Volkswagen Junior Research Group
 'Special Geometries in Mathematical Physics'

\author{

* * * * * *
 The E_{8} challenge
 Dr. habil. Ilka Agricola
}

14 December, 2007
$\because \because$
VolkswagenStiftung
E_{8} in the Media / March 2007. . .
AIM Press release headline: A calculation the size of Manhattan + picture (answer is a matrix - compare it to an area)

- articles in: The New York Times, Times (London), Scientific American, Nature, Le Monde, Spiegel, Berliner Zeitung. . .
- TV spots on CNN, NBC, BBC. . .
- Coverage in the following languages: Chinese - Dutch - Finnish - French German - Greek - Hebrew - Hungarian - Italian - Portugese - Vietnamese
- Jerry McNerney (D-California) delivered a statement to Congress about the result

In this talk:

- What is E_{8} ?
- Why is it interesting?
- What was the computation and why is it important?

Classical Lie groups

Appear in families associated with certain types of geometry:
Family A: (Pseudo-)Hermitian geometry

- $\mathrm{SL}(n, \mathbb{R}):=\{A \in \mathrm{GL}(n, \mathbb{R}): \operatorname{det} A=1\}$ (non compact)
h : a Hermitian product, for example $h(x, y)=x^{t} \bar{y}$:
- $\mathrm{SU}(n):=\left\{A \in \mathrm{GL}(n, \mathbb{C}): h(x, y)=h(A x, A y) \forall x, y \in \mathbb{C}^{n}\right\}$ (compact)
- both are real forms of their complexification $\operatorname{SL}(n, \mathbb{C})$ -

Family B and D: (Pseudo-)Riemannian geometry
$g:$ a scalar product of signature $(p, q), p+q=n=\left\{\begin{array}{l}\text { odd: family } \mathrm{B} \\ \text { even: family } \mathrm{D}\end{array}\right.$

- $\mathrm{SO}(p, q)=\left\{A \in \mathrm{SL}(n, \mathbb{R}): g(x, y)=g(A x, A y) \forall x, y \in \mathbb{R}^{n}\right\}$
- all of them are real forms of $\operatorname{SO}(n, \mathbb{C})$ -

Family C: Symplectic geometry

$\Omega \in \Lambda^{2}\left(\mathbb{C}^{2 n}\right)$: a generic 2 -form (i.e. with dense GL $(2 n, \mathbb{C})$-orbit in $\Lambda^{2}\left(\mathbb{C}^{2 n}\right)$)

- $\operatorname{Sp}(n, \mathbb{C}):=\{A \in \mathrm{GL}(n, \mathbb{C}): \Omega(A x, A y)=\Omega(x, y)\}$
has again compact and non compact real forms

Linearisation of a Lie group

For any Lie group $G: \mathfrak{g}:=T_{e} G$ is a vector space with a natural skew-symmetric bilinear product [,] satisfying the

Jacobi identity: $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$ for all $X, Y, Z \in \mathfrak{g}$ and called the Lie algebra of G.
N.B. For the Lie algebra of a matrix group, [,] is just the commutator of matrices: $\quad[X, Y]=X \cdot Y-Y \cdot X$ for all $X, Y \in \mathfrak{g} \subset \mathfrak{g l}(n, \mathbb{C})=\operatorname{End}\left(\mathbb{C}^{n}\right)$

- as a vector space, \mathfrak{g} is a much more tractable object than G ! -

Dfn. A Lie algebra \mathfrak{g} is called simple if its only ideals $\mathfrak{m}(\Leftrightarrow[\mathfrak{m}, \mathfrak{g}] \subset \mathfrak{m})$ are 0 and \mathfrak{g}.

All classical complex Lie algebras $(\neq \mathfrak{s o}(4, \mathbb{C}))$ are simple.
Thm (W. Killing, 1889). The only simple complex Lie algebras are $\mathfrak{s o}(n, \mathbb{C}), \mathfrak{s p}(n, \mathbb{C}), \mathfrak{s l}(n, \mathbb{C})$ as well as five exceptional Lie algebras,

$$
\mathfrak{g}_{2}:=\mathfrak{g}_{2}^{14}, \mathfrak{f}_{4}^{52}, \mathfrak{e}_{6}^{78}, \mathfrak{e}_{7}^{133}, \mathfrak{e}_{8}^{248}
$$

(upper index: dimension, lower index: rank)

Notation:

- E_{8}, \mathfrak{e}_{8} : complex Lie group, Lie algebra

$$
\text { [exa.: } \mathrm{SO}(p+q, \mathbb{C}) \text {] }
$$

It has 3 real forms:

- $E_{8}^{c}, \mathfrak{e}_{8}^{c}$: compact real form of E_{8}, \mathfrak{e}_{8}

$$
\text { [exa.: } \mathrm{SO}(p+q) \text {] }
$$

- $E_{8}^{*}, \mathfrak{e}_{8}^{*}$: non compact split real form of E_{8}, \mathfrak{e}_{8} [еха.: $\operatorname{SO}(p, p)$, i.e. $p=q$]
- $E_{8}^{r}, \mathfrak{e}_{8}^{r}$: non compact non split real form of $E_{8}, \mathfrak{e}_{8} \quad[$ exa.: all other $\operatorname{SO}(p, q)$] 5

Root Geometry

Idea of classification: Choose a maximal abelian subalgebra \mathfrak{h} ('Cartan subalgebra') and find a basis of \mathfrak{g} on which it acts diagonally:

$$
\mathfrak{g}=\mathfrak{h} \bigoplus_{\alpha \in \mathfrak{h}^{*}} \mathfrak{g}_{\alpha}, \quad[H, X]=\alpha(H) X \quad \forall H \in \mathfrak{h}, X \in \mathfrak{g}_{\alpha}
$$

- $0 \neq \alpha \in \mathfrak{h}^{*}:$ 'roots'; all roots together $\subset \mathfrak{h}^{*}$ form the 'root diagram' and span the 'root lattice'
- \mathfrak{g}_{α} : 'root spaces'; they are all 1-dimensional
- $\operatorname{dim} \mathfrak{h}$: 'rank of \mathfrak{g} '
- \mathfrak{h} is the zero eigenspace under its own action; by dfn, 0 is not a root
- multiplication: $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]= \begin{cases}\mathfrak{g}_{\alpha+\beta} & \text { if } \alpha+\beta \text { is a root } \\ 0 & \text { otherwise }\end{cases}$

KEY FACT: geometry of root diagram encodes almost everything you (may) want to know about \mathfrak{g}

Root diagrams of rank $2(=\operatorname{dim} \mathfrak{h})$

exceptional G_{2}
(hexagonal lattice)

$$
\begin{aligned}
B_{2}= & C_{2}=\mathfrak{s p}(4, \mathbb{C})=\mathfrak{s o}(5, \mathbb{C}) \\
& \text { (quadratic lattice) }
\end{aligned}
$$

Root diagram of E_{8}

e_{1}, \ldots, e_{8} : standard basis of $\mathbb{C}^{8}=\mathfrak{h}^{*}\left(E_{8}\right)$.
E_{8} roots:

- $\pm e_{i} \pm e_{j}$: makes 112 roots

$$
(=\text { roots of } \mathfrak{s o}(16, \mathbb{C}))
$$

- $\frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm \ldots \pm e_{8}\right)$ with an even number of -'s, yielding 128 roots

$$
\ldots 8+112+128=248=\operatorname{dim} E_{8}!
$$

- All roots have same length

Picture:

2-dimensional projection of E_{8} root diagram, where each root is connected to its nearest neighbours by lines (corners: 8 inscribed 30-gons)

. . . tells us: E_{8} is very symmetric, highly non-trivial, and extremely 'crammed'

Weyl group I

W is the group generated by reflections at hyperplanes $V_{\alpha} \subset \mathfrak{h}^{*}$ orthogonal to the roots:

$$
\begin{aligned}
W\left(A_{2}\right) & =\langle(12),(13),(23)\rangle \\
& =S_{3}, \text { order } 6
\end{aligned}
$$

$$
\begin{aligned}
W\left(B C_{2}\right) & =\langle(23),(14),(12)(34),(13)(24)\rangle \\
& =\left(\mathbb{Z}_{2}\right)^{2} \rtimes S_{2}, \text { order } 8
\end{aligned}
$$

Weyl group II

$$
W\left(G_{2}\right)=\left\langle r_{\pi / 3}, s\right\rangle=D_{6}:
$$

dihedral group of order 12

More generally:

- $W\left(A_{n}\right)=S_{n+1}$ of order $(n+1)$!
- $W\left(B C_{n}\right)=\left(\mathbb{Z}_{2}\right)^{n} \rtimes S_{n}$ of order $2^{n} n$!
- $W\left(D_{n}\right)=\left(\mathbb{Z}_{2}\right)^{n-1} \rtimes S_{n}$ of order $2^{n-1} n$!

In particular:
$\left|W\left(A_{8}\right)\right|=9!=362880$
$\left|W\left(B C_{8}\right)\right|=2^{8} 8!=10321920$
$\left|W\left(D_{8}\right)\right|=2^{7} 8!=5160960$
... and what about E_{8} ?

Weyl group II

More generally:

$W\left(G_{2}\right)=\left\langle r_{\pi / 3}, s\right\rangle=D_{6}:$ dihedral group of order 12

- $W\left(A_{n}\right)=S_{n+1}$ of order $(n+1)$!
- $W\left(B C_{n}\right)=\left(\mathbb{Z}_{2}\right)^{n} \rtimes S_{n}$ of order $2^{n} n$!
- $W\left(D_{n}\right)=\left(\mathbb{Z}_{2}\right)^{n-1} \rtimes S_{n}$ of order $2^{n-1} n$!

In particular:

$\left|W\left(A_{8}\right)\right|=9!=362880$
$\left|W\left(B C_{8}\right)\right|=2^{8} 8!=10321920$
$\left|W\left(D_{8}\right)\right|=2^{7} 8!=5160960$
$\left|W\left(E_{8}\right)\right|=2^{14} 3^{5} 5^{2} 7=696729600$
and it is a group of high complexity!

This has dramatic consequences for all computational questions

- that need an explicit realisation of W
- whose complexity grows like a polynomial in $|W|$

Example:

Any representation V of G is determined by a 'highest weight' λ in the lattice H : subgroup of G with Lie algebra \mathfrak{h}
e^{α} : the function on H induced by $\alpha \in \mathfrak{h}^{*} \cong \mathfrak{h}$
$\chi(V)$: character of G-repr. on V, viewed as function on $H, \operatorname{dim} V=\chi(V)(e)$
$\varrho:$ a certain fixed element in \mathfrak{h}^{*}
$\operatorname{sgn}(s)= \pm 1$ (even/odd number of reflections)

Thm (H. Weyl, 1925)

$$
\chi(V)=\frac{\sum_{s \in W} \operatorname{sgn}(s) e^{s(\lambda+\varrho)}}{\sum_{s \in W} \operatorname{sgn}(s) e^{s \varrho}}
$$

What makes E_{8} interesting?

E_{8} appears in connection with

- sphere packing problems (*)
- the 'Monster', the largest of the (finite) sporadic groups
- superstring theory $(*)$
- quasicrystals with 5-fold symmetry
... and than there are wild speculations about E_{8} as explanation for everything, ranging from Fermat's Theorem to elementary particles

Sphere packings

In n-dimensional Euclidean space, consider the following questions:
Sphere Packing Problem (SPP): Given a huge number of equal spheres, what is the densest way to pack them together? (\sim global problem)

Kissing Number Problem (KNP): How many spheres can be arranged so that they all touch one central sphere of the same size? (\sim local problem)

Step I: represent spheres by their centers; these will sometimes form a lattice.

For $n=2$, the answer to both problems is given mainly by the hexagonal lattice:
density $=\frac{\text { circle area }}{\text { circumscr. hexagon a. }}=\frac{\pi}{\sqrt{12}}=0,9069 \ldots$
kissing number $=6$

$$
\text { The case } n=3 \text { - a still open problem }
$$

The classical root systems A_{3} and D_{3} generate the same lattice - the fcc lattice ('face-centered cubic')
density $=\frac{\pi}{\sqrt{18}}=0,7405 \ldots$, kissing number $=12$
Thm (Gauss, 1831). The fcc lattice is the densest lattice packing for $n=3$.

But. . .

- nonlattice packings are known that are as dense as the fcc lattice ('hcp packing', still periodical)
- local partial packings of higher density are known

Thm (Bender, 1874). In 3 dimensions, the highest possible kissing number is 12 .

But there are infinitely many possible arrangements

Highe values of n

Thm (Korkine-Zolotarev, 1872/77)
The D_{4} and D_{5} lattices are the densest lattice packings in 4 and 5 dimensions.
Furthermore, they described E_{6}, E_{7}, E_{8} and conjectured that they are also optimal among lattices!

Thm (Blichfeldt, 1935)
The E_{6}, E_{7}, E_{8} lattices are the densest lattice packings in 6,7,8 dimensions.
These are the best known packings in these dimensions.
For the KNP, only two case (besides $n=2,3$) are settled:
Thm (Odlyzko-Sloane, 1979).
a) The highest kissing number in $n=8$ is 240 and realized only by the E_{8} lattice;
b) The highest kissing number in $n=24$ is 196560 and realized only by the Leech lattice.

E_{8} and supersymmetric theories

Objective: Unification of standard model of elementary particles and general gravity

Since 1980ies: Construction of field theories with local supersymmetries, i. e. transformations that exchange fermions and bosons.

Models with 3-dimensional space-time

- are instructive toy models for higher-dimensional physical theories
- appear in dimensional reductions of lowe and higher dimensional theories
N : \# of supersymmetries - increasing N means increasing the geometric constraints on the 'target manifold' M !

Study

- commutator relations of extended supersymmetry algebra
- its possible 'supermultiplets' $=$ representations and
- compatibility conditions with Langragian

Supersymmetric theories II

N : \# of supersymmetries, d_{N} : \# of bosonic states, k : \# of supermultiplets

$$
\operatorname{dim} M=k \cdot d_{N} \quad \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c}
N & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 12 & 16 \\
\hline d_{N} & 1 & 2 & 4 & 4 & 8 & 8 & 8 & 8 & 16 & 32 & 64 & 128
\end{array}
$$

a) Compute isotropy group of supersymmetry algebra: $\mathrm{SO}(N) \times H$

Want: $\operatorname{Hol}(M) \subset \mathrm{SO}(N) \times H$ and acts irreducibly on $T M$
$N=1$: any Riemannian manifold as 'target space' M
$N=2$: Kähler manifold $(\operatorname{dim} M / 2 \in \mathbb{N})$
$N=3,4$: 3 almost complex structures (quaternionic or product of two quaternionic spaces; $\operatorname{dim} M / 4 \in \mathbb{N}$)
$N \geq 5$: Einstein space, $\mathrm{Scal}<0$, and $\mathrm{SO}(N) \times H$ has no transitive sphere action! Berger's theorem $\Rightarrow M$ is a non-compact symmetric space
For $N \geq 9, k=1$ (the target space is unique) and

$$
\text { For } N=16: M=E_{8}^{*} / \mathrm{SO}(16)
$$

E_{8} and computations

In the 1980ies, the character of Lie algebra computations changed drastically:

- Fast recursion algorithms were derived, making (some) sums over Weyl groups unnecessary
[Typical idea: introduce partial orderings on weights]
- Suitable software then implemented these algorithms
- Typically, E_{8} was used as a test case

In the beginning, the results were published as long lists of tables in journals, then books - see for example

McKay, W.G., Patera, J. Tables of dimensions, indices, and branching rules for representations of simple Lie algebras, Marcel Dekker, 1981.

Bremner, M.R., Moody, R.V., Patera, J., Tables of dominant weight multiplicities for representations of simple Lie algebras, Marcel Dekker, 1985.

McKay, W.G., Patera, J., Rand, D.W., Tables of representations of simple Lie algebras. Volume I: Exceptional simple Lie algebras, Montréal/Centre de Recherches Mathématiques, 1990.

Since July 1996, LiE is publically available for free (Centre for Mathematics and Computer Science/Amsterdam).

With LiE, problems that were unsolvable became accessible for any graduate student!

LiE was used to answer many problems of representation theory, like

- big problem: Kostant's conjecture on subgroups of exceptional Lie groups (relates the Coxeter number to finite simple groups in simple complex Liwe groups)
- tiny erxercise: Adam's conjecture on antisymmetric tensor powers of fundamental representations for E_{8}

From the beginning, it was one of LiE's objectives to provide implementations for computing Kazhdan-Lusztig polynomials.

- LiE offline demo: -

(9) Form interface to LiE-Mozilla Firefox -9		$\square \times$
Eile Edit View History Bookmarks Iools Help		θ
	- - $_{\text {G- Google }}$	Q
- mozilla.org SuSE - The Linux Exp.		

LiE online service

With this form you can request a selection of the computations that are possible in LiE to be performed remotely, and the outcome will be presented to you. To specify the type of computation to be done, you must fill out the form below; most computations require some additional parameters, and will ask to fill out a second form to specify these.

Enter the highest weight of the irreducible E8-module for which you want to compute the dimension.
Highest weight:

0
1
3
4
5
6
7
7
8
9

```
Dimension of [1,0,0,0,0,0,0,0] in E8 - Mozilla Firefox
- - x
Eile Edit View History Bookmarks Iools Help
```



```
* mozilla.org SUSE - The Linux Exp.
```


Dimension of [1,0,0,0,0,0,0,0] in E8

The dimension of the irreducible E8-module with highest weight $[1,0,0,0,0,0,0,0]$ is
3875.

It factors as $5^{\wedge} 3^{*} 31$. The computation was done by LiE using Weyl's character formula.
If you like, you may look at the implementation that was used (function simp_dim_irr on page 1).
You may go back and try another example.

Enter the highest weight of an irreducible E8-module, and the kind of tensor power of it that you want to decompose into irreducible factors.

Compute the 2nd alternating \neg tensor power.
Reset start symmetric
alternating

Hecke Algebras

- W: a Weyl group (more generally: a Coxeter group)
- $S \subset W$: a set of reflections generating W
'Braid relations': For $s, s^{\prime} \in S, m\left(s, s^{\prime}\right):=\operatorname{ord}\left(s s^{\prime}\right)$

$$
\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=1 \Leftrightarrow s s^{\prime} s s^{\prime} \ldots=s^{\prime} s s^{\prime} s \ldots\left(m\left(s, s^{\prime}\right) \text {-times }\right)
$$

Dfn. Let $A:=\mathbb{Z}\left[v, v^{-1}\right]$ and consider all formal elements T_{w} for $w \in W$. Then the Hecke algebra of (W, S) is the associative algebra $\mathcal{H}:=\bigoplus A \cdot T_{w}$ with the relations
a) $T_{s} T_{s^{\prime}} T_{s} \ldots=T_{s^{\prime}} T_{s} T_{s^{\prime}} \ldots$ for $m\left(s s^{\prime}\right)<\infty$, ('braid relations')
b) $T_{s}^{2}=\left(v^{-1}-v\right) T_{s}+1$ for all $s \in S$. ('quadratic relations')

Comments:

- $T_{e}=1$ and $T_{s}^{-1}=T_{s}+\left(v-v^{-1}\right)$
- If $w=s_{1} \ldots s_{n}$ is a reduced expression for w, then $T_{w}=T_{s_{1}} \ldots T_{s_{n}}$
- For $v=1$, this is just the group algebra of W

In particular, the elements T_{w} form a basis of \mathcal{H}.
Involution d : Set $d(v):=v^{-1}$ and $d\left(T_{s}\right)=T^{-1}=T_{s}+\left(v-v^{-1}\right)$
\rightarrow extends to a ring homomorphism $d: \mathcal{H} \rightarrow \mathcal{H}$.
Thm (Kazhdan-Lusztig, 1979). \mathcal{H} has a unique basis $\left\{C_{w}\right\}_{w \in W}$ such that
a) $d\left(C_{w}\right)=C_{w}$,
b) $C_{w} \in T_{w}+\bigoplus_{w^{\prime} \in W} v \cdot \mathbb{Z}[v] T_{w^{\prime}}$.

These are called the Kazhdan-Lusztig polynomials of (W, S).
Example. Take $W=S_{2}=\{12=e, 21\}$, the Weyl group of type A_{2}.

- $C_{12}=T_{12}=1$,
- $C_{21}=T_{21}+v T_{12}$
check: $d\left(T_{21}+v\right)=T_{21}+\left(v-v^{-1}\right)+v^{-1}=T_{21}+v \quad$ (o.k.)

Easy Kazhdan-Lusztig polynomials

Kazhdan-Lusztig polynomials for Weyl group of type A_{1} :
$C_{12}=T_{12}$
$C_{21}=T_{21}+v T_{12}$
Kazhdan-Lusztig polynomials for Weyl group of type A_{2} :
$C_{123}=T_{123}$
$C_{132}=T_{132}+v T_{123}$
$C_{213}=T_{213}+v T_{123}$
$C_{231}=T_{231}+v T_{132}+v T_{213}+v^{2} T_{123}$
$C_{312}=T_{312}+v T_{132}+v T_{213}+v^{2} T_{123}$
$C_{321}=T_{321}+v T_{231}+v T_{312}+v^{2} T_{132}+v^{2} T_{213}+v^{3} T_{123}$
Kazhdan-Lusztig polynomials for Weyl group of type A_{3} :
$T_{1234} / / T_{1243}+v T_{1234} / / T_{1324}+v T_{1234} / / T_{2134}+v T_{1234}$
$T_{1342}+v T_{1243}+v T_{1324}+v^{2} T_{1234} / / T_{1423}+v T_{1243}+v T_{1324}+v^{2} T_{1234}$

$$
\begin{aligned}
& T_{2143}+v T_{1243}+v T_{2134}+v^{2} T_{1234} / / T_{2314}+v T_{1324}+v T_{2134}+v^{2} T_{1234} \\
& T_{3124}+v T_{1324}+v T_{2134}+v^{2} T_{1234} \\
& T_{1432}+v T_{1342}+v T_{1423}+v^{2} T_{1243}+v^{2} T_{1324}+v^{3} T_{1234} \\
& T_{3214}+v T_{2314}+v T_{3124}+v^{2} T_{1324}+v^{2} T_{2134}+v^{3} T_{1234} \\
& T_{2341}+v T_{1342}+v T_{2143}+v T_{2314}+v^{2} T_{1243}+v^{2} T_{1324}+v^{2} T_{2134}+v^{3} T_{1234} \\
& T_{2413}+v T_{1423}+v T_{2143}+v T_{2314}+v^{2} T_{1243}+v^{2} T_{1324}+v^{2} T_{2134}+v^{3} T_{1234} \\
& T_{3142}+v T_{1342}+v T_{2143}+v T_{3124}+v^{2} T_{1243}+v^{2} T_{1324}+v^{2} T_{2134}+v^{3} T_{1234} \\
& \bullet T_{2431}+v T_{1423}+v T_{2431}+v T_{2413}+v^{2} T_{1342}+v^{2} T_{1423}+v^{2} T_{2143}+v^{2} T_{2314}+v^{3} T_{1243}+ \\
& v^{3} T_{1324}+v^{3} T_{2134}+v^{4} T_{1234} \\
& \bullet T_{3241}+v T_{2341}+v T_{3142}+v T_{3214}+v^{2} T_{1342}+v^{2} T_{2143}+v^{2} T_{2314}+v^{2} T_{3124}+v^{3} T_{1243}+ \\
& v^{3} T_{1324}+v^{3} T_{2134}+v^{4} T_{1234} \\
& :[7 \text { are missing }] \\
& \bullet T_{4231}+v T_{2431}+v T_{3241}+v T_{4132}+v T_{4213}+v^{2} T_{1432}+v^{2} T_{2341}+v^{2} T_{2413}+v^{2} T_{3142}+ \\
& v^{2} T_{3214}++v^{2} T_{4123}+v^{3} T_{1342}+v^{3} T_{1423}+\left(v^{3}+v\right) T_{2143}+v^{3} T_{2314}+v^{3} T_{3124}+\left(v^{4}+\right. \\
& \left.v^{2}\right) T_{1243}+v^{4} T_{1324}+\left(v^{4}+v^{2}\right) T_{2134}+\left(v^{5}+v^{3}\right) T_{1234}
\end{aligned}
$$

The meaning of $K L$ polynomials

combinatorics

analytical representation theory characters of highest weight and Verma modules of G

The meaning of KL polynomials

combinatorics

Thm $\{\operatorname{KL}(1980)$
intersection homology of
Schubert varieties $\overline{X_{w}}$
$G / B=\bigcup_{w \in W} X_{w}$
algebraic geometry
analytical representation theory
characters of highest weight and Verma modules of G

KL Conjecture

KL (1979)

The meaning of KL polynomials

combinatorics

intersection homology of Schubert varieties $\overline{X_{w}}$

$$
G / B=\bigcup_{w \in W} X_{w}
$$

algebraic geometry
analytical representation theory
characters of highest weight and Verma modules of G

1983: extension to representations of real simple Lie groups (L-Vogan)

```
The 'Atlas of Lie groups and representations' Project
```

Ultimate goal: website with information on complex \& real semisimple Lie groups; in particular, their infinite-dimensional unitary representations in code.

2002: Started by J. Adams, now a team of 18 mathematicians (including F. du Cloux, M. van Leeuwen, D. Vogan)

Nov. 2005: KL polynomials for all real forms of F_{4}, E_{6}, E_{7} and the non-split form E_{8}^{r} of E_{8} : holds in a 73410^{2} triangular integer matrix.

For E_{8}^{*} : character table holds in a 453060^{2} triangular integer matrix (eval. at 1 of KL polynomials).

Trick: compute KL polynomials $\bmod m$ for $m=253,255,256$, then use Chinese Remainder Theorem to reconstruct answer $\bmod 253 \cdot 255 \cdot 256=$ $16515840 \longrightarrow$ saves memory!

Monday Januar 8, 2007: Result for E_{8}^{*} was written to disk (60 GB) by 'sage', a computer at the University of Seattle.

Summary

Mathematical 'monsters' like E_{8} are in many senses similar to the monsters of your childhood:

- they are frightening, at least at the beginning,
- they are nevertheless exciting \& fascinating,
- they do not really exist if you think it over seriously.

Hence, there are two types of monster stories:

- the excellent ones involving great plots and heroic efforts,
- the 'Loch Ness' type fairy tales that you should not believe in.

