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Motivation

a) From complex analysis: Consider the Cauchy-Riemann operators

∂ =
1

2
(∂x − i∂y), ∂̄ =

1

2
(∂x + i∂y)

Define a differential operator P : C
∞(R2; C2) → C

∞(R2; C2) by

P

[
f
g

]

= 2i

[
∂g
∂̄f

]

=

[
0 i
i 0

]

︸ ︷︷ ︸
γx

∂x

[
f
g

]

+

[
0 1
−1 0

]

︸ ︷︷ ︸
γy

∂y

[
f
g

]

Then γx, γy satisfy the Clifford relations

γ2
x = γ2

y = −Id, γx · γy + γy · γx = 0

and 4 ∂∂̄ = 4 ∂̄∂ = ∆ (Laplacian).
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More generally: (M2n, g, J) – Kähler manifold, Λ1 = Λ1,0 ⊕ Λ0,1 with

Λ1,0 = {η : η(JX) = iη(X)}, Λ0,1 = {η : η(JX) = −iη(X)},

and df = prΛ1,0(df) + prΛ0,1(df) =: ∂f + ∂̄f

Then: 2(∂∂̄ + ∂̄∂) = ∆.

Question: Does there exist a generalization of the Cauchy-Riemann
operator on a more general class of manifolds?

b) From theoretical physics: Consider a free classical particle with

m : mass, p = vm√
1−v2/c2

: momentum, E : Energy.

Then special relativity predicts the relation

E =
√

c2p2 +m2c4.
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According to the quantization rules of quantum mechanics:

E → i~∂t, p→ −i~∇, both acting on some state function ψ

⇒ i~∂tψ =
√
c2~2∆ +m2c4 ”Dirac equation”

Question: What is the meaning of the square root?

c) From topology:

Theorem (Freedman 1982):
Any unimodular quadratic form L over Z can be realized as the
intersection form L = H2(X4; Z) of a 4-dimensional, compact and
simply connected topological manifold X4.

Theorem (Rochlin 1950): If M4 is smooth, closed manifold
s. t. ω2(M

4) = 0 then σ(M4) = 0 mod 16.

Theorem (Hirzebruch)
1

8
σ(M4) =

1

24

∫

M4
p1.
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Example:

E8 =















2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2















E8 ≥ 0 is of typ II and σ(E8) = dimE8 = 8.

Question: Does there exist a vector bundle S → M4 and an elliptic
differential operator D : Γ(S) → Γ(S) s. t.

t-index(D) = 1
8σ(M4),

a-index(D) = dimkerD − dimcokerD = 0 mod 2 ?
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Clifford algebras

(Rn, g), e1, . . . , en an orthonormal basis. Then the (finite dimensional!)
associative algebra

Cl(Rn) :=
⊗

R
n/{ei · ej + ej · ei = 0, e21 = −1}

is called the Clifford algebra of Rn. ClC(Rn) denotes its complexification.

Example. n = 2, g : standard euclidean scalar product.

Then e1 7→ γx, e2 7→ γy shows: ClC(R2) ∼= MC(2)

⇒ ClC(R2) acts on C
2 by endomorphisms. More generally:

Thm. There exists a unique representation of smallest dimension of the
algebra ClC(Rn) on a complex vector space ∆n:

ClC(Rn) −→ End(∆n), dim∆n = 2[n/2].

∆n : space of (Dirac) spinors
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• The Spin(n) group is a two-fold covering of SO(n) and can be realized
in Cl(Rn),

Spin(n) =
{
x1 · .... · x2l, xi ∈ R

n and |xi| = 1
}
.

• Every vector x ∈ Rn acts on ∆n by an endomorphism:

R
n × ∆n ∋ (x, ψ) 7−→ x · ψ ∈ ∆n : ”Clifford multiplication”

µ : R
n ⊗ ∆n −→ ∆n .

• The Spin(n)-representation Rn ⊗ ∆n splits into

R
n ⊗ ∆n = ∆n ⊕ ker(µ) .
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• There is a universal projection of Rn ⊗ ∆n onto ker(µ),

p(x⊗ ψ) = x⊗ ψ +
1

n

n∑

i=1

ei ⊗ ei · x · ψ .

• This splitting yields two differential operators of first order, the Dirac
operator and the twistor operator .

• If n = 2k is even, then the Spin(n) representation splits into two
irreducible pieces,

∆2k = ∆+
2k ⊕ ∆−

2k , x : ∆±
2k −→ ∆∓

2k .
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• Additional Spin(n)-invariant structures in ∆n:

αn real structures quaternionic structures

commutes with n ≡ 6, 7 mod 8 n ≡ 2, 3 mod 8
Clifford multiplication

anti-commutes with n ≡ 0, 1 mod 8 n ≡ 4, 5 mod 8
Clifford multiplication

Proposition:
The representation ∆±

8k admits a Spin(8k)-invariant real structure.

The representation ∆±
8k+4 admits a Spin(8k+ 4)-invariant quaternionic

structure.
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Spin Structures.

Idea: Attach a copy of ∆n to every point x of a Riemannian manifold
(Mn, g):

Tangent bundle:
T (Mn) =

⋃

x∈Mn
TxM

n

Spinor bundle:
S(Mn) =

⋃

x∈Mn
∆n(x)

However:

x

TxM
n

∆n(x)

Mn

• Denote by F(Mn, g) the oriented frame bundle. Mn admits a spin
structure iff the SO(n)-principal bundle F admits a reduction P → F to
the group Spin(n) → SO(n).

→ notion of a Riemannian spin manifold
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Different spin structures:

Suppose that a discrete group Γ acts properly discontinuous on a manifold
M̃n and denote by π : M̃n → Mn := Γ/M̃n the projection onto the
orbit space. Moreover, suppose that Mn admits a spin structure P. The
induced bundle

π∗(P) =
{
(m̃, p) ∈ M̃n × P : π(m̃) = π1(p)

}

is a Spin(n)-principal bundle with the action of the spin group

(m̃ , p) · g = (m̃ , p · g) , g ∈ Spin(n) .

Moreover, Γ acts on π∗(P) via

γ · (m̃ , p) = (γ · m̃ , p)

and the fixed spin bundle can be reconstructed,

P = Γ/π∗(P) .
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Consider a homomorphism ǫ : Γ → {1,−1} ⊂ Spin(n) and introduce a
new Γǫ-action via the formula

γ · (m̃ , p) = (γ · m̃ , p · ǫ(γ)) .

The space
Pǫ := Γǫ/π

∗(P)

is still a Spin(n)-principal fiber bundle over Mn, a new spin structure of
the manifold.

If M̃n is the universal covering of Mn , then the group Γ is isomorphic
to the fundamental group π1(M

n) of Mn. In particular we proved

Theorem: If Mn admits at least one spin structure, then all spin
structures correspond to the set

Hom(π1(M
n) , Z2) = H1(Mn ; Z2) .
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Existence of a spin structure

Consider the classifying map f : Mn → BSO(n) of the tangent bundle.
Mn admits a spin structure iff f lifts into the classifying space BSpin(n).
Since

π2(BSpin(n)) = π1(Spin(n)) = 0 and π1(BSpin(n)) = 0

we haveH2(BSpin(n); Z2) = H1(BSpin(n); Z2) = 0. Consequently, the
image of the second Stiefel-Whitney class ω2 ∈ H2(BSO(n); Z2) under
the map H2(BSO(n); Z2) → H2(BSpin(n); Z2) is zero. This argument
yields a necessary condition for the existence of a spin structure, namely
ω2(M

n) = 0. Indeed , the condition is sufficient, too.

Theorem: An oriented manifold admits a spin structure iff its second
Stiefel-Whitney class vanishes, ω2(M

n) = 0.
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Examples:

• Sn, C(P )2n+1, . . . are spin manifolds with a unique spin structure.

• Tn admits 2n different spin structures.

• C(P )2n, SU(3)/SO(3), . . . are not spin manifolds.

Let (Mn, g,P) be a Riemannian spin manifold with a fixed spin structure.

The associated bundle

S := P ×Spin(n) ∆n .

is the spinor bundle S .

The Levi-Civita connection ∇ can be lifted from the tangent bundle to
the spinor bundle S in a unique way.
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Dirac operator

In an orthonormal frame e1, . . . , en

D : Γ(S) −→ Γ(S), Dψ = µ ◦ ∇ψ, Dψ =
n∑

i=1

ei · ∇eiψ.

Properties of D:

• D is an elliptic differential operator of first order

• D2 = ∆S + 1
4Scal (Schrödinger 1932, Lichnerowicz 1962)

For the Laplacian ∆q on differential forms in Λq(Mn), Hodge - de Rham
theory implies that

dimker(∆q) =: bq(M
n) is a topological invariant.

For the Dirac operator, dimker(D) is not a topological invariant.
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Basic Example: (see Hitchin 1974)

Consider the Lie group Spin(3) = S3 and the basis e1, e2, e3 of its Lie
algebra with the commutator relations

[e1 , e2] = 2 · e3 , [e2 , e3] = 2 · e1 , [e3 , e1] = 2 · e2 .

We introduce a left invariant metric defined by the conditions

|e1| = |e2| = 1 , |e3| = λ , 〈ei , ej〉 = 0 if i 6= j .

The eigenvalues of the Dirac operator are given by the formulas

µp(λ) =
p

λ
+
λ

2
, p = 1, 2 . . . with multiplicity 2p

ν±p,q(λ) =
λ

2
± 1

λ

√

4pqλ2 + (p− q)2 , p = 1, 2, . . . , q = 0, 1, . . .

with multiplicity (p+ q) .
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The kernel of the Dirac operator corresponds to ν−p,q = 0, i.e.

λ4 = 4
(
4pqλ2 + (p− q)2

)
.

• If the parameter λ is a transcendent number, then the kernel of the
Dirac operator is trivial .

• If λ = 4p is an integer divisible by 4, then p = q is a solution. In this
case the dimension of the kernel of the Dirac operator is at least 2p.

• Remark that

lim
λ→0

µp(λ) = ∞ , lim
λ→0

ν±p,p(λ) = ± 2p , lim
λ→0

ν±p,q(λ) = ±∞ .
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Conformal change of the metric

• g1 = σ · g – two conformally equivalent metrics on Mn.

• D1 and D – the corresponding Dirac operators.

• After a suitable identification of spinors we obtain the formula

D1(ψ) = σ−n+1
4 D(σ

n−1
4 ψ) .

Theorem: The dimension of the kernel of the Dirac operator is a
conformal invariant.

Corollary: Let (Mn, g) be a compact Riemannian spin manifold. If
the metric is conformally equivalent to a metric g1 with positive scalar
curvature, then the kernel of the Dirac operator is trivial.

Example: For any metric on S2, the kernel of the Dirac operator is
trivial.
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The index of the Dirac operator

• If (Mn, g) is a complete Riemannian manifold, then the Dirac operator
is essentially self-adjoint.

• If n = 2k is even, then the representation ∆n = ∆+
n ⊕ ∆−

n splits, the
spin bundle S = S+ ⊕ S− splits and the Dirac operator splits, too,

D+ : Γ(S+) −→ Γ(S−), D− : Γ(S−) −→ Γ(S+) .

• Let Mn be compact. Then the index of D+ is given by the Â-genus,

index(D+) = Â(Mn) .

• If n = 4, then Â = 1
24p1 . If n = 8, then Â = 1

5760(7p
2
1 − 4p2) .

• In case a a compact 4-manifold we have Â(M4) = 1
8 σ(M4).
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Theorem: The Â-genus of any compact spin manifold is an integer,
Â(Mn) ∈ Z. Moreover, in dimensions 8k + 4 the Â-genus is an even
number.

Example: Â(CP
2) = 1/8. CP

2 is not spin.

Corollary: (Rochlin) The signature of a smooth, compact, 4-dimensional
spin manifold is divisible by 16.

Theorem: Let Mn be compact and spin. If it admits a Riemannian
metric with positive the scalar curvature, then the Â-genus vanishes,
Â(Mn) = 0.

Example: The scalar curvature of the Kähler metric of CP
2 is positive

and Â(CP
2) = 1/8 6= 0. But CP

2 is not spin.
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Eigenvalue estimates for the Dirac operator

(Mn, g): compact, Riemannian spin manifold

R0: minimum of the scalar curvature

λ: eigenvalues of the Dirac operator

• The Schrödinger-Lichnerowicz formula implies immediately λ2 ≥ R0/4
→ not optimal.

Theorem: (The Riemannian case – Friedrich 1980):

λ2 ≥ n

4(n− 1)
· R0 .

Idea of the proof: Fix a real-valued function f : Mn → R1 and
introduce a new spinorial connection

∇f
Xψ := ∇Xψ + f ·X · ψ .
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Next generalize the Schrödinger-Lichnerowicz-formula

(D − f)2ψ = ∆fψ +
1

4
R · ψ + (1 − n)f2 · ψ .

If Dψ = λ · ψ , then use the latter formula with f = λ/n and integrate.
The estimate follows after some elementary computation.

Idea of a second proof:

Consider the Twistor Operator

P : Γ(S) → Γ(T ⊗ S) , P (ψ)(X) := ∇g
Xψ +

1

n
X ·D(ψ) .

and prove the formula (A. Lichnerowicz 1987):

||P (ψ)||2L2 =
n− 1

n
||D(ψ)||2L2 − 1

4

∫

Mn
R · ||ψ||2 .
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Remark:

If D2ψ = n
4(n−1)R0 · ψ ,then the spinor field ψ satisfies a stronger

equation, namely

∇Xψ = ± 1

2

√

R0

n(n− 1)
X · ψ .

Riemannian Killing spinors

Example:

The lower bound is realized for example on all spheres. But there are
other manifolds, too (see later – Killing spinors).
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Further Results:

• The Kähler case (Kirchberg 1986-1990):

λ2 ≥ m

4(m− 1)
· R0 if m := n/2 is even .

λ2 ≥ m+ 1

4 ·m · R0 if m := n/2 is odd .

• The quaternionic-Kähler case (Kramer, Semmelmann, Weingard 1997):

λ2 ≥ k + 3

4(k + 2)
· R0 where k := n/4 .
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• Conformal estimate (Lott 1986):

Let [g0] be a conformal structure on a Riemannian spin manifold such
that ker(Dg0) = 0. Then there exists a constant C = C([g0]) such that
for any metric g ∈ [g0] the inequality holds

λ2(Dg) ≥ C

vol(Mn, g)2/n
.

• The case of S2 (Hijazi 1986, Bär 1991):

S2 has only one conformal structure. The corresponding Lott constant
equals C = 4 · π, i. e. for any metric g on S2 the inequality holds :

λ2(Dg) ≥ 4 · π
vol(S2, g)

.
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• Eigenvalue estimates for the Dirac operator depending on the other
components of the curvature tensor, i. e. depending on Ric or W. See for
example

Th.Friedrich and K.-D.Kirchberg, Journ. Geom. Phys. 41 (2002), 196 - 207.

Th.Friedrich and K.-D.Kirchberg, Math. Ann. 324 (2002), 700-716.

Th. Friedrich and E.C. Kim, Journ. Geom. Phys. 37 (2001), 1-14.
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Riemannian manifolds with Killing spinors

Killing Spinor on (Mn, g) :

∇Xψ = λ ·X · ψ , X ∈ T (Mn) and λ ∈ R
1 .

Necessary conditions:

• (Mn, g) is an Einstein manifold with positive scalar curvature R > 0.

• The so-called Killing number λ is given by the scalar curvature,

λ = ± 1

2

√

R

n(n− 1)
.



3
3

Theorem: (Friedrich,Grunewald,Kath, Hijazi 1986-1989)

Let (Mn, g) be a simply-connected spin manifold. Then is admits a
Killing spinor if and only if

• n = 3, 4, 8 : Mn has positive constant curvature, i.e. Mn = Sn.

• n = 5: M5 is an Einstein-Sasakian manifold.

• n = 6: M6 is a nearly Kähler manifold.

• n = 7: M7 is a nearly parallel G2-manifold.

• Any Einstein-Sasakian manifold M2k+1 admits two Killing spinors.

Examples: S1-fibrations M2k+1 → X2k over Kähler-Einstein manifolds
X2k.
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The twistor operator

Consider the kernel ker(µ) ⊂ T (Mn) ⊗ S of the Clifford multiplication
as well as the projection onto this subbundle,

p : T (Mn) ⊗ S −→ ker(µ) .

The covariant derivative ∇ψ of any spinor field is a section in T ∗(Mn)⊗
S = T (Mn) ⊗ S and we can apply the projection. The operator

P(ψ) := p ◦ ∇ψ P : Γ(S) −→ Γ(ker(µ))

is the twistor operator. In a local frame we obtain

P(ψ) =

n∑

i=1

ei ⊗ (∇eiψ +
1

n
ei ·D(ψ)) .
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The twistor equation P(ψ) = 0 reads as

∇Xψ +
1

n
X ·D(ψ) = 0 , X ∈ T (Mn) .

Proposition: Any Killing spinor is a solution of the twistor equation.

Proof: ∇Xψ = λX · ψ implies D(ψ) = −nλψ and then we obtain

∇Xψ +
1

n
X ·D(ψ) = ∇Xψ +

1

n
X ·(−nλψ) = ∇Xψ−λX ·ψ = 0 .

Proposition: The dimension of the kernel of the twistor operator is a
conformal invariant. If Mn is connected, then it is bounded by

ker(P) ≤ 2[n/2]+1 = 2 dim(∆n) .



3
6

Theorem: (Lichnerowicz 1987, Friedrich 1989)

Let ψ be a twistor spinor on a connected Mn. Then the functions

C(ψ) := Re
(
ψ , D(ψ)

)
,

Q(ψ) := |ψ|2|D(ψ)|2 − C2(ψ) −
n∑

i=1

(
Re(D(ψ) , ei · ψ)

)2

are constant.

Proposition: (a local result – Friedrich 1989)

The zeros of a twistor spinor on a connected manifold are isolated.
Outside the zero set there is a conformal change of the metric such that
the twistor spinor becomes the sum of two Killing spinors.
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Theorem: (a global result – Lichnerowicz 1989)

Let (Mn, g) be a compact Riemannian spin manifold with ker(P) 6= 0.
Then there exists an Einstein metric g∗ such that the space ker(P) =
ker(P∗) coincides with the space of Killing spinor on (Mn, g∗).

Proof: Use the solution of the Yamabe problem as well as the limiting
case in the estimate of the Dirac operator.

Further results on twistor spinors with zeros:

• K. Habermann, J. Geom. Phys. 1990 and 1992

• W. Kühnel and H.-B. Rademacher – several papers since 1994.



3
8

Intrinsic upper bounds for metrics on S2 and T 2

• If n = 2 and g = e2ug0, then

∆g = e− 2u∆g0 , Dg = e−u
(
Dg0 +

1

2
gradg0(u)

)
.

• The Rayleigh quotient

|Dg(ψ)|2
L2(M,g)

|ψ|2
L2(M,g)

=
|Dg0(ψ) + 1

2 gradg0(u) · ψ|2L2(M,g0)

|euψ|2
L2(M,g0)

.

Suppose that on (M2, g0) there exists a spinor field ψ0 such that

||ψ0|| ≡ 1 , Dg0ψ0 = Λ · ψ0 , Λ : M2 → R
1 .

Now apply the Rayleigh quotient with a family of test spinor ψ = f · ψ0.
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Theorem: For any metric g = e2ug0 on M2 and any function f : M2 →
R1 the following estimate holds:

λ2
1(Dg)

∫

e2uf2dM2(g0) ≤
∫

{
Λ2f2 + ||gradg0(f) +

1

2
fgradg0(u)||

2
}
dM2(g0) .

• Consider f ≡ 1. Then

λ2
1(Dg) vol(M2, g) ≤

∫

Λ2dM2(g0) +
1

4

∫

||gradg0(u)||
2dM2(g0) .

• Consider f = e−u/2 . Then gradg0(f) + 1
2fgradg0(u) = 0 and we

obtain

λ2
1(Dg)

∫

eudM2(g0) ≤
∫

Λ2e−udM2(g0) .
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These estimates can be used in the following cases:

• (M2, g0) = (S2, gcan) and ψ0 is the Killing spinor, Λ = λ1(Dg0) .

• (M2, g0) = (T 2, gflat) with a non-trivial spin structure and Λ =
λ1(Dg0) . Then we know that ker(Dg0) = 0 and the eigenspinors ψ0

have constant length.

• A surface M2 ⊂ R
3. The restriction ψ0 of a R

3-parallel spinor to M2

has constant length and satisfies the equation D(ψ0) = H · ψ0, where
Λ = H is the mean curvature.
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Application:

Consider the ellipsoid

x2 + y2 +
z2

a2
= 1

and denote by λ2
1(a) the first eigenvalue of the square of the Dirac

operator. Then we obtain

2 ≤ lim sup
a→0

λ2
1(a) ≤ 3

2
+ ln(2) ≃ 2, 2

lim sup
a→∞

λ2
1(a) ≤ 1

4
.

A further result: (M. Kraus 1999) 1
4 ≤ lim infa→∞ λ2

1(a) .

Consequently, the upper bound is in the asymptotic optimal.
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The case of T 2 with a trivial spin structure:
g0 – the flat matric on the torus T 2 = R2/Γ , g = e2u g0. The kernel
ker(Dgo) ≃ ker(Dg) is 2-dimensional and coincides with the go-parallel
spinors. Consequently

λ2
1(Dg0) = λ2

1(Dg) = 0 .

We estimate λ2
2(Dg). Fix a g0-parallel spinor ψ0. Then ψ∗

0 := e−u/2ψ0

belongs to the kernel of Dg. We use test spinors ψ := f e−3u/2ψ0 being
orthogonal to the kernel,

(
ψ , ψ∗

0)L(T 2,g

)
=

∫

T 2
fdT 2 = 0 .

Theorem: For any function such that
∫
fdT 2 = 0 ,

λ2
2(Dg)

∫

T 2
|f |2e−udT 2 ≤

∫

T 2
e−3u||grad(f) − f grad(u)||2dT 2 .
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We apply the inequality for eigenfunctions of the Laplace operator

fv∗(x) = ei〈v
∗ , x〉 , v∗ ∈ Γ∗ .

Then

grad(f) = i f v∗ , ||grad(f) − f grad(u)||2 = ||v∗||2 + ||grad(u)||2 .

Minimizing with respect to 0 6= v∗ ∈ Γ∗, we obtain

λ2
2(Dg)

∫

T 2
e−udT 2 ≤ λ2

2(Dg0)

∫

T 2
e−3udT 2 +

∫

T 2
e−3u||grad(u)||2dT 2 .

I. Agricola, Th. Friedrich, Journ. Geom. Phys. 30 (1999), 1-22.

I. Agricola, B. Ammann, Th. Friedrich, Manusc. Math. 100 (1999), 231-258.

M. Kraus, Journ. Geom. Phys. 31 and 32 (1999), 209-216 and 341-348.
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Surfaces, mean curvature and the Dirac operator

• Mn ⊂ R
n+1 , S : TMn → TMn – second fundamental form.

• ψ0 – parallel spinor in R
n+1, ψ := ψ0|Mn -spinor on Mn.

• D – the Dirac operator on Mn , H – the mean curvature.

Then we have

∇Xψ =
1

2
S(X) · ψ , Dψ =

n

2
H · ψ .

Theorem: If Mn is compact and oriented, then

λ2
1(D) vol(Mn, g) ≤ n2

4

∫

Mn
H2 dMn .
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The construction of the immersion using the spinor

• Any immersion Mn ⊂ Rn+1 induces on Mn a Riemannian metric g,
a function H : Mn → R

1 and a spinor field ψ of length one such that
D(ψ) = n

2 H ψ.

Theorem:(The spin formulation of the fundamental theorem for surfaces)

Let (M2, g,H, ψ) be a 4-tuple consisting of a simply-connected
Riemannian 2-manifold, a function H : M2 → R1 and a spinor field
ψ of length one such that Dψ = H ψ. Then there exits an isometric
immersion M2 ⊂ R3.

Idea of the proof: Define the endomorphism S∗ : TM2 → TM2 by

g(S∗(X) , Y ) = 2 Re(∇Xψ , Y · ψ) .

Then S∗ is a symmetric endomorphism and ∇Xψ = 1
2 S

∗(X) · ψ holds.
The integrability condition of the latter equation is equivalent to the
Gauss- and Codazzi-equation.
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The Weierstrass representation of a surface

• α – the quaternionic structure in the 2-dimensional spin representation.

• Ωψ(X) := (X · ψ , α(ψ)) – a complex valued 1-form.

• ωψ(X) := Re(X · ψ , ψ) – a real valued 1-form.

These forms are closed,

dωψ = dΩψ = 0

and the isometric immersion f : M2 → R1 ⊕ C = R3 is given by

f =

∫

M2

(
ωψ , Ωψ

)
.

(Weierstrass representation of a surface in R3 – not only minimal ones)

Th. Friedrich, Journ. Geom. Phys. 28 (1998), 143-157.

Generalization by B. Morel, M.-A. Lawn and J. Roth between 2005-2012.



4
7

The Dirac operator depending on a connection with
totally skew-symmetric torsion

• (Mn , g , ∇ , T) – Riemannian manifold,

• The torsion T of ∇ is a 3-form.

• linear metric connection

∇XY := ∇g
XY +

1

2
T(X,Y,−) .

• covariant derivative on spinors

∇Xψ := ∇g
Xψ +

1

4
(X T) · ψ .

• a first order differential operator

Dψ :=

n∑

k=1

(ek T) · ∇ekψ ,



4
8

• a 4-form derived from T,

σT :=
1

2

n∑

k=1

(ek T) ∧ (ek T) .

• D – Dirac operator of the connection ∇

• /D – Dirac operator related to T/3 .

First formula:

D2 = ∆T +
3

4
dT − 1

2
σT +

1

2
δT − D +

1

4
Scalg ,

Second formula:

/D2 = ∆T +
1

4
dT +

1

4
Scalg − 1

8
||T||2 .

History of the 1/3-shift: Slebarski (1987), Bismut (1989), Kostant (1999), Agricola

(2002).
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A Vanishing Theorem. Let (Mn, g,T) be a compact, Riemannian spin
manifold s.t. Scalg ≤ 0. If there exists a spinor ψ 6= 0, (dT · ψ,ψ) ≤ 0 in
the kernel of ∆T, then the 3-form and the scalar curvature vanish,T =
0 = Scalg, and ψ is parallel with respect to the Levi-Civita connection.

Corollary. On a Calabi-Yau or Joyce manifold, a metric connection with
3-form T s.t. dT = 0 can only admit parallel spinors if T = 0.
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The Casimir operator

(Mn, g) – Riemnannian spin manifold, D – Riemannian Dirac operator.

• Schrödinger-Lichnerowicz formula:

D2 = ∆ +
1

4
R .

• If Mn = G/H is a symmetric space, then (Parthasarathy formula):

D2 = Ω +
1

8
R
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(Mn , g , ∇ , T) - Riemannian manifold with torsion.

Definition: The Casimir operator acting on spinor fields of the triple
is defined by

Ω := /D2 +
1

8
(dT − 2σT) +

1

4
δ(T)

− 1

8
Scalg − 1

16
||T||2

= ∆T +
1

8
(3 dT − 2σT + 2 δ(T) + Scalg) .

Motivation: For a naturally reductive space and its canonic connection,
the operator Ω coincides with the usual Casimir operator (Parthasarathy,
1972; Kostant, 1999; Agricola, 2002).

I. Agricola and Th. Friedrich, Journ. Geom. Phys. 50 (2004), 188-204.
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Example: For the Levi-Civita connection (T = 0), we obtain

Ω = D2 − 1

8
Scalg = ∆ +

1

8
Scalg

Proposition: The kernel of the Casimir operator contains all ∇-parallel
spinor.

Corollary: Lower bounds for the eigenvalues of /D2 yield that the kernel of
the Casimir operator is trivial. In particular, then there are no ∇-parallel
spinors.
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The case ∇T = 0 :

Ω = /D2 − 1

16

(
2 Scalg + ||T||2

)

= ∆T +
1

16

(
2 Scalg + ||T||2

)
− 1

4
T2

= ∆T +
1

8

(
2 dT + Scalg

)
.

Proposition: If the torsion form is ∇-parallel, then Ω and /D2 commute
with the endomorphism T,

Ω ◦ T = T ◦ Ω , /D2 ◦ T = T ◦ /D2 .

In the compact case, T preserves the kernel of /D.
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5-Dimensional Sasakian Manifolds

• M5 – a 5-dimensional Sasakian manifold.

• η – the contact structure.

• The characteristic connection, Tc := T:

∇T = 0 , T = η ∧ dη = 2 (e12 + e34) ∧ e5 ,
T2 = 8 − 8 e1234 , T = diag(4 , 0 , 0 , −4) .

⇒ the Casimir operator splits into

Ω = Ω0 ⊕ Ω4 ⊕ Ω−4,

Ω0 = ∆T +
1

8
Scalg +

1

2
= /D2 − 1

8
Scalg − 1

2
,

Ω±4 = ∆T +
1

8
Scalg − 7

2
= /D2 − 1

8
Scalg − 1

2
.
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If Scalg 6= −4 , Ker(Ω0) = 0. If Scalg < −4 or Scalg > 28,
Ker(Ω±4) = 0.

The interesting cases: −4 ≤ Scalg ≤ 28.

Case Scalg = −4: The kernel of Ω0 coincides with the space of ∇-
parallel spinors ψ such that T · ψ = 0. Examples: Friedrich/Ivanov,
2002.

Spinors in both kernels Ker(Ω0) and Ker(Ω±4) exist on the 5-dimensional
Heisenberg group

e1 =
1

2
dx1, e2 =

1

2
dy1, e3 =

1

2
dx2, e4 =

1

2
dy2,

e5 = η :=
1

2

(
dz − y1 · dx1 − y2 · dx2

)
.

Spinors in the kernel of Ω±4 occur on Sasakian η-Einstein manifolds of
type Ricg = − 2 · g + 6 · η ⊗ η (Friedrich/Kim, 2000).
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Case Scalg = 28:

Ω0 = ∆T + 4 = /D2 − 4 , Ω±4 = ∆T = /D2 − 4 .

• The kernel of Ω±4 coincides with the space of ∇-parallel spinors ψ
such that T · ψ = ±4ψ. Examples: Friedrich/Ivanov, 2002.

Sasakian-Einstein manifolds, Scalg = 20:

Ω0 = ∆T + 3 , Ω±4 = ∆T − 1 = /D2 − 3 .

Theorem: The Casimir operator of a compact 5-dimensional Sasakian-
Einstein manifold has trivial kernel.
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6-Dimensional nearly Kähler manifolds

• (M6, g,J ) – a 6-dimensional nearly Kähler manifold.

• M6 is Einstein, Ricg = 5
2 · a · g, a > 0.

• The characteristic connection, Tc := T:

∇T = 0 , 4 T = N , Ric∇ = 2 a g .

2σT = dT = a
(
ω ∧ ω

)
, ||T||2 = 2 a .

• If M6 is compact, then

Ker(Ω) = Ker(∇) = {Killing spinors} ,

/D2 ≥ 2

15
Scalg = 2 · a > 0 .
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7-Dimensional G2-Manifolds

• (M7, g, ω) – cocalibrated G2-manifold (d ∗ ω = 0)

• Suppose that (dω , ∗ω) is constant.

• The characteristic connection:

T = − ∗ dω +
1

6
(dω , ∗ω) · ω , δ(T) = 0 .

• Main difference to the previous examples:

∇T 6= 0 , dT 6= 2 · σT , Scalg = 2 (T , ω)2 − 1

2
||T||2 .

• The parallel spinor ψ0 corresponding to ω satisfies

∇ψ0 = 0 , T · ψ0 = − 1

6
(dω , ∗ω) · ψ0 .
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Nearly parallel G2-structures: dω = − a (∗ω).

Ω = /D2 − 49

144
a2.

Theorem: Let (M7, g, ω) be a compact, nearly parallel G2-manifold and
denote by ∇ its characteristic connection. The kernel of the Casimir
operator of the triple (M7, g,∇) coincides with the space of ∇-parallel
spinors,

Ker(Ω) =
{
ψ : ∇ψ = 0, T · ψ =

7

6
a · ψ

}
= Ker(∇).

Remark: This case includes Sasakian-Einstein manifolds and 3-Sasakian
manifolds in dimension n = 7.
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G2-structure of type W3 : d ∗ ω = 0 , (dω , ∗ω) = 0.

• Torsion and parallel spinor:

T = − ∗ dω , Scalg = − 1

2
||T||2 , ∇ψ0 = 0 , T · ψ0 = 0 .

• Casimir operator:

Ω = /D2 +
1

8
(dT − 2σT) = ∆T +

1

8
(3 dT − 2σT − 2 ||T||2) .

Results: The metrics and 3-forms on N(1, 1) with parallel spinors
described before yield examples of G2-structures such that

Ω − /D2 , Ω − ∆T

are negative or positive (no general relation between these operators).
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Some references

Th. Friedrich, E.C. Kim , Journ. Geom. Phys. 33 (2000), 128-172.

Th. Friedrich, Asian Journ. Math. 5 (2001), 129-160.

Th. Friedrich, S. Ivanov, Asian Journ. Math. 6 (2002), 303-336.

I. Agricola , Th. Friedrich, Math. Ann. 328 (2004), 711-748.

I. Agricola, Arch.Math. 42 (2006), 5-84.

I. Agricola, Handbook of pseudo-Riemannian Geometry and Supersymmetry,

EMS Publishing House 2010.
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Eigenvalue estimates for /D2 via deformations

Thm. Assume ∇T = 0 und let Σ = ⊕µΣµ be the splitting of the spinor
bundle into eigenspaces of T . Then:

a) ∇ preserves the splitting of Σ, i. e. ∇Σµ ⊂ Σµ ∀µ,

b) /D2 ◦ T = T ◦ /D2, i. e. /D2Σµ ⊂ Σµ ∀µ. [2004]

⇒ Estimate on every subbundle of Σµ

Idea: Deform the connection ∇ by a symmetric and parallel

endomorphism S : Γ(Σ) → Γ(Σ), for example S = polynomial in
T ,

∇S
Xψ := ∇Xψ − 1

2
(X · S + S ·X) · ψ
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The formula:

〈(/D + S)2ψ,ψ〉 = ‖∇Sψ‖2 − 1

4

n∑

i=1

‖(ei · S + S · ei)ψ‖2 − 1

4
‖Tψ‖2 +

1

8
‖T‖2 · ‖ψ‖2 +

1

4

∫

Mn
Scalg ‖ψ‖2 dMn + ‖Sψ‖2 − 〈TS ψ, ψ〉

For example l.h.s.: = 〈/D2ψ,ψ〉
︸ ︷︷ ︸

λ2‖ψ‖2, o.k.

+ ‖Sψ‖2

︸ ︷︷ ︸
r.h.s., o.k.

+2 〈/Dψ, Sψ〉
︸ ︷︷ ︸

???

The last term needs to be estimated and leads in the equality case to an
equation of twistor type (“n∇g

Xψ = −X ·Dgψ”)

I. Agricola, Th. Friedrich and M. Kassuba, Diff. Geom. and its Appl. 26

(2008), 613-624.
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The 5-dimensional Sasaki case

• T has EV 0,±4,

Σ = Σ4 ⊕ Σ0 ⊕ Σ−4

• ‖T‖2 = 8 fixed

• Scalgmin > −4

• Universal estimate:

λ2 ≥ 1
4Scalgmin − 3 =: βuniv −4

10

20

20

30

40 60 80
4(9 + 4

√
5)

Scalgmin

βuniv
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The 5-dimensional Sasaki case

• T has EV 0,±4,

Σ = Σ4 ⊕ Σ0 ⊕ Σ−4

• ‖T‖2 = 8 fixed

• Scalgmin > −4

• Universal estimate:

λ2 ≥ 1
4Scalgmin − 3 =: βuniv

• S-deformed estimate:

λ2 ≥ 1
16

[
1
4Scalgmin + 1

]2
=: βS

−4

10

20

20

30

40 60 80
4(9 + 4

√
5)

Scalgmin

βuniv

βS
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The 5-dimensional Sasaki case

• T has EV 0,±4,

Σ = Σ4 ⊕ Σ0 ⊕ Σ−4

• ‖T‖2 = 8 fixed

• Scalgmin > −4

• Universal estimate:

λ2 ≥ 1
4Scalgmin − 3 =: βuniv

• S-deformed estimate:

λ2 ≥ 1
16

[
1
4Scalgmin + 1

]2
=: βS

−4

10

20

20

30

40 60 80
4(9 + 4

√
5)

Scalgmin

βuniv

βS

βg

∗

A subtle argument based on the fact that 0 is an EV of T shows:

λ2 ≥ 5
16 Scalgmin = n

4(n−1) Scalgmin =: βg
for Scalgmin ≥ 4(9 + 4

√
5)

∼= 71, 78

In the region ∗, we have in addition λ2
min(/D

2
|Σ0

) = λ2
min(/D

2
|Σ±4

).
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First known estimate with quadratic dependence on the scalar curvature!
[Sasaki condition is not scaling invariant]

Dfn. A Sasaki mnfd is called an η-Einstein-Sasaki mnfd if it is Einstein
on η⊥, i. e. Ric = (a, a, a, a, 4) for some a ∈ R.

Thm. On a simply connected Sasaki mnfd (M5, g, η), βS =
1
16

[
1
4Scalgmin + 1

]2
is an EV of /D2 iff (M5, g, η) is an η-Einstein-Sasaki

mnfd.

Example. Regular compact 5-dimensional Sasaki mnfds are S1-PFB
over 4-dimensional Kähler mnfds; these are η-Einstein-Sasaki iff the base
is a Kähler-Einstein mnfd.

Non regular compact 5-dim. Sasaki mnfds were constructed by Boyer /
Galicki.

Open problem: Examples in the region ∗ ?
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Eigenvalue estimates for /D2 via twistor operator

m : TM ⊗ ΣM → ΣM : Clifford multiplication

p = projection on kerm: p(X ⊗ ψ) = X ⊗ ψ + 1
n

∑n
i=1 ei ⊗ eiXψ

∇s: ∇s
XY := ∇g

XY + 2sT (X,Y,−)

(s = 1/4 is the ”standard” normalisation, ∇1/4 = char. conn.)

twistor operator: P s = p ◦ ∇s

Fundamental relation: ‖P sψ‖2 + 1
n‖Dsψ‖2 = ‖∇sψ‖2

ψ is called s-twistor spinor ⇔ ψ ∈ kerP s ⇔ ∇s
Xψ + 1

nXD
sψ = 0.

A priori, not clear what the right value of s might be:

different scaling in ∇
[
s = 1

4

]
and /D

[
s = 1

4·3
]
!

Idea: Use possible improvements of an eigenvalue estimate as a guide
to the ‘right’ twistor spinor
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Thm (twistor integral formula). Any spinor ϕ satisfies
∫

M

〈/D2ϕ,ϕ〉dM =
n

n− 1

∫

M

‖P sϕ‖2dM +
n

4(n− 1)

∫

M

Scalg‖ϕ‖2dM

+
n(n− 5)

8(n− 3)2
‖T‖2

∫

‖ϕ‖2dM − n(n− 4)

4(n− 3)2

∫

M

〈T 2ϕ,ϕ〉dM,

where s = n−1
4(n−3).

Thm (twistor estimate). The first EV λ of /D2 satisfies (n > 3)

λ ≥ n

4(n− 1)
Scalgmin +

n(n− 5)

8(n− 3)2
‖T‖2 − n(n− 4)

4(n− 3)2
max(µ2

1, . . . , µ
2
k),

where µ1, . . . , µk are the eigenvalues of T , and ”=” iff

• Scalg is constant,

• ψ is a twistor spinor for sn = n−1
4(n−3),

• ψ lies in Σµ corresponding to the largest eigenvalue of T 2.
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• reduces to Friedrich’s estimate for T → 0

• estimate is good for Scalgmin dominant (compared to ‖T‖2)

Ex. (M6, g) of class W3 (”balanced”), Stab(T ) abelian

Known: µ = 0,±
√

2‖T‖, no ∇c-parallel spinors

twistor estimate: λ ≥ 3

10
Scalgmin −

7

12
‖T‖2

universal estimate: λ ≥ 1

4
Scalgmin −

3

8
‖T‖2

• better than anything obtained by deformation

On the other hand:

Ex. (M5, g) Sasaki: deformation technique yielded better estimates.

I.Agricola, J. Becker-Bender, H. Kim, Adv. Math. 243 (2013), 296-329.
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Killing and Twistor Spinors with Torsion

Thm (twistor eq). ψ is an sn-twistor spinor (P snψ = 0) iff

∇c
Xψ +

1

n
X · /Dψ +

1

2(n− 3)
(X ∧ T ) · ψ = 0,

Dfn. ψ is a Killing spinor with torsion if ∇sn
Xψ = κX ·ψ for sn = n−1

4(n−3).

⇔ ∇cψ −
[

κ+
µ

2(n− 3)

]

X · ψ +
1

2(n− 3)
(X ∧ T )ψ = 0.

In particular:

• ψ is a twistor spinor with torsion for the same value sn

• κ satisfies the quadratic eq.

n

[

κ+
µ

2(n− 3)

]2

=
1

4(n− 1)
Scalg +

n− 5

8(n− 3)2
‖T‖2 − n− 4

4(n− 3)2
µ2

• Scalg = constant.
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In general, this twistor equation cannot be reduced to a Killing equation.

. . . with one exception: n = 6

Thm. Assume ψ is a s6-twistor spinor for some µ 6= 0. Then:

• ψ is a /D eigenspinor with eigenvalue

/Dψ =
1

3

[

µ− 4
‖T‖2

µ

]

ψ

• the twistor equation for s6 is equivalent to the Killing equation
∇sψ = λX · ψ for the same value of s.

Observation:

The Riemannian Killing / twistor eq. and their analogue with torsion
behave very differently depending on the geometry!
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Integrability conditions & Einstein-Sasaki manifolds

Thm (curvature in spin bundle). For any spinor field ψ:

Ricc(X) · ψ = −2
n∑

k=1

ekRc(X, ek)ψ +
1

2
X dT · ψ.

Thm (integrability condition). Let ψ be a Killing spinor with torsion
with Killing number κ, set λ := 1

2(n−3). Then ∀X :

Ricc(X)ψ = −16sκ(X T )ψ + 4(n− 1)κ2Xψ + (1 − 12λ2)(X σT )ψ +

+2(2λ2 + λ)
∑

ek(T (X, ek) T )ψ .

Cor. A 5-dimensional Einstein-Sasaki mnfd with its characteristic
connection cannot have Killing spinors with torsion.
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Killing spinors on nearly Kähler manifolds

• (M6, g, J) 6-dimensional nearly Kähler manifold

- ∇c its characteristic connection, torsion is parallel

- Einstein, ‖T‖2 = 2
15Scalg

- T has EV µ = 0,±2‖T‖
- ∃ 2 Riemannian KS ϕ± ∈ Σ±2‖T‖, ∇c-parallel

- univ. estimate = twistor estimate, λ ≥ 2
15Scalg

Thm. The following classes of spinors coincide:

• Riemannian Killing spinors • ∇c-parallel spinors

• Killing spinors with torsion • Twistor spinors with torsion

There is exactly one such spinor ϕ± in each of the subbundles Σ±2‖T‖.
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A 5-dimensional example with Killing spinors with torsion

• 5-dimensional Stiefel manifold M = SO(4)/SO(2), so(4) = so(2)⊕m

• Jensen metric: m = m4 ⊕ m1 (irred. components of isotropy rep.),

〈(X, a), (Y, b)〉t = 1
2β(X,Y ) + 2t · ab, t > 0, β = Killing form

∣
∣
m4

• t = 1/2: undeformed metric: 2 parallel spinors

• t = 2/3: Einstein-Sasaki with 2 Riemannian Killing spinors

• For general t: metric contact structure in direction m1 with
characteristic connection ∇ satisfying ∇T = 0

• ‖T‖2 = 4t, Scalg = 8 − 2t, Ricg = diag(2 − t, 2 − t, 2 − t, 2 − t, 2t).

• Universal estimate: λ ≥ 2(1 − t) =: βuniv

• Twistor estimate: λ ≥ 5
2 − 25

8 t =: βtw
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4/9

EV

βuniv

βtw

t

Result: there exist 2 twistor spinors with torsion for t = 2/5, and these
are even Killing spinors with torsion.
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Generalisation: deformed Sasaki mnfds with Killing spinors with
torsion

• (M, g, ξ, η): Sasaki mnfd, η: contact form, dimension 2n+ 1

• Tanno deformation of metrics: gt := tg + (t2 − t)η ⊗ η, again Sasaki
with ξt = 1

tξ, ηt = tη (t ∈ R∗)

• If Einstein-Sasaki: admits two Riemannian Killing spinors

Thm. Let (M, g, ξ, η) be Einstein-Sasaki, gt the Tanno deformation.
Then there exists a t s.t. (M, gt, ξt, ηt) has two Killing spinors with
torsion.

– establishes existence of examples in all odd dimensions –
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Remarks on the second Dirac eigenvalue

Th. Friedrich, Advances in Applied Clifford Algebras, 22 , (2012), 301-311.

(Mn, g) – Riemannian manifold, ψ – Killing spinor

∇Xψ = a ·X · ψ, n2a2 = µ1(D
2) =

n

4(n− 1)
R .

New test spinors for upper bounds of µ2(D
2) : ψ∗ = f · ψ + η · ψ.

λ0
1 – first eigenvalue of the Laplacian on functions. Lichnerowicz/Obata

:

If Mn 6= Sn, then λ0
1 >

R

n− 1
= 4na2 .

A first family of test spinors : η = df .
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Theorem: Let Mn 6= Sn be a compact Riemannian spin manifold with
a Killing spinor ψ, ∇Xψ = a ·X · ψ. The numbers

(

±
√

λ0
1 + a2(1 − n)2 − |a|

)2

are eigenvalues of D2, too. The second eigenvalue can be estimated by

a2n2 = µ1(D
2) < µ2(D

2) ≤
(√

λ0
1 + a2(1 − n)2 − |a|

)2

Finally, if

a2n2 = µ1(D
2) < µ(D2) <

(√

λ0
1 + a2(1 − n)2 − |a|

)2

is any “small” eigenvalue and ψ∗ the eigenspinor, then the inner product
〈ψ , ψ∗〉 vanishes identically.
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Estimates for small µ2(D
2) : ψ∗ = η · ψ .

0 < Λ1 < Λ2 < . . . – eigenvalues of the problem

∆1(η) = Λ η , δη = 0 , Λ1 ≥ 2R

n
= 8(n− 1)a2 .

Theorem: The spinor field ψ∗ = η ·ψ is an eigenspinor, D(ψ∗) = mψ∗,
if and only if

{(
(n− 2)a − m

)
η + dη

}

· ψ = 0 .

In this case the 1-form η is a coclosed eigenform of the Laplace operator,
and the eigenvalue can be estimated by

na ≤
√

Λ1 + a2(n− 3)2 − |a| ≤ |m| .
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Corollary: If Mn is a 7-dimensional Riemannian manifold (n = 7), then

min
((

√

λ0
1 + a2(1 − n)2 − |a|

)2
,
(√

Λ1 + a2(n− 3)2 − |a|)2
)

≤ µ2(D
2) .

Proof: Fix a Killing spinor ψ. In dimension n = 7 any spinor field ψ∗ is
given by a function f and a 1-form η, ψ∗ = f · ψ + η · ψ.

Remark: The method applies also in some other small dimensions
n = 5, 6, 8.


