Smooth Kummer surfaces in projective three-space

Thomas Bauer*

September 27, 1996

Abstract

In this note we prove the existence of smooth Kummer surfaces in projective three-space containing sixteen mutually disjoint smooth rational curves of any given degree.

Introduction

Let X be a smooth quartic surface in projective three-space \mathbb{P}^3 . As a consequence of Nikulin's theorem [6] X is a Kummer surface if and only if it contains sixteen mutually disjoint smooth rational curves. The classical examples of smooth Kummer surfaces in \mathbb{P}^3 are due to Traynard (see [8] and [4]). They were rediscovered by Barth and Nieto [2] and independently by Naruki [5]. These quartic surfaces contain sixteen skew lines. In [1] it was shown by different methods that there also exist smooth quartic surfaces in \mathbb{P}^3 containing sixteen mutually disjoint smooth *conics*.

Motivated by these results it is then natural to ask if, for any given integer $d \ge 1$, there exist smooth quartic surfaces in \mathbb{P}^3 containing sixteen mutually disjoint smooth rational curves of degree d. The aim of this note is to show that the method of [1] can be generalized to answer this question in the affirmative. We show:

Theorem. For any integer $d \ge 1$ there is a three-dimensional family of smooth quartic surfaces in \mathbb{P}^3 containing sixteen mutually disjoint smooth rational curves of degree d.

We work throughout over the field \mathbb{C} of complex numbers.

1. Preliminaries

Let (A, L) be a polarized abelian surface of type $(1, 2d^2 + 1)$, $d \ge 1$, and let L be symmetric. Denote by e_1, \ldots, e_{16} the halfperiods of A. We are going to consider the

¹⁹⁹¹ Mathematics Subject Classification: Primary 14J28; Secondary 14E25.

^{*}supported by DFG contract Ba 423/7-1.

non-complete linear system

$$\left| \mathcal{O}_A\left(2L\right) \otimes \bigotimes_{i=1}^{16} \mathfrak{m}_{e_i}^d \right|^{\pm} \tag{*}$$

of even respectively odd sections of $\mathcal{O}_A(2L)$ vanishing in e_1, \ldots, e_{16} to the order d. (As for the sign \pm we will always use the following convention: we take + if d is even, and - if d is odd.) A parameter count shows that the expected dimension of this linear system is 4. In fact, we will show that it yields an embedding of the smooth Kummer surface X of A into \mathbb{P}_3 in the generic case. The linear system (*) corresponds to a line bundle M_L on X such that

$$\pi^* M_L = \mathcal{O}_{\widetilde{A}}\left(2\sigma^* L - d\sum_{i=1}^{16} E_i\right) H^0(X, M_L) \cong H^0\left(A, \mathcal{O}_A(2L) \otimes \bigotimes_{i=1}^{16} \mathfrak{m}_{e_i}^d\right)^{\pm}.$$

Here $\sigma : \widetilde{A} \longrightarrow A$ is the blow-up of A in the halfperiods, $E_1, \ldots, E_{16} \subset \widetilde{A}$ are the exceptional curves and $\pi : \widetilde{A} \longrightarrow X$ is the canonical projection. The images of E_1, \ldots, E_{16} under π will be denoted by D_1, \ldots, D_{16} .

We will need the following lemma:

Lemma 1.1 Let the surfaces A and X and the line bundles L and M_L be as above. Further, let $C \subset X$ be an irreducible curve, different from D_1, \ldots, D_{16} , and let $F = \sigma_* \pi^* C$ be the corresponding symmetric curve on A. Then

(a)
$$M_L^2 = 4$$
 and $M_L D_i = d$ for $1 \le i \le 16$,

(b)
$$F^2 = 2C^2 + \sum_{i=1}^{16} \operatorname{mult}_{e_i} (F)^2$$
, and

(c)
$$LF = M_L C + \frac{d}{2} \sum_{i=1}^{16} \text{mult}_{e_i}(F).$$

The proof consists in an obvious calculation.

2. Bounding degrees and multiplicities

Here we show two technical statements on the degrees and multiplicities of symmetric curves. We start with a lemma which bounds the degree of a symmetric curve on A in terms of the degree of the corresponding curve on the smooth Kummer surface of A:

Lemma 2.1 Let $C \subset X$ be an irreducible curve, different from D_1, \ldots, D_{16} , and let $F = \sigma_* \pi^* C$.

(a) If $M_L C = 0$, then $LF \le 2(1 - C^2)d^2 + 16$.

(b) If
$$M_L C > 0$$
, then $LF \le 4 \left(M_L C - \frac{C^2}{M_L C} \right) d^2 + 9 M_L C$.

Proof. For $\gamma \geq 0$ apply Hodge index to the line bundle M_L and the divisor $C + \frac{\gamma}{d}D_i$:

$$M_L^2 \left(C + \frac{\gamma}{d} D_i \right)^2 \le \left(M_L C + \frac{\gamma}{d} M_L D_i \right)^2 \,.$$

Using Lemma 1.1(a) and the equality $CD_i = \text{mult}_{e_i}(F)$ we get

$$\operatorname{mult}_{e_i}(F) \le \left(\frac{(M_L C)^2}{8\gamma} + \frac{\gamma}{8} + \frac{M_L C}{4} - \frac{C^2}{2\gamma}\right)d + \frac{\gamma}{d} ,$$

hence by Lemma 1.1(c)

$$LF \le \left(\frac{(M_LC)^2}{\gamma} + \gamma + 2M_LC - \frac{4C^2}{\gamma}\right)d^2 + M_LC + 8\gamma .$$

Now the assertion follows by setting $\gamma = 2$ in case $M_L C = 0$ and by setting $\gamma = M_L C$ otherwise.

Further, we will need the following inequality on multiplicities of symmetric curves:

Lemma 2.2 Let $F \subset A$ be a symmetric curve such that $\mathcal{O}_A(F)$ is of type (1, e) with e odd. Then

$$\sum_{i=1}^{16} \operatorname{mult}_{e_i}(F)^2 \ge \frac{1}{16} \left(\sum_{i=1}^{16} \operatorname{mult}_{e_i}(F) \right)^2 + \frac{15}{4} \,.$$

Proof. For $k \ge 0$ define the integers n_k by

$$n_k =_{\text{def}} \#\{i \mid m_i = k, \ 1 \le i \le 16\}$$

Abbreviating $m_i = \operatorname{mult}_{e_i}(F)$ we then have

$$\sum_{i=1}^{16} m_i = \sum_{k \ge 0} k n_k \sum_{i=1}^{16} m_i^2 = \sum_{k \ge 0} k^2 n_k \; .$$

The polarized abelian surface $(A, \mathcal{O}_A(F))$ is the pull-back of a principally polarized abelian surface (B, P) via an isogeny $\varphi : A \longrightarrow B$ of odd degree. The Theta divisor $\Theta \in |P|$ passes through six halfperiods with multiplicity one and through ten halfperiods with even multiplicity. Therefore the symmetric divisor $F \in |\varphi^*P|$ is of odd multiplicity in six halfperiods and of even multiplicity in ten halfperiods or vice versa. So we have

$$\sum_{k\equiv 0(2)} n_k = a \sum_{k\equiv 1(2)} n_k = b , \qquad (1)$$

where (a, b) = (6, 10) or (a, b) = (10, 6).

Under the restriction (1) the difference

$$\sum k^2 n_k - \frac{1}{16} \left(\sum k n_k \right)^2$$

is minimal, if for some integer $k_0 \ge 0$ we have

$$n_{k_0} = 10, \ n_{k_0+1} = 6 \text{ or } n_{k_0} = 6, \ n_{k_0+1} = 10$$

In this case we get $\sum k^2 n_k - \frac{1}{16} \left(\sum k n_k\right)^2 = \frac{15}{4}$, which implies the assertion of the lemma.

3. Kummer surfaces with sixteen skew rational curves of given degree

The aim of this section is to show:

Theorem 3.1 Let (A, L) be a polarized abelian surface of type $(1, 2d^2 + 1)$, $d \ge 1$. Assume $\rho(A) = 1$. Then the map $\varphi_{M_L} : X \longrightarrow \mathbb{P}^3$ defined by the linear system $|M_L|$ is an embedding. The image surface $\varphi_{M_L}(X)$ is a smooth quartic surface containing sixteen mutually disjoint smooth rational curves of degree d.

In particular, this implies the theorem stated in the introduction.

Proof. Using Riemann-Roch, Kodaira vanishing and Lemma 1.1(a), we will be done as soon as we can show that M_L is very ample. For d = 1 this follows from [3], whereas for d = 2 it follows from [1]. So we may assume $d \ge 3$ in the sequel.

(a) First we show that M_L is globally generated. A possible base part B of the system $|\mathcal{O}_A(2L) \otimes \bigotimes_{i=1}^{16} \mathfrak{m}_{e_i}^d|^{\pm}$ is totally symmetric, so B is algebraically equivalent to some even multiple of L, which is impossible for dimensional reasons. It remains the possibility that one – hence all – of the curves D_i is fixed in $|M_L|$. So $M_L - \mu \sum D_i$ is free for some $\mu \geq 1$. But $(M_L - \mu \sum D_i)^2 = 4 - 32\mu d - 32\mu^2 < 0$, a contradiction.

(b) Our next claim is that M_L is ample. Otherwise there is an irreducible (-2)-curve $C \subset X$ such that $M_L C = 0$. Lemma 1.1 shows that we have

$$LF = \frac{d}{2} \sum m_i F^2 = -4 + \sum m_i^2$$

for the symmetric curve $F = \sigma_* \pi^* C$ with multiplicities $m_i = \text{mult}_{e_i}(F)$. According to Lemma 2.1 the degree of F is bounded by

$$LF \le 6d^2 + 16$$
 . (2)

Since L is a primitive line bundle, the assumption on the Néron-Severi group of A implies that $\mathcal{O}_A(F)$ is algebraically equivalent to some multiple pL, $p \ge 1$, thus we have $LF = pL^2 = p(4d^2 + 2)$ and then (2) implies p = 1 because of our assumption $d \ge 3$. So we find

$$8d^2 + 4 = 2LF = d\sum m_i$$

and reduction mod d shows that necessarily d = 4. But in this case $\sum m_i$ would be odd, which is impossible (cf. [3]).

(c) Finally we prove that M_L is very ample. Suppose the contrary. Saint-Donat's criterion [7, Theorem 5.2 and Theorem 6.1(iii)] then implies the existence of an irreducible curve $C \subset X$ with $M_L C = 2$ and $C^2 = 0$. So we have

$$LF = 2 + \frac{d}{2}\sum m_i F^2 = \sum m_i^2$$

for the corresponding symmetric curve $F = \sigma_* \pi^* C$. Lemma 2.1 yields the estimate

$$LF \le 8d^2 + 18$$

As above $\mathcal{O}_A(F)$ is algebraically equivalent to some multiple $pL, p \ge 1$, hence we get

$$p(4d^2+2) = pL^2 \le 8d^2+18$$
,

which implies $p \leq 2$. If we had p = 2 then reduction mod d of the equation

$$2(4d^2+2) = 2 + \frac{d}{2}\sum m_t$$

would give d = 4. But in this case we have $\sum m_i = 65$, which is impossible.

So the only remaining possibility is p = 1, thus

$$4d^2 + 2 = 2 + \frac{d}{2}\sum m_i = \sum m_i^2 \,.$$

But a numerical check shows that this contradicts Lemma 2.2. This completes the proof of the theorem. $\hfill \Box$

Remark 3.2 We conclude with a remark on the genericity assumption on the abelian surface A. It is certainly not true that the line bundle M_L is very ample for *every* polarized abelian surface (A, L) of type $(1, 2d^2 + 1)$. Consider for instance the case where $A = E_1 \times E_2$ is a product of elliptic curves and $L = \mathcal{O}_A(\{0\} \times E_2 + (2d^2 + 1)E_1 \times \{0\})$. Here, taking $C \subset X$ to be curve corresponding to $E_1 \times \{0\}$, we have

$$M_L C = 1 - 2d < 0$$
,

so in this case M_L is not even ample or globally generated.

References

- Barth, W., Bauer, Th.: Smooth quartic surfaces with 352 conics. Manuscripta math. 85, 409-417 (1994)
- Barth, W., Nieto, I.: Abelian surfaces of type (1,3) and quartic surfaces with 16 skew lines. J. Algebraic Geometry 3, 173-222 (1994)
- [3] Bauer, Th.: Projective images of Kummer surfaces. Math. Ann. 299, 155-170 (1994)
- [4] Godeaux, L.: Sur la surface du quatrième ordre contenant trente-deux droites. Académie Royale de Belgique, Bulletin de la Classe des Sciences, 5. sér., 25, 539-552 (1939)
- [5] Naruki, I.: On smooth quartic embedding of Kummer surfaces. Proc. Japan Acad. 67, Ser. A, 223-225 (1991)
- [6] Nikulin, V.V.: On Kummer surfaces. Math. USSR Izvestija, Vol.9, No.2, 261-275 (1975)
- [7] Saint-Donat, B.: Projective models of K3 surfaces. Amer. J. Math. 96, 602-639 (1974)
- [8] Traynard, E.: Sur les fonctions thêta de deux variables et les surfaces hyperelliptiques. Ann. scient. Éc. Norm. Sup., 3. sér., t. 24, 77-177 (1907)

Thomas Bauer, Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstraße $1\frac{1}{2}$, D-91054 Erlangen, Germany

(E-mail: bauerth@mi.uni-erlangen.de)