Differentialgeometrie und Analysis
Fachbereich Mathematik und Informatik
Philipps-Universitdit Marburg

27.03. - 30.3.2017

1. MARBURGER ARBEITSGEMEINSCHAFT MATHEMATIK (MAM)

(Non)-existence of complex structures on S°
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Almost complex structures on spheres

Using characteristic classes and Bott periodicity one can prove that the only spheres that
may admit almost complex structures are 5% and S°.

References: [Kird47, Hop48, Fri78, MT91, Mur09, Hat09, Pos91]
Speaker: Maurizio Parton

Contact person in Marburg: Panagiotis Konstantis

Talks: 1-2

S® as a nearly Kihler manifold

Nearly Kdhler structures are one of the 16 classes of almost Hermitian structures discov-
ered by Gray and Hervella. The sphere S° carries a nearly Kahler structure, whose almost
complex structure can be described using octonions or spinors.

References: [Cal58, BFGKO91, Fri06, Agr06, Mur09, FH15]
Speaker: Aleksandra Boréwka

Contact persons in Marburg: llka Agricola, Stefan Vasilev
Talks: 1

Orthogonal complex structures near the round S°

An almost complex structure on a Riemannian manifold is orthogonal if it is an isometry
on each tangent space. In [LeB87], LeBrun showed that an orthogonal almost complex
structure on the round S° is never integrable. This results was generealized in [BHLS07]
as follows: if ¢ is a Riemannian metric on S belonging to a certain neighbourhood of the
round metric, then (S°, ¢) does not admit an orthogonal complex structure.

References: [LeB87, Mus89, Sal96, BHL99, BHLS07, Wil16]
Speaker: Ana Cristina Ferreira, Boris Kruglikov

Contact person in Marburg: Oliver Goertsches

Talks: 2-3

Dolbeault cohomology and Frolicher spectral sequence

Dolbeault cohomology and the Frolicher spectral sequence are standard topics in complex
geometry. Dolbeault cohomology combines the study of differential forms on a manifold
with the presence of a complex structure. The Frolicher spectral sequence measures how
far is Dolbeault cohomology from de Rham cohomology.
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References: [GH78, Vo0i02, Huy05]
Speaker: Benedikt Meinke

Contact persons in Marburg: Giovanni Bazzoni, Sonke Rollenske
Talks: 1

Hodge numbers of a hypothetical complex structure on S°

The Hodge numbers of a complex manifold are computed by Dolbeault cohomology. Un-
der the hypothesis that S® has a complex structures, one can compute the corresponding
Hodge numbers. In particular, although S° is simply connected, the Hodge number 70!
is non-zero for a hypothetical complex structure.

References: [Grad7, Uga00]

Speaker: Daniele Angella

Contact person in Marburg: Giovanni Bazzoni

Talks: 1-2

Algebraic dimension and automorphism group of a hypothetical complex structure on
S6

The algebraic dimension of a complex manifold is the transcendence degree of the field of
meromorphic functions over C. Since the Euler characteristic of S° is non-zero, it follows
that the algebraic dimension of a hypothetical complex S® should be zero. Moreover,

a hypothetical complex S°® is not almost homogeneous, i.e. the group of holomorphic
automorphisms does not have an open orbit.

References: [Hop48, CDP98, HKPOQ]
Speaker: Christian Lehn, Caren Schinko

Contact persons in Marburg: Giovanni Bazzoni, Sénke Rollenske
Talks: 3

The exceptional Lie group G

The exceptional Lie group G, and its properties will be discussed.
References: [Cal58, Sal03, Agr08]

Speaker: Cristina Draper Fontanals

Contact person in Marburg: Ilka Agricola

Talks: 1

Chern’s contribution

In 2003, S.-s. Chern began a study of almost complex structures on S°, with the idea of
exploiting the special properties of its well-known almost complex structure invariant
under the exceptional group G,. He proved a significant identity that solves the question
for an interesting class of almost complex structures.

References: [Bryl4]
Speaker: Aleksy Tralle, Markus Upmeier

Contact person in Marburg: Thomas Friedrich



Talks: 2

(9) Further approaches to the (non)-existence

In the last part we discuss different approaches to a positive, or negative, solution to the
Hopf problem.

References: [Atil6, Etel5a, Etel5b, Etel5c]
Speaker: Ben Anthes, Tim Kirschner

Contact persons in Marburg: llka Agricola, Thomas Friedrich
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