## 1. Marburger Arbeitsgemeinschaft Mathematik (MAM)

## (Non)-existence of complex structures on $\mathbf{S}^{\mathbf{6}}$

## (1) Almost complex structures on spheres

Using characteristic classes and Bott periodicity one can prove that the only spheres that may admit almost complex structures are $S^{2}$ and $S^{6}$.
References: [Kir47, Hop48, Fri78, MT91, Mur09, Hat09, Pos91]
Speaker: Maurizio Parton
Contact person in Marburg: Panagiotis Konstantis
Talks: 1-2
(2) $\mathrm{S}^{6}$ as a nearly Kähler manifold

Nearly Kähler structures are one of the 16 classes of almost Hermitian structures discovered by Gray and Hervella. The sphere $S^{6}$ carries a nearly Kähler structure, whose almost complex structure can be described using octonions or spinors.
References: [Cal58, BFGK91, Fri06, Agr06, Mur09, FH15]
Speaker: Aleksandra Borówka
Contact persons in Marburg: Ilka Agricola, Stefan Vasilev
Talks: 1

## (3) Orthogonal complex structures near the round $\mathrm{S}^{6}$

An almost complex structure on a Riemannian manifold is orthogonal if it is an isometry on each tangent space. In [LeB87], LeBrun showed that an orthogonal almost complex structure on the round $S^{6}$ is never integrable. This results was generealized in [Gil] as follows: if $g$ is a Riemannian metric on $S^{6}$ belonging to a certain neighbourhood of the round metric, then $\left(S^{6}, g\right)$ does not admit an orthogonal complex structure.
References: [LeB87, Mus89, Sal96, BHL99, Wil16]
Speaker: Ana Cristina Ferreira, Boris Kruglikov
Contact person in Marburg: Oliver Goertsches
Talks: 2-3
(4) Dolbeault cohomology and Frölicher spectral sequence

Dolbeault cohomology and the Frölicher spectral sequence are standard topics in complex geometry. Dolbeault cohomology combines the study of differential forms on a manifold with the presence of a complex structure. The Frölicher spectral sequence measures how far is Dolbeault cohomology from de Rham cohomology.

References: [GH78, Voi02, Huy05]
Speaker: Benedict Meinke
Contact persons in Marburg: Giovanni Bazzoni, Sönke Rollenske
Talks: 1
(5) Hodge numbers of a hypothetical complex structure on $\mathbf{S}^{6}$

The Hodge numbers of a complex manifold are computed by Dolbeault cohomology. Under the hypothesis that $S^{6}$ has a complex structures, one can compute the corresponding Hodge numbers. In particular, although $S^{6}$ is simply connected, the Hodge number $h^{0,1}$ is non-zero for a hypothetical complex structure.

References: [Gra97, Uga00]
Speaker: Daniele Angella
Contact person in Marburg: Giovanni Bazzoni
Talks: 1-2
(6) Algebraic dimension and automorphism group of a hypothetical complex structure on $S^{6}$

The algebraic dimension of a complex manifold is the transcendence degree of the field of meromorphic functions over $\mathbb{C}$. Since the Euler characteristic of $S^{6}$ is non-zero, it follows that the algebraic dimension of a hypothetical complex $S^{6}$ should be zero. Moreover, a hypothetical complex $S^{6}$ is not almost homogeneous, i.e. the group of holomorphic automorphisms does not have an open orbit.

References: [Hop48, CDP98, HKP00]
Speaker: Christian Lehn, Caren Schinko
Contact persons in Marburg: Giovanni Bazzoni, Sönke Rollenske
Talks: 3
(7) The exceptional Lie group $\mathrm{G}_{2}$

The exceptional Lie group $G_{2}$ and its properties will be discussed.
References: [Cal58, Sal03, Agr08]
Speaker: Cristina Draper Fontanals
Contact person in Marburg: Ilka Agricola
Talks: 1

## (8) Chern's contribution

In 2003, S.-s. Chern began a study of almost complex structures on $S^{6}$, with the idea of exploiting the special properties of its well-known almost complex structure invariant under the exceptional group $G_{2}$. He proved a significant identity that solves the question for an interesting class of almost complex structures.
References: [Bry14]
Speaker: Aleksy Tralle, Markus Upmeier
Contact person in Marburg: Thomas Friedrich

Talks: 2

## (9) Further approaches to the (non)-existence

In the last part we discuss different approaches to a positive, or negative, solution to the Hopf problem.
References: [Ati16, Ete15a, Ete15b, Ete15c]
Speaker: Ben Anthes, Tim Kirschner
Contact persons in Marburg: Ilka Agricola, Thomas Friedrich

## References

[Agr06] Ilka Agricola. The Srní lectures on non-integrable geometries with torsion. Arch. Math. (Brno), 42(suppl.):5-84, 2006.
[Agr08] Ilka Agricola. Old and new on the exceptional group $G_{2}$. Notices Amer. Math. Soc., 55(8):922-929, 2008.
[Ati16] Michael Atiyah. The non-existent complex 6-sphere. arXiv:1610.09366, 2016.
[BFGK91] Helga Baum, Thomas Friedrich, Ralf Grunewald, and Ines Kath. Twistors and Killing spinors on Riemannian manifolds, volume 124. B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1991.
[BHL99] Gil Bor and Luis Hernández-Lamoneda. The canonical bundle of a Hermitian manifold. Bol. Soc. Mat. Mexicana (3), 5(1):187-198, 1999.
[Bry14] Robert Bryant. S.-s. Chern's study of almost complex structures on the six-sphere. arXiv:1405.3405, 2014.
[Cal58] Eugenio Calabi. Construction and properties of some 6-dimensional almost complex manifolds. Trans. Amer. Math. Soc., 87:407-438, 1958.
[CDP98] Frédéric Campana, Jean-Pierre Demailly, and Thomas Peternell. The algebraic dimension of compact complex threefolds with vanishing second Betti number. Compositio Math., 112(1):77-91, 1998.
[Ete15a] Gábor Etesi. Complex structure on the six dimensional sphere from a spontaneous symmetry breaking. J. Math. Phys., 56(4):043508, 21, 2015.
[Ete15b] Gábor Etesi. Erratum: "Complex structure on the six dimensional sphere from a spontaneous symmetry breaking". J. Math. Phys., 56(9):099901, 1, 2015.
[Ete15c] Gábor Etesi. Explicit construction of the complex structure on the six dimensional sphere. arXiv:1509.02300, 2015.
[FH15] Lorenzo Foscolo and Mark Haskins. New $G_{2}$ holonomy cones and exotic nearly Kähler structures on the 6 -sphere and the product of a pair of 3 -spheres. arXiv:1501.07838, 2015.
[Fri78] Thomas Friedrich. Vorlesungen über K-Theorie. B. G. Teubner-Verlagsgesellschaft, Leipzig, 1978. With English, Russian and French summaries, Teubner-Texte zur Mathematik.
[Fri06] Thomas Friedrich. Nearly Kähler and nearly parallel $G_{2}$-structures on spheres. Arch. Math. (Brno), 42(suppl.):241-243, 2006.
[GH78] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. Wiley-Interscience [John Wiley \& Sons], New York, 1978. Pure and Applied Mathematics.
[Gil]
[Gra97] Alfred Gray. A property of a hypothetical complex structure on the six sphere. Boll. Un. Mat. Ital. B (7), 11(2, suppl.):251-255, 1997.
[Hat09] Allen Hatcher. Vector Bundles and K-Theory. http://www.math.cornell.edu/ ~hatcher/VBKT/VB. pdf, 2009.
[HKP00] Alan T. Huckleberry, Stefan Kebekus, and Thomas Peternell. Group actions on $S^{6}$ and complex structures on $\mathbf{P}_{3}$. Duke Math. J., 102(1):101-124, 2000.
[Hop48] H. Hopf. Zur Topologie der komplexen Mannigfaltigkeiten. In Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pages 167-185. Interscience Publishers, Inc., New York, 1948.
[Huy05] Daniel Huybrechts. Complex geometry. Universitext. Springer-Verlag, Berlin, 2005. An introduction.
[Kir47] Adrian Kirchoff. Sur l'existence des certains champs tensoriels sur les sphères à $n$ dimensions. C. R. Acad. Sci. Paris, 225:1258-1260, 1947.
[LeB87] Claude LeBrun. Orthogonal complex structures on $S^{6}$. Proc. Amer. Math. Soc., 101(1):136-138, 1987.
[MT91] Mamoru Mimura and Hirosi Toda. Topology of Lie Groups, I and II, volume 91. Translations of Mathematical Monographs, 1991.
[Mur09] Stefan Murygin. Das Hopfproblem: Über die Existenz komplexer Strukturen auf der sechs-dimensionalen Sphäre. Diplomarbeit, HU Berlin, 2009.
[Mus89] Emilio Musso. On the twistor space of the six-sphere. Bull. Austral. Math. Soc., 39(1):119-127, 1989.
[Pos91] Michail Postnikov. Leçons de géométrie - Variétés différentiables. Traduit du russe, Éditions Mir Moscou, 1991.
[Sa196] Simon Salamon. Orthogonal complex structures. In Differential geometry and applications (Brno, 1995), pages 103-117. Masaryk Univ., Brno, 1996.
[Sal03] Simon Salamon. A tour of exceptional geometry. Milan J. Math., 71:59-94, 2003.
[Uga00] Luis Ugarte. Hodge numbers of a hypothetical complex structure on the six sphere. Geom. Dedicata, 81(1-3):173-179, 2000.
[Voi02] Claire Voisin. Hodge theory and complex algebraic geometry. I, volume 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002. Translated from the French original by Leila Schneps.
[Wil16] Scott O. Wilson. Results concerning almost complex structures on the six-sphere. arXiv:1610.09620, 2016.

