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Introduction

In recent years there has been considerable interest in understanding the local positivity
of ample line bundles on algebraic varieties. Seshadri constants, introduced by Demailly
[4], emerged as a natural measure of the local positivity of a line bundle. These invariants
are very hard to control and their exact value is known only in very few cases.

Let X be a smooth projective variety of dimension n, and let L an ample line bundle
on X. Then the real number

ε(L, x) =def inf
C3x

L · C
multxC

is the Seshadri constant of L at x ∈ X. (The infimum is taken over all irreducible curves
passing through x.) One has the universal upper bound ε(L, x) ≤ n

√
Ln, which follows

easily from Kleiman’s ampleness criterion. If X is an abelian variety, then ε(L) = ε(L, x)
does not depend on the point x ∈ X, and one has the lower bound ε(L) ≥ 1. Nakamaye
[8] showed that the equality ε(L) = 1 has strong geometric consequences: X splits in this
case as a product of polarized varieties X ′ × E, where E is an elliptic curve and X ′ is a
lower-dimensional abelian variety. If (X,L) = (JC,ΘC) is the Jacobian of a smooth curve
C of genus g, then ε(ΘC) ≤ √g by a result of Lazarsfeld [6]. For abelian surfaces of Picard
number one, a complete picture has recently been given in [2]. For higher-dimensional
abelian varieties, however, no explicit values of Seshadri constants are known up to now.

As a first step towards understanding the higher-dimensional picture, we determine
in the present paper the Seshadri constants of principally polarized abelian threefolds. A
principally polarized abelian threefold is either a product or a Jacobian of a smooth curve
of genus 3 (see [5]). Our result shows that Seshadri constants reflect moduli properties of
abelian varieties. We prove:

Theorem 1 Let (X,L) be a principally polarized abelian threefold. Then

ε(X,L) =


1 , if (X,L) is a polarized product

3
2

, if (X,L) = (JC,ΘC) is the Jacobian
of a hyperelliptic curve C

12
7

, otherwise.
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Note that the inequality ε(JC,ΘC) ≤ 3
2

for hyperelliptic C follows from [6, Proposition
(ii)].

The theorem has two immediate consequences that we find interesting. First, it shows
that the Seshadri constant of a principally polarized abelian threefold is always a rational
number. And secondly, it provides an upper bound on minimal period lengths. Writing
X as a quotient Cn/Λ by a lattice Λ, we can view the first Chern class of L as a positive
definite Hermitian form H on Cn. The minimal period length of (X,L) is then the real
number

m(X,L) =def min
λ∈Λ
λ 6=0

H(λ, λ) ,

i.e., the square of the length (with respect to H) of the shortest period. As as consequence
of Lazarsfeld’s inequality [6], Theorem 1 then implies:

Corollary 2 Let (X,ΘC) be a non-hyperelliptic three-dimensional Jacobian. Then

m(X,ΘC) ≤ 48

7π
.

It is natural to wonder what a higher-dimensional analogue of Theorem 1 might look
like. For instance, one may ask which properties of a curve C might influence the value of
the Seshadri constant ε(JC,ΘC). Our geometric idea that underlies the proof of Theorem
1, however, does not seem to have an obvious analogue in dimension bigger than three.

1. Submaximal subvarieties

As in the introduction, consider a smooth projective variety X and an ample line bundle
L on X. We begin by recalling that the definition of the Seshadri constant ε(L, x) at
some point x ∈ X can be reformulated as

ε(L, x) = sup { ε ∈ R f ∗L− εE is nef } , (1)

where f : Y → X is the blow-up of X at x with exceptional divisor E over x.
An effective cycle Z on X of dimension d, with 1 ≤ d < n, will be called L-submaximal

at a point x ∈ X, if

d

√
Ld · Z

multx Z
<

n
√
Ln .

This terminology is motivated by the fact that by [4, (6.7)] the existence of an L-
submaximal cycle at x causes the Seshadri constant ε(L, x) to be below its maximal
possible value n

√
Ln. In fact, in this case

ε(L, x) ≤ d

√
Ld · Z

multx Z
. (2)

We will say that Z computes the Seshadri constant of L at x, if equality holds in (2). The
real-valued Nakai-Moishezon criterion [3] implies that for any point x ∈ X either
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• ε(L, x) is maximal, i.e., n
√
Ln, or

or

• there is an effective cycle Z on X – in fact even an irreducible subvariety – computing
ε(L, x)

(cf. [10, Proof of Proposition 4]). The dimension of the subvariety Z in question is,
however, unknown a priori.

For the 3-dimensional case, the following proposition gives restrictions on the subva-
rieties computing ε(L, x), provided that there is a submaximal divisor in a multiple of
L.

Proposition 1.1 Let X be a smooth projective variety of dimension three, let x ∈ X be
a point and L an ample line bundle on X. Suppose that for some integer p > 0 there is a
divisor D ∈ |pL| that is L-submaximal at x. Then:

(a) Every L-submaximal curve on X lies on the support of D.

(b) The Seshadri constant ε(L, x) is computed either by a curve lying on the support of
D or by a divisor D0. If the Néron-Severi group of X is of rank one, then D0 is an
irreducible component of D.

Proof. For the proof of (a) note to begin with that from the submaximality assumption
on D one has

multxD > p
3
√
L3 .

Suppose then to the contrary that there is an L-submaximal curve C that is not contained
in suppD. Thus C and D meet properly, so that

pL · C = D · C ≥ multxD ·multxC .

Using the submaximality of C we get

multxD <
pL · C

multxC
< p

3
√
L3 ,

and this contradiction proves (a).
Turning to (b), we have ε(L, x) <

3
√
L3 from the assumption on D. Therefore, if

there is a curve C ⊂ X computing ε(L, x), the above claim shows that C is contained in
suppD. So in this case statement (b) holds and we are done. If ε(L, x) is not computed
by a curve, then there exists a sequence (Cn) of distinct irreducible curves Cn ⊂ X with
the property that

lim
n→∞

L · Cn
multxCn

= ε(L, x) .

We may assume – again because of ε(L, x) <
3
√
L3 – that all the curves Cn are L-

submaximal at x, and hence that

Cn ⊂ suppD for all n
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according to (a). If there is no curve computing ε(L, x), then the real-valued Nakai-
Moishezon criterion implies that there is an irreducible (and, of course, L-submaximal)
divisor D0 on X computing ε(L, x).

Under our additional assumption on the Néron-Severi group, the submaximal divisor
D0 is algebraically proportional to D. The arguments in the proof of (a) above still hold
when we replace D by D0, so that we conclude that

Cn ⊂ suppD0 ∩ suppD for all n .

But then D0 must be a component of D, and this implies the second part of statement
(b).

Note that if D is irreducible and
√

L2·D
multxD

is an irrational number, then exactly one

of the cases in statement (b) happens.

The proof of the main theorem relies on the following criterion, which will allow us
to construct curves computing Seshadri constants on 3-dimensional Jacobians. We start
by fixing some notation. Consider a smooth projective curve C. We will denote by
s : C × C → JC the subtraction map (x, y) 7→ OC(x − y). Further, the numerical
equivalence classes of the fibers of the projections C ×C → C will be denoted by F1 and
F2, and the diagonal in C × C by ∆.

Proposition 1.2 Let C be a smooth projective curve of genus 3, and let G ⊂ C × C be
an irreducible curve that is numerically equivalent to

a1F1 + a2F2 − b∆ ,

where a1, a2 and b are positive integers. If

s∗Θ ·G
G ·∆

<
√

3 ,

then the image curve s∗G ⊂ JC computes ε(Θ), and we have

ε(Θ) =
s∗Θ ·G
G ·∆

.

Proof. Consider the commutative diagram

∆ ==== ∆−−−→ Ey
∩ y

∩ y
∩

C × C s̃−−−→ Σ̃ ↪−−−→Bl0(JC)∥∥∥∥∥
y

y f

C × C s−−−→ Σ ↪−−−→ JC
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where Σ denotes the image of s in JC and f is the blowing-up of JC at 0 with exceptional
divisor E. We claim that

for ε ≤ 3
√

Θ3, the R-divisor f ∗Θ− εE is nef if and only if s∗Θ− ε∆ is. (3)

The divisor s∗Θ−ε∆ is the pullback of f ∗Θ−εE under s̃, hence the ‘only if’ part is clear.
Turning to the ‘if’ part, let us assume that there is a curve R ⊂ Bl0(JC) such that

(f ∗Θ− εE)R < 0 .

The surface Σ is Θ-submaximal at the origin (see [6, Proof of Proposition]), hence by

Proposition 1.1 the image curve f∗R lies on Σ, so R lies on Σ̃. Therefore

(s∗Θ− ε∆)s̃∗R = (f ∗Θ− ε∆)R < 0 ,

and this proves (3).
Denote by ι the involution on C×C interchanging the factors, and consider the curve

H =def G+ ι∗G .

It is symmetric with respect to ι and satisfies the numerical equivalence

H ≡ (a1 + a2)(F1 + F2)− 2b∆ .

Let

ε0 =def
s∗Θ ·G
G ·∆

=
s∗Θ ·H
H ·∆

=
3(a1 + a2)

a1 + a2 + 4b
.

Then, since s∗Θ ≡ 2(F1 + F2) + ∆ (cf. [9, Theorem 4.2]), we have

s∗Θ− ε0∆ = 2(F1 + F2) + (1− ε0)∆

=
2

a1 + a2

H +
4b+ (1− ε0)(a1 + a2)

a1 + a2

∆

The point is now that our assumption ε0 <
√

3 guarantees that the coefficients at H and
∆ are both positive. So, in order to check that s∗Θ− ε0∆ is nef, it is sufficient to look at
its intersection with the irreducible curves G, ι∗G and ∆. We have

(s∗Θ− ε0∆)∆ = 4ε0 > 0

and
(s∗Θ− ε0∆)G = (s∗Θ− ε0∆)ι∗G = 0 ,

so that we can conclude that s∗Θ− ε0∆ is nef, which upon using (1) and (3) shows that
ε(Θ) ≥ ε0. On the other hand we have for δ ≥ 0

(s∗Θ− (ε0 + δ)∆)H = −δ∆ ·H
= −2δ(a1 + a2 + 4b) ≤ 0 ,

so that we also get the converse inequality ε(Θ) ≤ ε0. This completes the proof of the
proposition.
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2. Seshadri constants of Jacobians

In this section we give the proof of Theorem 1. We start with some remarks concerning
symmetric products of curves. Let C be a smooth projective curve. We denote the d-th
symmetric product of C by C(d), and we write its elements as formal sums p1 + . . .+ pd,
where p1, . . . , pd are points on C. Let p0 ∈ C be a fixed point. Then there are for every
positive integer d two natural maps

ud : C(d) → JC, (p1 + . . .+ pd) 7→ OC(p1 + . . .+ pd − dp0)

jd−1 : C(d−1) → C(d), (p1 + . . .+ pd−1) 7→ (p1 + . . .+ pd−1 + p0) .

We will use the divisors θd = u∗dΘ and ξd = jd−1(C(d−1)). To alleviate notation, we will
omit the indices when they are clear from the context. For a partition d = n1d1 + . . . +
nrdr by pairwise distinct numbers d1, . . . , dr, we denote by δ(dn1

1 , . . . , d
nr
r ) the associated

diagonal in C(d), i.e., the locus of points of the form

(p1 + . . .+ p1︸ ︷︷ ︸
d1

+ . . .+ pn1 + . . .+ pn1︸ ︷︷ ︸
d1

) + . . .+

(pn1+...+nr−1+1 + . . .+ pn1+...+nr−1+1︸ ︷︷ ︸
dr

+ . . .+ pn1+...+nr + . . .+ pn1+...+nr︸ ︷︷ ︸
dr

).

For a detailed exposition of symmetric products of curves, in particular for the computa-
tion of the homology classes of diagonals, we refer to [7].

Proof of Theorem 1. If (X,Θ) is a polarized product, then there is an elliptic curve of
Θ-degree one on X, and hence the assertion that ε(X,Θ) = 1 is clear. So we can assume
that (X,Θ) = (JC,ΘC) is the Jacobian of a smooth curve C of genus 3.

Suppose first that C is hyperelliptic. Let π : C → P1 be the 2:1 map, and let G ⊂ C×C
be the graph of the hyperelliptic involution. Then

G+ ∆ = { (x, y) ∈ C × C π(x) = π(y) }
= (π × π)∗(∆P1×P1)

∈ |p∗1π∗OP1(1) + p∗2π
∗OP1(1)| ,

where p1 and p2 are the projections C × C → C. So

G ≡ 2(F1 + F2)−∆ ,

and one checks right away that G satisfies the hypotheses of Proposition 1.2, and therefore

ε(Θ) =
3

2

in this case.
Suppose now that C is non-hyperelliptic. Geometrically, the idea of the proof is as

follows. Under the canonical embedding C ↪→ P2, we may view C as a smooth plane
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quartic curve. The tangent line at a point p ∈ C cuts out a divisor x + y + 2p on C.
Moving the point p, we get a 1-dimensional family G of points (x, y) ∪ (y, x) on C × C.
By taking the image of G in JC under the subtraction map, we will get a curve that
computes ε(JC,Θ).

Turning to the details, we consider the canonical variety

C2
4 = {D ∈ C(4) : dim |D| ≥ 2} ⊂ C(4)

and its pullback W to C4 via the quotient map π4 : C4 → C(4). In C4 we will need
the diagonals ∆ij = {pi = pj} and ∆ijk = {pi = pj = pk} as well as the fibers fi of
the projections to C. As shown in the following diagram, we consider the intersection
V = W ∩ ∆34, its projection G to C2, and finally the image Γ of G in JC under the
subtraction map s.

C4 π4−−−→C(4)x
∪

x
∪

W −−−→ C2
4x

∪

V = W ∩∆34 = {(x, y, z, z) ∈ C4 : x+ y + 2z ∈ |KC |}

pr12

�
�
�

@
@
@

pr34

C2 ⊃ G ∆ ⊂ C2y s

Γ ⊂ JC

By [1, VII.5], one has

[C2
4 ] =

1

2
θ2 − ξθ + ξ2

in H4(C(4),Z). Using [7, (15.1)] we have π∗4ξ = f1 + . . . + f4 and for the main diagonal
δ = δ(21, 12) in the symmetric product C(4) we have obviously π∗4δ =

∑
i<j ∆ij. Combining

this with θ = 6ξ− 1
2
δ, which follows from [7, (15.4)] (note that ξ = η and θ = σ1 + . . .+σg

translates our and Macdonald’s notation), we obtain π∗4θ = 6
∑
fi −

∑
i<j ∆ij. In order

to determine the class of V , we then compute

(
∑

fi)
2 = 2

∑
i<j

fifj

(
∑

fi) · (
∑
j<k

∆jk) = 2
∑
i<j

fifj +
∑

j<k,i 6=j,i6=k

fi∆jk

(
∑
i<j

∆ij)
2 = −4

∑
i<j

fifj + 6
∑
i<j<k

∆ijk + 2(∆12∆34 + ∆13∆24 + ∆14∆23)
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and we use again the (pull-back to C4 of the) relation [7, (15,4)] (with s = 3 this time)∑
j<k,i 6=j,i6=k

fi∆jk = 2
∑
i<j

fifj +
∑
i<j<k

∆ijk .

This leads us to

[V ] =

(
4
∑
i<j

fifj − 2
∑
i<j<k

∆ijk + ∆12∆34 + ∆13∆24 + ∆14∆23

)
·∆34 .

Taking the image of V under pr12 corresponds to projecting onto the first factor in the
Knneth decomposition

H6(C4) ∼= H2(C2)⊗H4(C2)⊕H3(C2)⊗H3(C2)⊕H4(C2)⊗H2(C2) .

Therefore, the class of G is symmetric and it is contained in the subgroup of H2(C2,Z)
generated by the sum of the fibers, F1 + F2, and the diagonal ∆. So we can write

[G] = α[F1 + F2]− β∆

with integer coefficients α and β. Since C is not hyperelliptic, the projection pr12|V is
birational onto its image, hence

α− β = G · Fi
= (pr12)∗V · Fi
= W ·∆34 · fi
= π∗4C

2
4 ·∆34 · fi

= C2
4 · π4∗(∆34 · fi) .

The image of ∆34 · fi under π4 is just j3(δ(2, 1)) and the map is obviously of degree one,
thus

α− β = C2
4 · j3(δ(2, 1)) =

(
1

2
θ2 − ξθ + ξ2

)
· (10ξ2 − 2θξ) = 10 . (4)

Similarly, we have
2α + 4β = G ·∆ = C2

4 · π4∗(∆34 ·∆12) .

Now, under π4 the intersection ∆34 ∩∆12 maps 2 : 1 to the diagonal δ(22). The class of
this diagonal can be determined using [7, (15.2)], so that we obtain with a calculation

2α + 4β = C2
4 · 2 · δ(22)

=
(

1
2
θ2 − ξθ + ξ2

)
· 2 · (28ξ2 − 12ξθ + 2θ2) = 56 .

(5)

In the last step one uses the Poincaré formula to determine the intersection numbers
involving the classes θ and ξ. From (4) and (5) we find that

G ≡ 16(F1 + F2)− 6∆ .
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Since C is not hyperelliptic, the projections pr12|V and pr34|V are of degree 1 and 2
respectively. Moreover, we have V = (pr34|V )∗∆, and hence G is either irreducible or a
union of two irreducible curves G1, G2, both isomorphic to C and symmetric to each other
with respect to ι. In the second case p1|G1 is a degree 10 endomorphism of C or p1(G1)
is a point. The first is impossible and the second contradicts the numerical class of G.
Hence G is irreducible and Proposition 1.2 applies.

Remark 2.1 The second part of the above proof works also in the hyperelliptic case.
However, in that case pr34 is no more finite. It has 1-dimensional fibers over the Weierstraß
points of ∆; they are the graphs of the hyperbolic involution. If p ∈ C is not a Weierstraß
point, then pr−1

34 (p, p) = (ι(p), ι(p), p, p), so that applying (pr12)∗ we get 2∆. Thus G is
non-reduced and reducible: G ≡ 8(2(F1 + F2)−∆) + 2∆.
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