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(Non)-existence of complex structures on S6

(1) Almost complex structures on spheres

Using characteristic classes and Bott periodicity one can prove that the only spheres that
may admit almost complex structures are S2 and S6.
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(2) S6 as a nearly Kähler manifold

Nearly Kähler structures are one of the 16 classes of almost Hermitian structures discov-
ered by Gray and Hervella. The sphere S6 carries a nearly Kähler structure, whose almost
complex structure can be described using octonions or spinors.
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(3) Orthogonal complex structures near the round S6

An almost complex structure on a Riemannian manifold is orthogonal if it is an isometry
on each tangent space. In [LeB87], LeBrun showed that an orthogonal almost complex
structure on the round S6 is never integrable. This results was generealized in [BHLS07]
as follows: if g is a Riemannian metric on S6 belonging to a certain neighbourhood of the
round metric, then (S6, g) does not admit an orthogonal complex structure.
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(4) Dolbeault cohomology and Frölicher spectral sequence

Dolbeault cohomology and the Frölicher spectral sequence are standard topics in complex
geometry. Dolbeault cohomology combines the study of differential forms on a manifold
with the presence of a complex structure. The Frölicher spectral sequence measures how
far is Dolbeault cohomology from de Rham cohomology.
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(5) Hodge numbers of a hypothetical complex structure on S6

The Hodge numbers of a complex manifold are computed by Dolbeault cohomology. Un-
der the hypothesis that S6 has a complex structures, one can compute the corresponding
Hodge numbers. In particular, although S6 is simply connected, the Hodge number h0,1

is non-zero for a hypothetical complex structure.
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(6) Algebraic dimension and automorphism group of a hypothetical complex structure on
S6

The algebraic dimension of a complex manifold is the transcendence degree of the field of
meromorphic functions over C. Since the Euler characteristic of S6 is non-zero, it follows
that the algebraic dimension of a hypothetical complex S6 should be zero. Moreover,
a hypothetical complex S6 is not almost homogeneous, i.e. the group of holomorphic
automorphisms does not have an open orbit.
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(7) The exceptional Lie group G2

The exceptional Lie group G2 and its properties will be discussed.
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(8) Chern’s contribution

In 2003, S.-s. Chern began a study of almost complex structures on S6, with the idea of
exploiting the special properties of its well-known almost complex structure invariant
under the exceptional group G2. He proved a significant identity that solves the question
for an interesting class of almost complex structures.
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(9) Further approaches to the (non)-existence

In the last part we discuss different approaches to a positive, or negative, solution to the
Hopf problem.
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