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Abstract

Let L be an ample line bundle on a K3 surface X. We give sharp bounds
on n such that the global sections of nL simultaneously generate k-jets on X.
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0. Introduction

Consider a K3 surface X and an ample line bundle L on X. It was established
by Saint-Donat [7] – and follows also from Reider’s theorem [6] – that OX(2L) is
globally generated and OX(3L) is very ample. The purpose of this note is to see how
these basic facts generalize to the generation of jets and to jet ampleness. Recall
that L is said to generate k-jets at a point x ∈ X, if L has global sections with
arbitrarily prescribed k-jets at x, i.e. if the evaluation map

H0(X,L) −→ H0
(
X,L⊗OX/mk+1

x

)
is surjective. A stronger variant of this local notion includes the separation of a finite
set of distinct points: L is k-jet ample, if for any choice of distinct points x1, . . . , xr
in X and positive integers k1, . . . , kr with

∑r
i=1 ki = k + 1 the natural map

H0(X,L) −→ H0
(
X,L⊗OX/

(
mk1
x1
⊗ . . .⊗mkr

xr

))
is surjective (see [1]). This means that L has global sections generating all simulta-
neous k-jets at any r points x1, . . . , xr.

Suitably high multiples of L will certainly separate any given number of points
and jets, so the interesting problem here is to determine optimal bounds. Certain
effective statements on the local generation of jets, which are however not sharp,
can be obtained by considering the Seshadri constant ε(L, x), which measures the
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local positivity of L at x. In fact, elementary arguments yield bounds for ε(L, x)
which, via vanishing, imply that the line bundle OX(nL) generates k-jets at x for
n ≥ k + 2 if L is globally generated, and for n ≥ 2k + 4 if the linear system |L| has
base points (see Sect. 3). Our main result gives the optimal bounds in this situation
and also the sharp bound for jet ampleness:

Theorem. Let X be a K3 surface, L an ample line bundle on X and k a non-
negative integer. Then either

(a) OX(nL) is k-jet ample for n ≥ k + 2, or

(b) L is of the form L = OX (aE + Γ), where E ⊂ X is an elliptic curve, Γ ⊂ X
is a (−2)-curve with E · Γ = 1 and a ≥ 3.

In the exceptional case (b) let ∆ be the finite set of singular points of the fibres
of the elliptic fibration X −→ IP1 given by |E|. Then OX(nL) generates k-jets at a
point x ∈ X −∆ for n ≥ k + 2 and it generates k-jets at a point x ∈ ∆ if and only
if n ≥ 2k + 1.

Notation and Conventions. We work throughout over the field C of complex num-
bers.

For a Q-divisor D we denote by dDe its round-up and by bDc its round-down
(integer part).

We will make use of the Kawamata-Viehweg vanishing theorem, which states
that for a nef and big Q-divisor D on a smooth projective surface S one has

H i (S,OS (KS + dDe)) = 0 for i > 0 .

Note that there is no normal crossing hypothesis in the surface case of Kawamata-
Viehweg vanishing thanks to Sakai’s lemma (see [3, Lemma 1.1]).

Let X be a non-singular surface. By a jet of order k (or a k-jet) of a linear
system |L| on X at the point x ∈ X we mean an element j ∈ H0(X,L⊗OX/mk+1

x ).
Accordingly, by a simultaneous jet of order k (or a simultaneous k-jet) at the points
x1, . . . , xr ∈ X we mean an element

j ∈ H0
(
X,L⊗OX/

(
mk1
x1
⊗ . . .⊗mkr

xr

))
=

r⊕
i=1

H0
(
X,L⊗OX/mki

xi

)
,

where
∑r

i=1 ki = k + 1. Given a global section s ∈ H0(L), we consider the local
Taylor expansions of s around the xi’s. A simultaneous k-jet is then given by the∑r

i=1

(
ki+1
2

)
-tuple of the coefficients of the terms of degree ≤ ki for each xi. In the

proof of Lemma 2.1 we will use the term 0-jet of order ki − 1 at a point xi for the(
ki+1
2

)
-tuple

0 = (0, ..., 0) ∈ H0(X,L⊗OX/mki
xi

) = C⊕
(ki+1

2 )
.
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1. Linear systems with base points

Let X be a K3 surface and L an ample line bundle on X. We are interested in the
jet ampleness of tensor powers OX(nL), n ≥ 1. In this section we study the case
where the linear system |L| has base points. Under this assumption L is of the form

L = OX(aE + Γ) , (1)

where E ⊂ X is an elliptic curve, Γ ⊂ X is a smooth rational curve with E · Γ = 1
and a ≥ 3. (see [7, Proposition 8.1]). The (−2)-curve Γ is the base locus of |L|.
The pencil |E| gives an elliptic fibration X −→ IP1. For x ∈ X we will denote by
Ex the unique fibre passing through x. Because of L · E = 1, all the fibres Ex are
irreducible. The singular fibres Ex are rational curves with a single double point,
which must lie outside Γ. Further, we will consider the finite set

∆ =def {x ∈ X | Ex is singular at x}

of the singular points of the fibres.
First, we show:

Proposition 1.1 Suppose that L is of the form (1) and let x ∈ ∆. Then OX(nL)
generates k-jets at x for n ≥ 2k + 1.

Proof. It is enough to show that

H1
(
X̃, nf ∗L− (k + 1)Z

)
= 0 for n ≥ 2k + 1 , (2)

where f : X̃ −→ X is the blow-up of X in x and Z = f−1(x) is the exceptional
divisor. Consider the divisor D =def aEx + Γ ∈ |L| and the Q-divisor

M =def nf
∗L−

(
k +

1

2

)
Z − λ

(
nf ∗D −

(
k +

1

2

)
Z

)
,

where λ is defined as

λ =def
3

n(4a− 1)
.

Since multx(Ex) = 2, one easily checks that the Q-divisor f ∗L− 1
2
Z is nef and big,

hence the numerical equivalence

M ≡ (1− λ)

(
nf ∗L−

(
k +

1

2

)
Z

)
shows that M is nef and big for n ≥ 2k+ 1 as well. We will show that its round-up
leads to the asserted vanishing.

Since multx(D) = 2a, we can write

f ∗D = aE ′x + Γ′ + 2aZ ,
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where E ′x and Γ′ are the proper transforms of the curves Ex respectively Γ. Therefore
the round-up of M is

dMe = nf ∗L− bλnacE ′x − bλncΓ′ −
⌊

2λna+ (1− λ)

(
k +

1

2

)⌋
Z .

Our choice of λ implies λna < 1 and

2λna+ (1− λ)

(
k +

1

2

)
≥ k + 2 ,

hence we find

KX̃ + dMe = dMe+ Z = nf ∗L− (k + 1)Z − pZ

for some p ≥ 0. The Kawamata-Viehweg vanishing theorem thus then gives (2),
which in turn shows that OX(nL) generates k-jets at x.

Now we prove that the bound 2k+1 in the previous proposition is, in fact, sharp:

Proposition 1.2 Let L be of the form (1) and x ∈ ∆. Then OX(nL) does not
generate k-jets at x if n ≤ 2k.

Proof. First note that it is enough to prove the assertion for n = 2k, since L
is globally generated at x. Again let f : X̃ −→ X be the blow-up at x, Z the
exceptional divisor and D =def aEx + Γ.

From the exact sequence

0 −→ OX(2kL)⊗mk+1
x −→ OX(2kL) −→ OX(2kL)⊗OX/mk+1

x −→ 0

and H1(X, 2kL) = 0 we see that it is sufficient to show that

H1
(
X̃, 2kf ∗L− (k + 1)Z

)
6= 0 . (3)

Define

λ =def
2

k(4a− 1)

and consider the Q-divisor

M =def 2kf ∗L− kZ − λ (2kf ∗D − kZ) .

Because λ < 1 M is certainly nef and big. Its round-up is

dMe = 2kf ∗L− b2kλacE ′x − b2kλcΓ′ − bk + 4kλa− kλcZ ,

where as before E ′x and Γ′ are the proper transforms. The main point in the con-
struction of M is that we have

1 < 2kλa < 2, 0 < 2kλ < 1 and k + 4kλa− kλ = k + 2 ,



5

hence
dMe = 2kf ∗L− E ′x − (k + 2)Z ,

which by Kawamata-Viehweg gives the vanishing

H i
(
X̃, 2kf ∗L− E ′x − (k + 1)Z

)
= 0 for i > 0 . (4)

The curve E ′x is the normalization of an irreducible singular elliptic curve, so it is
smooth and rational. Consider the exact sequence

0 −→ OX̃ (2kf ∗L− E ′x − (k + 1)Z) −→ OX̃ (2kf ∗L− (k + 1)Z)
−→ OE′

x
(2kf ∗L− (k + 1)Z) −→ 0 .

From its associated long cohomology sequence (4) we get

H1
(
X̃, 2kf ∗L− (k + 1)Z

)
∼= H1

(
E ′x, 2kf

∗L− (k + 1)Z|E′
x

)
. (5)

But the restriction of 2kf ∗L − (k + 1)Z to E ′x is of degree −2, hence the right
hand cohomology group in (5) does not vanish. This gives (3) and hence proves the
proposition.

Next we show:

Proposition 1.3 Suppose that L is of the form (1). Then OX(nL) generates k-jets
at points x ∈ X −∆ for n ≥ k + 2.

Proof. Let x be a point inX−∆ and let k be a non-negative integer. We again denote
by f : X̃ −→ X the blow-up of X in x and by Z the corresponding exceptional
divisor. Suppose n ≥ k + 2. To prove the proposition, it is enough to show that

H1
(
X̃, nf ∗L− (k + 1)Z

)
= 0 . (6)

First, we have

(nf ∗L− (k + 2)Z)2 = n2L2 − (k + 2)2 ≥ (k + 2)2L2 − (k + 2)2 > 0 ,

since the intersection pairing on X is even. Further, if C ′ ⊂ X̃ is any irreducible
curve different from the exceptional divisors, then we can write C ′ = f ∗C − mZ,
where C is an irreducible curve on X and m = multx(C). We have

(nf ∗L− (k + 2)Z) · C ′ = nL · C − (k + 2)m .

If C is the base curve Γ or the fibre Ex, then x /∈ ∆ implies m ≤ 1, so

nL · C − (k + 2)m ≥ n− (k + 2) ≥ 0 .

If C is not as just described, the divisor

D =def (k + 1) (aEx + Γ) ≡ (k + 1)L
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meets C properly, so

nL · C ≥ D · C ≥ a(k + 1)m+ (k + 1)Γ · C ≥ (k + 2)m .

So we have shown that nf ∗L− (k + 2)Z is nef and big, hence (6) follows from the
Kawamata-Viehweg vanishing theorem, and we are done.

Remark 1.4 The bound k+ 2 in the previous proposition is actually sharp. To see
this, assume that OX(nL) generates k-jets on X−∆ for some n ≤ k+1 and consider
the restriction of the bundle OX(nL) to a smooth elliptic fibre E. The restriction
of L to E is of the form OE(p) for some point p ∈ E. Then |OE(nL)| = |OE(np)|
only generates (n− 2)-jets at p, since there is no meromorphic function on E with
a simple pole at p. A fortiori |OX(nL)| does not generate (n− 1)-jets at p.

2. Globally generated bundles

If a globally generated line bundle on a K3 surface fails to be very ample, then it
gives a double covering of IP2 or of a rational normal scroll. Therefore we begin this
section by studying the generation of simultaneous k-jets in the set-up of a double
covering.

Lemma 2.1 Let π : X −→ Y be a double covering of smooth projective surfaces,
branched over a smooth divisor B ⊂ Y . Suppose that M ∈ Pic(Y ) is a k-jet ample
line bundle and that OY

(
M − 1

2
B
)

is (k − 1)-jet ample. Then L = π∗M is k-jet
ample.

Proof. Let R = π∗(B)red and let sR ∈ H0(R) be a section whose divisor of zeros is
R. We observe that sR(−x) = −sR(x) for all x ∈ X. The projection formula gives
the following isomorphism

H0 (X, π∗M) = π∗H0 (Y,M)⊕ sR · π∗H0

(
Y,M − 1

2
B

)
. (7)

Now, let points x1, . . . , xr ∈ X and positive integers k1, . . . , kr with
∑r

i=1 ki = k+ 1
be given. Furthermore let

J ∈ H0

(
X, π∗M ⊗OX/

r⊗
i=1

mki
xi

)
=

r⊕
i=1

H0
(
X, π∗M ⊗OX/mki

xi

)
be given. Let us write, corresponding to the above sum decomposition, J =
(j1, . . . , jr), where ji is a (ki − 1)-jet of |π∗M | at xi for i = 1, . . . , r. We
can then write J =

∑r
i=1 Ji where the simultaneous k-jets Ji are of the form

Ji = (0, . . . , 0, ji, 0, . . . , 0). In other words, Ji has the 0-jet of order kl − 1 as its
l-th component, for l 6= i, and ji as its i-th component. It is enough to find for
i = 1, . . . , r a section si whose simultaneous k-jet at the points x1, . . . , xr is given
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by Ji, since the sum s =
∑r

i=1 si will then have the prescribed simultaneous jet J .
In order to alleviate notation, we assume i = 1.

We distinguish between three cases.
Case 1. Suppose that x1 /∈ R and that x2 is the second point in the fibre of π

over y1 = π(x1).
Let p, q be local coordinates at the point y1 ∈ Y . The pull-back of these coordi-

nates gives rise to local coordinates uj, vj around the points xj for j = 1, 2. In these
local coordinates j1 can be written as

j1 =
∑

i+j<k1

aiju
i
1v
j
1

(since we can set aij = 0 for i+ j ≥ k1).
Let ` = max (k1, k2). Since M and OY

(
M − 1

2
B
)

are (k − 1)-jet ample and
`+
∑

i≥3 ki ≤ k, there are sections s ∈ H0(Y,M) and t ∈ H0
(
Y,M − 1

2
B
)

satisfying
the following conditions

• s mod m`
y1

= 1
2

∑
i+j<` aijp

iqj,

• s mod mki
π(xi)

= 0 for i ≥ 3,

• (sR · π∗t) mod m`
x1

= 1
2

∑
i+j<` aiju

i
1v
j
1,

• t mod mki
π(xi)

= 0 for i ≥ 3.

Then we have

(sR · π∗t) mod m`
x2

= −1

2

∑
i+j<`

aiju
i
2v
j
2 ,

which in turn implies that

(π∗s+ sR · π∗t) mod m`
x1

= j1,

(π∗s+ sR · π∗t) mod mki
xi

= 0 for i ≥ 2 .

then set the section π∗s+ sR · π∗t = s1, it has in fact the prescribed jet J1.
Case 2. Suppose that x1 /∈ R and that the other point in the fibre of π over

y1 = π(x1) is not among x2, . . . , xr. Then, keeping the notation from the preceding
case, the k-jet ampleness of M implies that there exists a section s ∈ H0(Y,M) such
that

• s mod mk1
y1

=
∑

i+j<k1
aijp

iqj,

• s mod mki
π(xi)

= 0.

Now π∗s := s1 has the prescribed jet J1.
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Case 3. We assume now that x1 ∈ R. Since B is smooth there are local coordi-
nates (p, q) at the point y1 = π(x1) such that B = {p = 0}. The local coordinates
(u, v) around the point x1 can be chosen in such a way that locally around x1

π : (u, v) −→ (p = u2, q = v) .

So we have R = {u = 0} locally around the point x1. We can write the jet j1 in the
following way:

j1 =
∑

2i+j<k1

a2i,ju
2ivj +

∑
2i+1+j<k1

a2i+1,ju
2i+1vj

=
∑

2i+j<k1

a2i,ju
2ivj + u ·

∑
2i+j<k1−1

a2i+1,ju
2ivj.

Since M is k-jet ample there exists a section s ∈ H0(Y,M) satisfying

• s mod mk1
y1

=
∑

2i+j<k1
a2i,jp

iqj,

• s mod mki
π(xi)

= 0 for i ≥ 2.

Similarly, since OY
(
M − 1

2
B
)

is (k − 1)-jet ample there exists a section t ∈
H0
(
Y,M − 1

2
B
)

such that

• t mod mk1−1
y1

=
∑

2i+j<k1−1 a2i+1,jp
iqj,

• t mod mki
π(xi)

= 0 for i ≥ 2.

It is now easy to check that π∗s + sRπ
∗t has the prescribed jets at the points

x1, . . . , xr.

We now apply the lemma to show the following

Proposition 2.2 Let X be a K3 surface and L be an ample globally generated line
bundle on X. Then OX(nL) is k-jet ample for n ≥ k + 2.

Proof. If L is already very ample, then clearly OX(nL) is n-jet ample and we are
done (see [1, Corollary 2.1]). On the other hand, if L fails to be very ample, then
we are in one of the following two cases.

Case 1. L2 = 2. Then Riemann-Roch implies h0(X,L) = 3 and L induces a 2 : 1
mapping π : X −→ IP2, which is branched over a smooth sextic B ⊂ IP2. Setting
M = OIP2(n) we have nL = π∗M and

OIP2

(
M − 1

2
B

)
= OIP2(n)⊗OIP2(−3) = OIP2(n− 3) ,

hence the assumptions of the lemma are satisfied for n ≥ k + 2 and we are done.
Case 2. L2 ≥ 4. Then Theorem 5.2 in [7] implies that there are two possibilities:

either
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(i) there exists a genus 2 curve C ⊂ X such that L = OX(2C), or

(ii) there exists an elliptic curve E ⊂ X with L · E = 2.

In the first case, since C is irreducible and since there are no linear systems on K3
surfaces having isolated base points, OX(C) is globally generated. From Case 1 it
follows that OX(nC) is k-jet ample for n ≥ k + 2, and OX(nL) = OX(2nC) is, in
this case, even (2k + 2)-jet ample.

In the second case, since L is ample, Proposition 5.7 of [7] implies that L gives
a 2 : 1 mapping

π : X −→ π(X) ⊂ IPpa(L) ,

where π(X) is a rational normal scroll of degree pa(L) − 1. It is well-known that
the Picard group of π(X) ∼= IFr is generated by divisors E0 and f which satisfy
E2

0 = −r, E0 · f = 1 and f 2 = 0. Since X is a K3 surface the projection formula
yields that L is of the form L = π∗ (E0 + bf) for some b > r and the branch locus B
satisfies OIFr(B) = OIFr (2(2E0 + (2 + r)f)). Setting M = n(E0 + bf) we see that
M is k-jet ample and

OIFr

(
M − 1

2
B

)
= OIFr ((n− 2)E0 + (nb− 2− r)f)

is (k − 1)-jet ample for n ≥ k + 2. Thus the assumptions of the lemma are satisfied
and it yields our assertion.

The following example shows that the bound in the previous proposition is sharp.

Example 2.3 Let π : X −→ IP2 be a double cover branched over some smooth
sextic B ⊂ IP2 and let L = π∗OIP2(1). We are going to show that (k + 1)L is not
k-jet ample. To this end, choose a point x ∈ R = π∗(B)red and let u, v be local
coordinates around x (as in Case 3 of the proof of Proposition 2.2).

Now consider the jet J ∈ H0
(
X,OX ((k + 1)L)⊗OX/mk+1

x

)
, which is locally

given as
J = uvk−1 .

If (k + 1)L were k-jet ample, then there would have to be a section s in
H0 (X, (k + 1)L) such that s mod mk+1

x = J . Equation (7) then shows that (lo-
cally) s is of the form

s = π∗s′ + u · π∗s′′ ,

where s′ ∈ H0
(
IP2,OIP2(k + 1)

)
and s′′ ∈ H0

(
IP2,OIP2(k − 2)

)
are sections such

that
s′′ mod mk

π(x) = vk−1 ,

which is certainly impossible.
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3. Seshadri constants on K3 surfaces

In this section we explain the relationship between our results and Seshadri constants
of line bundles on K3 surfaces.

Recall that the Seshadri constant of a nef line bundle L on a smooth projective
variety X at a point x ∈ X is, by definition, the real number

ε(L, x) = inf
C3x

L · C
multx(C)

,

where the infimum is taken over all irreducible curves C ⊂ X passing through x
(see [2]). The number ε(L, x) can be thought of as a measure of the local positivity
of L at the point x. The infimum

ε(L) = inf
x∈X

ε(L, x)

is the global Seshadri constant of L.
For K3 surfaces one has the following elementary observation:

Proposition 3.1 Let X be a K3 surface and let L be an ample line bundle on X.
If L is globally generated, then we have

ε(L) ≥ 1 .

If L is not globally generated, then

ε(L) =
1

2
.

Proof. The first part of the proposition holds on any smooth projective variety. It
follows from the fact that if |L| is free, then for any given curve C ⊂ X and any
point x ∈ C there is a divisor in |L| meeting C properly at x.

If L is of the form (1) and C ⊂ X is singular at x, then either L·C/multx(C) ≥ 1
or C is a singular fibre of the elliptic fibration, in which case L ·C/multx(C) = 1/2.

Via vanishing, bounds on ε(L, x) yield criteria for the generation of jets: If |L|
is free, then ε(L, x) ≥ 1 implies that OX(nL) generates k-jets at x for n ≥ k + 2,
and if |L| has base points, then ε(L, x) ≥ 1

2
implies that OX(nL) generates k-jets at

x for n ≥ 2k + 4 (see [5, Proposition 5.7]).

Remark 3.2 The proposition is also implied by the theorem stated in the introduc-
tion. This follows from the fact that the Seshadri constant of L at x is the relative
number of jets that high multiples of L generate at x:

ε(L, x) = lim sup
n−→∞

s(nL, x)

n
,

where s(nL, x) is the maximal integer s such that OX(nL) generates s-jets at x ([2,
Theorem 6.4]).
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