Higher order embeddings of abelian varieties

Th. Bauer ${ }^{1}$ and T. Szemberg ${ }^{2}$

August 1, 1995

0. Introduction

In recent years several concepts of higher order embeddings have been introduced and studied by Beltrametti, Francia, Sommese and others: k-spannedness, k-very ampleness and k-jet ampleness (see [BFS], [BeSo1], [BeSo2], [BeSo3]).

First recall the definitions:
Definition. Let X be a smooth projective variety and L a line bundle on X.
(a) L is called k-very ample (resp. k-spanned), if for any zero-dimensional subscheme $\left(Z, \mathcal{O}_{Z}\right)$ of X of length $k+1$ (resp. for any curvilinear zero-dimensional subscheme $\left(Z, \mathcal{O}_{Z}\right)$ of X of length $\left.k+1\right)$ the restriction map

$$
H^{0}(L) \longrightarrow H^{0}\left(L \otimes \mathcal{O}_{Z}\right)
$$

is surjective. Here a subscheme is called curvilinear, if it is locally contained in a smooth curve.
(b) L is called k-jet ample, if the restriction map

$$
H^{0}(L) \longrightarrow H^{0}\left(L \otimes \mathcal{O}_{X} /\left(\mathfrak{m}_{y_{1}}^{k_{1}} \otimes \ldots \otimes \mathfrak{m}_{y_{r}}^{k_{r}}\right)\right)
$$

is surjective for any choice of distinct points y_{1}, \ldots, y_{r} in X and positive integers k_{1}, \ldots, k_{r} with $\sum k_{i}=k+1$.

The strongest notion is k-jet ampleness; it implies k-very ampleness (cf. [BeSo2, Proposition 2.2]) which of course implies k-spannedness. For $k=0$ or $k=1$ all the three notions are equivalent and correspond to global generation resp. very ampleness.

In this note we give criteria for k-jet ampleness of line bundles on abelian varieties. A naive way to obtain such a criterion is as follows: According to [BeSo2, Corollary 2.1] a tensor product of k very ample line bundles is always k-jet ample. Now on an abelian variety, by the generalization of Lefschetz' classical theorem [LB,

[^0]Theorem 4.5.1] given in [BaSz, Theorem 1.1], one knows that a tensor product of three ample line bundles is already very ample. So the conclusion is that a tensor product of $3 k$ ample line bundles on an abelian variety is k-jet ample. In this note we show that actually the following considerably stronger statement holds:

Theorem 1. Let A be an abelian variety and let L_{1}, \ldots, L_{k+2} be ample line bundles on $A, k \geq 0$. Then $L_{1}+\ldots+L_{k+2}$ is k-jet ample.

This result is sharp in the sense that in general a tensor product of only $k+1$ ample line bundles on an abelian variety is not k-spanned, thus not k-very ample or k-jet ample (see Proposition 2.4). However, it is an interesting problem to specify additional assumptions on $k+1$ ample line bundles, which ensure that their tensor product is k-jet ample.

Here we show:
Theorem 2. Let A be an abelian variety and let L_{1}, \ldots, L_{k+1} be ample line bundles on $A, k \geq 1$. Assume that L_{k+1} has no fixed components. Then $L_{1}+\ldots+L_{k+1}$ is k-jet ample.

Actually Theorem 1 is a corollary of Theorem 2, due to the fact that a tensor product of two ample line bundles on an abelian varieties is always globally generated ([BaSz]).

Notation and Conventions. We work throughout over the field \mathbb{C} of complex numbers.

For a point x on an abelian variety A we denote by $t_{x}: A \longrightarrow A$ the translation map $a \longmapsto a+x$. A divisor Θ on A is called translation-free, if $t_{x}^{*} \Theta=\Theta$ implies $x=0$.

If L is a line bundle on $A, x \in A$ a point and $k \geq 0$ an integer, the map $H^{0}(L) \longrightarrow H^{0}\left(L \otimes \mathcal{O}_{A} / \mathfrak{m}_{x}^{k+1}\right)$ mapping a global section of L to its k-jet at x is denoted by $j_{L, x}^{k}$ or simply by j_{x}^{k}.

For a reduced divisor D we denote by $(D)_{s}$ its smooth part.

1. Higher order Gauß maps

Let A be an abelian variety and let D be a reduced divisor on A defined by a section $s \in H^{0}\left(\mathcal{O}_{A}(D)\right)$. The Gauß map of D is defined as

$$
\begin{aligned}
\gamma_{D}:(D)_{s} & \longrightarrow \mathbb{P}\left(\mathfrak{m}_{0} / \mathfrak{m}_{0}^{2}\right) \\
x & \longmapsto \mathbb{C} \cdot \alpha_{x}\left(j_{x}^{1}(s)\right)
\end{aligned}
$$

where

$$
\alpha_{x}: \mathbb{P}\left(\mathcal{O}_{A}(D) \otimes \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right) \longrightarrow \mathbb{P}\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right) \longrightarrow \mathbb{P}\left(\mathfrak{m}_{0} / \mathfrak{m}_{0}^{2}\right)
$$

is the canonical isomorphism (0 being the zero point on A). Identifying $\mathfrak{m}_{0} / \mathfrak{m}_{0}^{2}$ with the dual of the universal covering space of A, the map γ_{D} coincides with the Gauß map of D defined in [LB, Section 4.4].

Next, let D_{1}, \ldots, D_{n} be reduced divisors on A, defined by sections s_{1}, \ldots, s_{n} respectively. We define the n-th order Gau β map of D_{1}, \ldots, D_{n} to be

$$
\begin{aligned}
\gamma_{D_{1}, \ldots, D_{n}}:\left(D_{1}\right)_{s} \times \ldots \times\left(D_{n}\right)_{s} & \longrightarrow \mathbb{P}\left(\mathfrak{m}_{0}^{n} / \mathfrak{m}_{0}^{n+1}\right) \\
\left(x_{1}, \ldots, x_{n}\right) & \longmapsto \mathbb{C} \cdot j_{0}^{n}\left(\bigotimes_{i=1}^{n} t_{x_{i}}^{*} s_{i}\right) .
\end{aligned}
$$

We will need the following
Lemma 1.1 If D_{1}, \ldots, D_{m} are ample reduced divisors, then the image of $\gamma_{D_{1}, \ldots, D_{n}}$ is not contained in a hyperplane.

Proof. The ampleness of D_{i} implies that the image of $\gamma_{D_{i}}$ is not contained in a hyperplane in $\mathbb{P}\left(\mathfrak{m}_{0} / \mathfrak{m}_{0}^{2}\right)$ (see [LB, Proposition 4.4.1]). The assertion then follows from the commutative diagram

where μ is induced by the product map.

2. The main result

Theorem 2.1 Let A be an abelian variety and let L_{1}, \ldots, L_{k+1} be ample line bundles on $A, k \geq 1$. Assume that L_{k+1} has no fixed components. Then $L=L_{1}+\ldots+L_{k+1}$ is k-jet ample.

Proof. Let $y_{1}, \ldots, y_{r} \in A$ and integers $k_{1}, \ldots, k_{r}>0$ with $\sum k_{i}=k+1$ be given. We have to show that the restriction map

$$
H^{0}(L) \longrightarrow H^{0}\left(L \otimes \mathcal{O}_{A} /\left(\mathfrak{m}_{y_{1}}^{k_{1}} \otimes \ldots \otimes \mathfrak{m}_{y_{r}}^{k_{r}}\right)\right)
$$

is surjective.
First we assume that one of the integers, say k_{1}, satisfies $k_{1} \geq 2$.
Claim 1. It is enough to show that the restriction map

$$
\begin{equation*}
H^{0}\left(L \otimes \widetilde{\mathfrak{m}} \otimes \mathfrak{m}_{y_{1}}^{k_{1}-1}\right) \longrightarrow H^{0}\left(L \otimes \mathfrak{m}_{y_{1}}^{k_{1}-1} / \mathfrak{m}_{y_{1}}^{k_{1}}\right) \tag{*}
\end{equation*}
$$

is surjective, where $\widetilde{\mathfrak{m}}:=\bigotimes_{i=2}^{r} \mathfrak{m}_{y_{i}}^{k_{i}}$.

In fact, by induction and [BaSz, Theorem 1.1] we may assume that $H^{0}(L) \longrightarrow$ $H^{0}\left(L \otimes \mathcal{O}_{A} /\left(\widetilde{\mathfrak{m}} \otimes \mathfrak{m}_{y_{1}}^{k_{1}-1}\right)\right)$ is surjective; so Claim 1 follows from the following exact diagram:

It remains to prove the surjectivity of $(*)$. Suppose the contrary. Then there is a hyperplane $H \subset \mathbb{P}\left(L \otimes \mathfrak{m}_{y_{1}}^{k_{1}-1} / \mathfrak{m}_{y_{1}}^{k_{1}}\right)$ such that for all sections $s \in H^{0}(L)$ the conditions

$$
\begin{equation*}
j_{y_{i}}^{k_{i}-1}(s)=0 \text { for } 2 \leq i \leq r \text { and } j_{y_{1}}^{k_{1}-2}(s)=0 \tag{1}
\end{equation*}
$$

imply $\mathbb{C} \cdot j_{y_{1}}^{k_{1}-1}(s) \in H$. The idea now is to construct sections satisfying (1) and to use Lemma 1.1 to get a contradiction. It is convenient to renumber the bundles L_{1}, \ldots, L_{k} by double subscripts in the following way:

$$
L_{1,1}, \ldots, L_{1, k_{1}-1}, L_{2,1}, \ldots, L_{2, k_{2}}, \ldots, L_{r, 1}, \ldots, L_{r, k_{r}}
$$

This is possible since $\left(k_{1}-1\right)+k_{2}+\ldots+k_{r}=k$. Let Ω be the set of subscripts (i, l), i.e. $\Omega=\left\{(i, l) \mid 1 \leq i \leq r, 1 \leq l \leq k_{i}\right.$ for $2 \leq i \leq r$ and $1 \leq l \leq k_{i}-1$ for $\left.i=1\right\}$. Now for every $(i, l) \in \Omega$ let $\Theta_{i, l} \in\left|L_{i, l}\right|$ be a reduced translation-free divisor. Such divisors exist according to [LB, Proposition 4.1.7 and Lemma 4.1.8], since all bundles $L_{i, l}$ are ample. For every $(i, l) \in \Omega$ with $i \geq 2$ we choose a point

$$
\begin{equation*}
x_{i, l} \in t_{y_{i}}^{*} \Theta_{i, l} \text { such that } x_{i, l} \notin t_{y_{1}}^{*} \Theta_{i, l} . \tag{2}
\end{equation*}
$$

This is possible, since otherwise we would have $t_{y_{i}}^{*} \Theta_{i, l}=t_{y_{1}}^{*} \Theta_{i, l}$ implying a contradiction with $y_{1} \neq y_{i}$ for $i \neq 1$.

Let $s_{1, l} \in H^{0}\left(L_{1, l}\right)$ be a section defining $\Theta_{1, l}$ for $l=1, \ldots, k_{1}-1$. Then for any choice of points $x_{1, l} \in t_{y_{1}}^{*} \Theta_{1, l}$ the section

$$
s_{1}:=t_{x_{1,1}}^{*} s_{1,1} \otimes \ldots \otimes t_{x_{1, k_{1}-1}}^{*} s_{1, k_{1}-1}
$$

satisfies $j_{y_{1}}^{k_{1}-2}\left(s_{1}\right)=0$.
Claim 2. There is a nowhere dense subset S of $t_{y_{1}}^{*} \Theta_{1,1}$ such that for all $x_{1,1} \in$ $t_{y_{1}}^{*} \Theta_{1,1} \backslash S$ the following condition holds: there is a divisor $\Theta_{k+1} \in\left|L_{k+1}\right|$ and a point x_{k+1} such that $y_{1} \notin t_{x_{k+1}}^{*} \Theta_{k+1}$ and

$$
t_{x_{1,1}}^{*} \Theta_{1,1}+\ldots+t_{x_{r, k r}}^{*} \Theta_{r, k_{r}}+t_{x_{k+1}}^{*} \Theta_{k+1} \in|L| .
$$

Proof of Claim 2. Consider the homomorphism

$$
\begin{aligned}
\phi: A \times A \longrightarrow & \operatorname{Pic}^{0}(A) \\
\left(a_{1}, a_{2}\right) \longmapsto & t_{x_{1,2}}^{*} L_{1,2}-L_{1,2}+\ldots+t_{x_{r, k_{r}}}^{*} L_{r, k_{r}}-L_{r, k_{r}} \\
& +t_{a_{1}}^{*} L_{1,1}-L_{1,1}+t_{a_{2}}^{*} L_{k+1}-L_{k+1} .
\end{aligned}
$$

Let π_{1}, π_{2} be the projections of the kernel of ϕ onto the first resp. the second factor. They are surjective and finite, because $L_{1,1}$ and L_{k+1} are ample (compare also [BaSz, Proof of Theorem 1.1]).

Suppose now that the assertion of Claim 2 is false. This means that there is an open subset $D \subset t_{y_{1}}^{*} \Theta_{1,1}$ such that for all $x_{1,1} \in D$ and all $x_{k+1} \in \pi_{2} \pi_{1}^{-1}\left(x_{1,1}\right)$ the point y_{1} is a base point of $t_{x_{k+1}}^{*} L_{k+1}$ i.e. $y_{1} \in t_{x_{k+1}}^{*} \Theta$ for all $\Theta \in\left|L_{k+1}\right|$, or equivalently $x_{k+1} \in t_{y_{1}}^{*} \Theta$ for all $\Theta \in\left|L_{k+1}\right|$. It follows that $\pi_{2} \pi_{1}^{-1}(D) \subset t_{y_{1}}^{*} \Theta$ for all $\Theta \in\left|L_{k+1}\right|$. But this means that $t_{y_{1}}^{*} L_{k+1}$ has a fixed component, a contradiction. This proves Claim 2.

Now let $x_{1,1} \in t_{y_{1}}^{*} \Theta_{1,1} \backslash S$ and let x_{k+1} and Θ_{k+1} be chosen as in Claim 2. Further, let s_{2} be a section defining the divisor

$$
t_{x_{2,1}}^{*} \Theta_{1,2}+\ldots+t_{x_{r, k r}}^{*} \Theta_{r, k_{r}}+t_{x_{k+1}}^{*} \Theta_{k+1} .
$$

Then $s:=s_{1} \otimes s_{2} \in H^{0}(L)$ satisfies conditions (1). Therefore we conclude that $\mathbb{C} \cdot j_{y_{1}}^{k_{1}-1}(s) \in H$. Since $s_{2}\left(y_{1}\right) \neq 0$ it follows that $\mathbb{C} \cdot j_{y_{1}}^{k_{1}-1}\left(s_{1}\right) \in H^{\prime}$, where H^{\prime} is the image of H in $\mathbb{P}\left(\mathfrak{m}_{0}^{k_{1}-1} / \mathfrak{m}_{0}^{k_{1}}\right)$ via the canonical isomorphism. Since this holds for arbitrary points $x_{1,2}, \ldots, x_{1, k_{1}-1}$ of $t_{y_{1}}^{*} \Theta_{1,2}, \ldots, t_{y_{1}}^{*} \Theta_{1, k_{1}-1}$ and all $x_{1,1} \in t_{y_{1}}^{*} \Theta_{1,1} \backslash S$, we thus have shown that the image of the restriction of the map

$$
\begin{aligned}
\prod_{l=1}^{k_{1}-1}\left(t_{y_{1}}^{*} \Theta_{1, l}\right)_{s} & \longrightarrow \mathbb{P}\left(\mathfrak{m}_{0}^{k_{1}-1} / \mathfrak{m}_{0}^{k_{1}}\right) \\
\left(x_{1,1}, \ldots, x_{1, k_{1}-1}\right) & \longmapsto \mathbb{C} \cdot j_{y_{1}}^{k_{1}-1}\left(s_{1}\right)
\end{aligned}
$$

to a dense subset is contained in a hyperplane. But then the image of the map itself is contained in this hyperplane, a contradiction with Lemma 1.1.

It remains to deal with the case $k_{1}=\ldots=k_{k+1}=1$. By symmetry and by Claim 1 it is enough to show that there is a section $s \in H^{0}(L)$ vanishing at y_{1}, \ldots, y_{k} and not vanishing at y_{k+1}. Such a section may be constructed directly as follows. Let $\Theta_{1}, \ldots, \Theta_{k}$ be reduced translation-free divisors in $\left|L_{1}\right|, \ldots,\left|L_{k}\right|$ respectively. For $1 \leq i \leq k$ there are points $x_{i} \in t_{y_{i}}^{*} \Theta_{i} \backslash t_{y_{k+1}}^{*} \Theta_{i}$. This means that $y_{i} \in t_{x_{i}} \Theta_{i}$ and $y_{k+1} \notin t_{x_{i}} \Theta_{i}$. According to [LB, Lemma 4.1.8 and Theorem 4.3.5] there is a reduced, irreducible translation-free divisor $\Theta_{k+1} \in\left|L_{k+1}\right|$. Exactly as in Claim 2 we can choose the point x_{k} in such a way that there is a point $x_{k+1} \in A$ such that $y_{k+1} \notin t_{x_{k+1}}^{*} \Theta_{k+1}$ and

$$
t_{x_{1}}^{*} \Theta_{1}+\ldots+t_{x_{k+1}}^{*} \Theta_{k+1} \in|L| .
$$

Evidently a section $s \in H^{0}(L)$ defining the above divisor satisfies all the requirements. This completes the proof of the theorem.

Corollary 2.2 Let A be an abelian variety and let L_{1}, \ldots, L_{k+2} be ample line bundles on $A, k \geq 0$. Then $L_{1}+\ldots+L_{k+2}$ is $k-j e t ~ a m p l e$.

Proof. This follows immediately from Theorem 2.1 because $L_{k+1}^{\prime}:=L_{k+1}+L_{k+2}$ is globally generated ([BaSz, Theorem 1.1a]).

In particular, we have
Corollary 2.3 Let A be an abelian variety and let L be an ample line bundle on A of type $\left(d_{1}, \ldots, d_{g}\right)$. If $d_{1} \geq k+2$, then L is k-jet ample.

Now we show that in general a tensor product of only $k+1$ ample line bundles on an abelian variety is not k-jet ample, even that it is not k-very ample or k-spanned.

Proposition 2.4 Let E_{1}, \ldots, E_{g} be elliptic curves, $g \geq 1$, and let $A=E_{1} \times \ldots \times E_{g}$ with the canonical principal polarization

$$
L=\mathcal{O}_{A}\left(\sum_{i=1}^{g} E_{1} \times \ldots \times E_{i-1} \times\{0\} \times E_{i+1} \times \ldots \times E_{g}\right)
$$

Then for any $k \geq 0$ the line bundle $(k+1) L$ is not k-spanned.
Proof. Consider the elliptic curve $E=E_{1} \times\{0\} \times \ldots \times\{0\}$ on A. It is enough to show:
(*) The restricted bundle $\left.(k+1) L\right|_{E}$ is not k-very ample.
For this note that the notions of k-very ampleness and k-spannedness coincide on curves.

To prove (*), we can invoke Proposition 2.1 of [BeSo3] which states that for a k-very ample line bundle M on a curve C one always has $h^{0}(M) \geq k+1$ with equality only in case C is a smooth rational curve.

As for another way to verify $(*)$, it is easy to see that one can choose $k+1$ points on E such that any divisor in the system $|(k+1) L|_{E} \mid$, which contains k of these points, also contains the remaining point because of Abel's theorem.

Acknowledgements. We would like to thank Prof. W. Barth for helpful discussions.

References

[BaSz] Bauer, Th., Szemberg, T.: On tensor products of ample line bundles on abelian varieties. Math. Z. 223, 79-85 (1996)
[BFS] Beltrametti, M., Francia, P., Sommese, A.J.: On Reider's method and higher order embeddings. Duke Math. J. 58, 425-439 (1989)
[BeSo1] Beltrametti, M.C., Sommese, A.J.: On k-spannedness for projective surfaces. Algebraic Geometry (L'Aquila, 1988), Lect. Notes. Math. 1417, Springer-Verlag, 1990, pp. 24-51.
[BeSo2] Beltrametti, M., Sommese, A. J.: On k-jet ampleness. In: Complex Analysis and Geometry, edited by V. Ancona and A. Silva, Plenum Press, New York, 1993, pp. 355-376.
[BeSo3] Beltrametti, M., Sommese, A.J.: On the preservation of k-very ampleness under adjunction. Math. Z. 212, 257-283 (1993)
[LB] Lange, H., Birkenhake, Ch.: Complex Abelian Varieties. Grundlehren der math. Wiss. 302, Springer-Verlag, 1992.

Thomas Bauer, Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstraße 1 1/2, D-91054 Erlangen, Germany
(email: bauerth@mi.uni-erlangen.de)
Tomasz Szemberg, current address: Institut Henri Poincare, Centre Emile Borel, 11, rue P. et M. Curie, 75231 Paris Cedex 5, France
permanent address: Instytut Matematyki, Uniwersytet Jagielloński, Reymonta 4, PL-30-059 Kraków, Poland
(email: szemberg@im.uj.edu.pl)

[^0]: ${ }^{1}$ Supported by DFG contract Ba 423/7-1.
 ${ }^{2}$ Unité mixte de service de l'Institut Henri Poincare CNRS - Université Pierre et Marie Curie, Paris, partially supported by KBN grant P03A-061-08

