalent and correspond to global generation resp. very ampleness.

In this note we give criteria for k-jet ampleness of line bundles on abelian varieties. A naive way to obtain such a criterion is as follows: According to [BeSo2, Corollary 2.1] a tensor product of k very ample line bundles is always k-jet ample. Now on an abelian variety, by the generalization of Lefschetz' classical theorem [LB,

¹Supported by DFG contract Ba 423/7-1.

²Unité mixte de service de l'Institut Henri Poincare CNRS - Université Pierre et Marie Curie, Paris, partially supported by KBN grant P03A-061-08

Theorem 4.5.1] given in [BaSz, Theorem 1.1], one knows that a tensor product of three ample line bundles is already very ample. So the conclusion is that a tensor product of 3k ample line bundles on an abelian variety is k-jet ample. In this note we show that actually the following considerably stronger statement holds:

Theorem 1. Let A be an abelian variety and let L_1, \ldots, L_{k+2} be ample line bundles on A, $k \ge 0$. Then $L_1 + \ldots + L_{k+2}$ is k-jet ample.

This result is sharp in the sense that in general a tensor product of only k + 1 ample line bundles on an abelian variety is not k-spanned, thus not k-very ample or k-jet ample (see Proposition 2.4). However, it is an interesting problem to specify additional assumptions on k + 1 ample line bundles, which ensure that their tensor product is k-jet ample.

Here we show:

Theorem 2. Let A be an abelian variety and let L_1, \ldots, L_{k+1} be ample line bundles on A, $k \ge 1$. Assume that L_{k+1} has no fixed components. Then $L_1 + \ldots + L_{k+1}$ is k-jet ample.

Actually Theorem 1 is a corollary of Theorem 2, due to the fact that a tensor product of two ample line bundles on an abelian varieties is always globally generated ([BaSz]).

Notation and Conventions. We work throughout over the field \mathbb{C} of complex numbers.

For a point x on an abelian variety A we denote by $t_x : A \longrightarrow A$ the translation map $a \longmapsto a + x$. A divisor Θ on A is called *translation-free*, if $t_x^* \Theta = \Theta$ implies x = 0.

If L is a line bundle on A, $x \in A$ a point and $k \geq 0$ an integer, the map $H^0(L) \longrightarrow H^0(L \otimes \mathcal{O}_A/\mathfrak{m}_x^{k+1})$ mapping a global section of L to its k-jet at x is denoted by $j_{L,x}^k$ or simply by j_x^k .

For a reduced divisor D we denote by $(D)_s$ its smooth part.

1. Higher order Gauß maps

Let A be an abelian variety and let D be a reduced divisor on A defined by a section $s \in H^0(\mathcal{O}_A(D))$. The Gauß map of D is defined as

$$\begin{array}{ccc} \gamma_D : (D)_s & \longrightarrow & \mathbb{P}\left(\mathfrak{m}_0/\mathfrak{m}_0^2\right) \\ x & \longmapsto & \mathbb{C} \cdot \alpha_x\left(j_x^1(s)\right) \end{array}$$

where

$$\alpha_x: \mathbb{P}\left(\mathcal{O}_A(D) \otimes \mathfrak{m}_x/\mathfrak{m}_x^2\right) \longrightarrow \mathbb{P}\left(\mathfrak{m}_x/\mathfrak{m}_x^2\right) \longrightarrow \mathbb{P}\left(\mathfrak{m}_0/\mathfrak{m}_0^2\right)$$

Next, let D_1, \ldots, D_n be reduced divisors on A, defined by sections s_1, \ldots, s_n respectively. We define the *n*-th order Gauß map of D_1, \ldots, D_n to be

$$\gamma_{D_1,\dots,D_n} : (D_1)_s \times \dots \times (D_n)_s \longrightarrow \mathbb{P}\left(\mathfrak{m}_0^n/\mathfrak{m}_0^{n+1}\right)$$
$$(x_1,\dots,x_n) \longmapsto \mathbb{C} \cdot j_0^n \left(\bigotimes_{i=1}^n t_{x_i}^* s_i\right) .$$

We will need the following

Lemma 1.1 If D_1, \ldots, D_m are ample reduced divisors, then the image of γ_{D_1,\ldots,D_n} is not contained in a hyperplane.

Proof. The ampleness of D_i implies that the image of γ_{D_i} is not contained in a hyperplane in $\mathbb{P}(\mathfrak{m}_0/\mathfrak{m}_0^2)$ (see [LB, Proposition 4.4.1]). The assertion then follows from the commutative diagram

where μ is induced by the product map.

2. The main result

Theorem 2.1 Let A be an abelian variety and let L_1, \ldots, L_{k+1} be ample line bundles on A, $k \ge 1$. Assume that L_{k+1} has no fixed components. Then $L = L_1 + \ldots + L_{k+1}$ is k-jet ample.

Proof. Let $y_1, \ldots, y_r \in A$ and integers $k_1, \ldots, k_r > 0$ with $\sum k_i = k + 1$ be given. We have to show that the restriction map

$$H^0(L) \longrightarrow H^0\left(L \otimes \mathcal{O}_A / \left(\mathfrak{m}_{y_1}^{k_1} \otimes \ldots \otimes \mathfrak{m}_{y_r}^{k_r}\right)\right)$$

is surjective.

First we assume that one of the integers, say k_1 , satisfies $k_1 \ge 2$.

Claim 1. It is enough to show that the restriction map

$$H^0\left(L\otimes\widetilde{\mathfrak{m}}\otimes\mathfrak{m}_{y_1}^{k_1-1}\right)\longrightarrow H^0\left(L\otimes\mathfrak{m}_{y_1}^{k_1-1}/\mathfrak{m}_{y_1}^{k_1}\right) \tag{\ast}$$

is surjective, where $\widetilde{\mathfrak{m}} := \bigotimes_{i=2}^r \mathfrak{m}_{y_i}^{k_i}$.

In fact, by induction and [BaSz, Theorem 1.1] we may assume that $H^0(L) \longrightarrow H^0(L \otimes \mathcal{O}_A / (\widetilde{\mathfrak{m}} \otimes \mathfrak{m}_{y_1}^{k_1-1}))$ is surjective; so Claim 1 follows from the following exact diagram:

$$\begin{array}{cccc} 0 \to H^{0} \left(L \otimes \widetilde{\mathfrak{m}} \otimes \mathfrak{m}_{y_{1}}^{k_{1}-1} \right) \to & H^{0} \left(L \right) & \to H^{0} \left(L \otimes \mathcal{O}_{A} / \left(\widetilde{\mathfrak{m}} \otimes \mathfrak{m}_{y_{1}}^{k_{1}-1} \right) \right) \to 0 \\ & & \downarrow & & \parallel \\ 0 \to H^{0} \left(L \otimes \mathfrak{m}_{y_{1}}^{k_{1}-1} / \mathfrak{m}_{y_{1}}^{k_{1}} \right) \to H^{0} \left(L \otimes \mathcal{O}_{A} / \left(\widetilde{\mathfrak{m}} \otimes \mathfrak{m}_{y_{1}}^{k_{1}} \right) \right) \to H^{0} \left(L \otimes \mathcal{O}_{A} / \left(\widetilde{\mathfrak{m}} \otimes \mathfrak{m}_{y_{1}}^{k_{1}-1} \right) \right) \to 0 \\ & & \downarrow & \\ 0 \end{array}$$

It remains to prove the surjectivity of (*). Suppose the contrary. Then there is a hyperplane $H \subset \operatorname{IP}\left(L \otimes \mathfrak{m}_{y_1}^{k_1-1}/\mathfrak{m}_{y_1}^{k_1}\right)$ such that for all sections $s \in H^0(L)$ the conditions

$$j_{y_i}^{k_i-1}(s) = 0 \text{ for } 2 \le i \le r \text{ and } j_{y_1}^{k_1-2}(s) = 0$$
 (1)

imply $\mathbb{C} \cdot j_{y_1}^{k_1-1}(s) \in H$. The idea now is to construct sections satisfying (1) and to use Lemma 1.1 to get a contradiction. It is convenient to renumber the bundles L_1, \ldots, L_k by double subscripts in the following way:

$$L_{1,1},\ldots,L_{1,k_1-1},L_{2,1},\ldots,L_{2,k_2},\ldots,L_{r,1},\ldots,L_{r,k_r}$$

This is possible since $(k_1-1)+k_2+\ldots+k_r=k$. Let Ω be the set of subscripts (i,l), i.e. $\Omega = \{(i,l) \mid 1 \leq i \leq r, 1 \leq l \leq k_i \text{ for } 2 \leq i \leq r \text{ and } 1 \leq l \leq k_i - 1 \text{ for } i = 1\}$. Now for every $(i,l) \in \Omega$ let $\Theta_{i,l} \in |L_{i,l}|$ be a reduced translation-free divisor. Such divisors exist according to [LB, Proposition 4.1.7 and Lemma 4.1.8], since all bundles $L_{i,l}$ are ample. For every $(i,l) \in \Omega$ with $i \geq 2$ we choose a point

$$x_{i,l} \in t_{y_i}^* \Theta_{i,l}$$
 such that $x_{i,l} \notin t_{y_1}^* \Theta_{i,l}$. (2)

This is possible, since otherwise we would have $t_{y_i}^* \Theta_{i,l} = t_{y_1}^* \Theta_{i,l}$ implying a contradiction with $y_1 \neq y_i$ for $i \neq 1$.

Let $s_{1,l} \in H^0(L_{1,l})$ be a section defining $\Theta_{1,l}$ for $l = 1, \ldots, k_1 - 1$. Then for any choice of points $x_{1,l} \in t_{y_1}^* \Theta_{1,l}$ the section

$$s_1 := t_{x_{1,1}}^* s_{1,1} \otimes \ldots \otimes t_{x_{1,k_1-1}}^* s_{1,k_1-1}$$

satisfies $j_{y_1}^{k_1-2}(s_1) = 0.$

Claim 2. There is a nowhere dense subset S of $t_{y_1}^* \Theta_{1,1}$ such that for all $x_{1,1} \in t_{y_1}^* \Theta_{1,1} \setminus S$ the following condition holds: there is a divisor $\Theta_{k+1} \in |L_{k+1}|$ and a point x_{k+1} such that $y_1 \notin t_{x_{k+1}}^* \Theta_{k+1}$ and

$$t_{x_{1,1}}^* \Theta_{1,1} + \ldots + t_{x_{r,k_r}}^* \Theta_{r,k_r} + t_{x_{k+1}}^* \Theta_{k+1} \in |L|.$$

Proof of Claim 2. Consider the homomorphism

(

$$\phi: A \times A \longrightarrow \operatorname{Pic}^{0}(A)$$

$$(a_{1}, a_{2}) \longmapsto t^{*}_{x_{1,2}}L_{1,2} - L_{1,2} + \ldots + t^{*}_{x_{r,k_{r}}}L_{r,k_{r}} - L_{r,k_{r}}$$

$$+ t^{*}_{a_{1}}L_{1,1} - L_{1,1} + t^{*}_{a_{2}}L_{k+1} - L_{k+1} .$$

Let π_1, π_2 be the projections of the kernel of ϕ onto the first resp. the second factor. They are surjective and finite, because $L_{1,1}$ and L_{k+1} are ample (compare also [BaSz, Proof of Theorem 1.1]).

Suppose now that the assertion of Claim 2 is false. This means that there is an open subset $D \subset t_{y_1}^* \Theta_{1,1}$ such that for all $x_{1,1} \in D$ and all $x_{k+1} \in \pi_2 \pi_1^{-1}(x_{1,1})$ the point y_1 is a base point of $t_{x_{k+1}}^* L_{k+1}$ i.e. $y_1 \in t_{x_{k+1}}^* \Theta$ for all $\Theta \in |L_{k+1}|$, or equivalently $x_{k+1} \in t_{y_1}^* \Theta$ for all $\Theta \in |L_{k+1}|$. It follows that $\pi_2 \pi_1^{-1}(D) \subset t_{y_1}^* \Theta$ for all $\Theta \in |L_{k+1}|$. But this means that $t_{y_1}^* L_{k+1}$ has a fixed component, a contradiction. This proves Claim 2.

Now let $x_{1,1} \in t_{y_1}^* \Theta_{1,1} \setminus S$ and let x_{k+1} and Θ_{k+1} be chosen as in Claim 2. Further, let s_2 be a section defining the divisor

$$t_{x_{2,1}}^* \Theta_{1,2} + \ldots + t_{x_{r,k_r}}^* \Theta_{r,k_r} + t_{x_{k+1}}^* \Theta_{k+1}$$

Then $s := s_1 \otimes s_2 \in H^0(L)$ satisfies conditions (1). Therefore we conclude that $\mathbb{C} \cdot j_{y_1}^{k_1-1}(s) \in H$. Since $s_2(y_1) \neq 0$ it follows that $\mathbb{C} \cdot j_{y_1}^{k_1-1}(s_1) \in H'$, where H' is the image of H in $\mathbb{P}\left(\mathfrak{m}_0^{k_1-1}/\mathfrak{m}_0^{k_1}\right)$ via the canonical isomorphism. Since this holds for arbitrary points $x_{1,2}, \ldots, x_{1,k_1-1}$ of $t_{y_1}^* \Theta_{1,2}, \ldots, t_{y_1}^* \Theta_{1,k_1-1}$ and all $x_{1,1} \in t_{y_1}^* \Theta_{1,1} \setminus S$, we thus have shown that the image of the restriction of the map

$$\prod_{l=1}^{k_1-1} \left(t_{y_1}^* \Theta_{1,l} \right)_s \longrightarrow \mathbb{P} \left(\mathfrak{m}_0^{k_1-1}/\mathfrak{m}_0^{k_1} \right)$$
$$(x_{1,1}, \dots, x_{1,k_1-1}) \longmapsto \mathbb{C} \cdot j_{y_1}^{k_1-1}(s_1)$$

to a dense subset is contained in a hyperplane. But then the image of the map itself is contained in this hyperplane, a contradiction with Lemma 1.1.

It remains to deal with the case $k_1 = \ldots = k_{k+1} = 1$. By symmetry and by Claim 1 it is enough to show that there is a section $s \in H^0(L)$ vanishing at y_1, \ldots, y_k and not vanishing at y_{k+1} . Such a section may be constructed directly as follows. Let $\Theta_1, \ldots, \Theta_k$ be reduced translation-free divisors in $|L_1|, \ldots, |L_k|$ respectively. For $1 \leq i \leq k$ there are points $x_i \in t_{y_i}^* \Theta_i \setminus t_{y_{k+1}}^* \Theta_i$. This means that $y_i \in t_{x_i} \Theta_i$ and $y_{k+1} \notin t_{x_i} \Theta_i$. According to [LB, Lemma 4.1.8 and Theorem 4.3.5] there is a reduced, irreducible translation-free divisor $\Theta_{k+1} \in |L_{k+1}|$. Exactly as in Claim 2 we can choose the point x_k in such a way that there is a point $x_{k+1} \in A$ such that $y_{k+1} \notin t_{x_{k+1}}^* \Theta_{k+1}$ and

$$t_{x_1}^* \Theta_1 + \ldots + t_{x_{k+1}}^* \Theta_{k+1} \in |L|.$$

Evidently a section $s \in H^0(L)$ defining the above divisor satisfies all the requirements. This completes the proof of the theorem.

Corollary 2.2 Let A be an abelian variety and let L_1, \ldots, L_{k+2} be ample line bundles on A, $k \ge 0$. Then $L_1 + \ldots + L_{k+2}$ is k-jet ample.

Proof. This follows immediately from Theorem 2.1 because $L'_{k+1} := L_{k+1} + L_{k+2}$ is globally generated ([BaSz, Theorem 1.1a]).

In particular, we have

Corollary 2.3 Let A be an abelian variety and let L be an ample line bundle on A of type (d_1, \ldots, d_q) . If $d_1 \ge k + 2$, then L is k-jet ample.

Now we show that in general a tensor product of only k+1 ample line bundles on an abelian variety is not k-jet ample, even that it is not k-very ample or k-spanned.

Proposition 2.4 Let E_1, \ldots, E_g be elliptic curves, $g \ge 1$, and let $A = E_1 \times \ldots \times E_g$ with the canonical principal polarization

$$L = \mathcal{O}_A\left(\sum_{i=1}^g E_1 \times \ldots \times E_{i-1} \times \{0\} \times E_{i+1} \times \ldots \times E_g\right) \;.$$

Then for any $k \ge 0$ the line bundle (k+1)L is not k-spanned.

Proof. Consider the elliptic curve $E = E_1 \times \{0\} \times \ldots \times \{0\}$ on A. It is enough to show:

(*) The restricted bundle $(k+1)L|_E$ is not k-very ample.

For this note that the notions of k-very ampleness and k-spannedness coincide on curves.

To prove (*), we can invoke Proposition 2.1 of [BeSo3] which states that for a k-very ample line bundle M on a curve C one always has $h^0(M) \ge k + 1$ with equality only in case C is a smooth rational curve.

As for another way to verify (*), it is easy to see that one can choose k+1 points on E such that any divisor in the system $|(k+1)L|_E|$, which contains k of these points, also contains the remaining point because of Abel's theorem.

Acknowledgements. We would like to thank Prof. W. Barth for helpful discussions.

References

- [BaSz] Bauer, Th., Szemberg, T.: On tensor products of ample line bundles on abelian varieties. Math. Z. 223, 79-85 (1996)
- [BFS] Beltrametti, M., Francia, P., Sommese, A.J.: On Reider's method and higher order embeddings. Duke Math. J. 58, 425-439 (1989)
- [BeSo1] Beltrametti, M.C., Sommese, A.J.: On k-spannedness for projective surfaces. Algebraic Geometry (L'Aquila, 1988), Lect. Notes. Math. 1417, Springer-Verlag, 1990, pp. 24-51.

- [BeSo2] Beltrametti, M., Sommese, A. J.: On k-jet ampleness. In: Complex Analysis and Geometry, edited by V. Ancona and A. Silva, Plenum Press, New York, 1993, pp. 355-376.
- [BeSo3] Beltrametti, M., Sommese, A.J.: On the preservation of k-very ampleness under adjunction. Math. Z. 212, 257-283 (1993)
- [LB] Lange, H., Birkenhake, Ch.: Complex Abelian Varieties. Grundlehren der math. Wiss. 302, Springer-Verlag, 1992.

Thomas Bauer, Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstraße 1 1/2, D-91054 Erlangen, Germany (email: bauerth@mi.uni-erlangen.de)

Tomasz Szemberg, *current address:* Institut Henri Poincare, Centre Emile Borel, 11, rue P. et M. Curie, 75231 Paris Cedex 5, France

permanent address: Instytut Matematyki, Uniwersytet Jagielloński, Reymonta 4, PL-30-059 Kraków, Poland

(email: szemberg@im.uj.edu.pl)