
1

Non-integrable geometries, torsion, and holonomy

I: Mathematical tools – geometry of metric connections

Prof. Dr. habil. Ilka Agricola
Philipps-Universität Marburg

Torino, Carnival Differential Geometry school



1

Outline

At border line between pure mathematics and theoretical physics

formation of
mathematical

concepts
⇔

building of
physical
models

differential geometry,
analysis,

group theory

general relativity,
unified field theories,

string theory

Lecture I: Mathematical tools – geometry of metric connections

Lecture II: Geometric structures and connections

Lecture III: Curvature properties of metric connections with skew torsion

Lecture IV: Classification of naturally reductive homogeneous spaces
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Symmetry I

• Classical mechanics: Symmetry considerations can simplify study of
geometric problems (i.e., Noether’s theorem)

• Felix Klein at his inaugural lecture at Erlangen University, 1872 (”Erlanger
Programm”):

“Es ist eine Mannigfaltigkeit und in derselben eine
Transformationsgruppe gegeben; man soll die der Mannigfaltigkeit
angehörigen Gebilde hinsichtlich solcher Eigenschaften untersuchen,
die durch die Transformationen der Gruppe nicht geändert werden”.

“Let a manifold and in this a transformation group be given; the
objects belonging to the manifold ought to be studied with respect to
those properties which are not changed by the transformations of the
group.”

Isometry group of a Riemannian manifold (M, g)
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Symmetry II

• Around 1940-1950: Second intrinsic Lie group associated with a
Riemannian manifold (M, g) appeared, its holonomy group.

strongly related to curvature and parallel objects

Recall: For f : R
n → R smooth, the directional derivative in x0 in direction

U ∈ Rn is defined by

(~∇Uf)(x0) := lim
t→0

f(x0 + tU)− f(x0)

t
[= Df(x0)(U)]

For a vector V : ~∇UV is defined component wise

• For V = ∂
∂x
, W = ∂

∂y
: ~∇V

~∇W = ~∇W
~∇V and [V,W ] = 0

• compatible with scalar product: V (〈X,Y 〉) = 〈~∇VX, Y 〉+ 〈X, ~∇V Y 〉
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Connections

Connection ∇: abstract derivation rule
on mnfd satisfying all formal properties of
the directional derivative

Exa. Projection ∇g
UV of dir. derivative

~∇UV to tangent plane
= Levi-Civita connection ∇g

p

TpM
~∇UV

∇g
UV

M

But: not only possibility connection with torsion [Dfn: Cartan, 1925]

Exa. Electrodynamics: ∇UV := ~∇UV + ie
~
A(U)V (⇔ ∇µ = ∂µ + ie

~
Aµ)

A: gauge potential = electromagnetic potential

Exa. If n = 3: ∇UV := ~∇UV + U × V additional term gives space an
‘internal angular momentum’, a torsion
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A priori, the holonomy group is defined for an arbitrary connection ∇ on
TM . For reasons to become clear later, we concentrate mainly on

Metric connections ∇ : Xg(V,W ) = g(∇XV,W ) + g(V,∇XW ).

The torsion (viewed as (2, 1)- or (3, 0)-tensor)

T (X,Y ) := ∇XY −∇YX − [X,Y ], T (X,Y,Z) := g(T (X,Y ), Z)

can (for the moment. . . ) be arbitrary.
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Why torsion?

• General relativity:

a) Cartan (1929): torsion ∼ intrinsic angular momentum, derived a set of
gravitational field eqs., but postulated that the energy-momentum tensor
should still be divergence-free → too restrictive

b) Einstein-Cartan theory (≥ 1950): variation of the scalar curvature and
of an additional Lagrangian generating the energy-momentum and the spin
tensors: allowed any torsion and not nec. metric

• Superstring theory:

Classical Yang-Mills theory: curvature ∼= field strength,

in superstring theories: torsion ∼= higher order field strength

(+ extra differential eqs.)

• Differential geometry: Connections adapted to the geometry useful
for ‘non-integrable’ geometries, like: Hermitian non Kähler mnfds, contact
manifolds. . .
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Types of metric connections

(Mn, g) oriented Riemannian mnfd, ∇ any connection:

∇XY = ∇g
XY + A(X,Y ) .

Then: ∇ is metric ⇔ g(A(X, Y ), Z) + g(A(X,Z), Y ) = 0

⇔ A ∈ Ag := Rn ⊗ Λ2(Rn)

For metric connections: difference tensor A ⇔ torsion T via

2A(X,Y, Z) = T (X,Y,Z)− T (Y,Z,X) + T (Z,X, Y ),

T (X,Y,Z) = A(X,Y, Z)−A(Y,X,Z)

So identify Ag with T : space of possible torsion tensors,

Ag ∼= T ∼= R
n ⊗ Λ2(Rn), dim =

n2(n− 1)

2
.
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Decompose this space under SO(n) action (E. Cartan, 1925), n ≥ 3:

R
n ⊗ Λ2(Rn) ∼= R

n ⊕ Λ3(Rn) ⊕ T ′.

(For n = 2: R2
⊗ Λ2(R2) ∼= R

2 is irreducible).

• A ∈ Λ3(Rn): “Connections with skew (symmetric) torsion”:

∇XY := ∇g
XY +

1

2
T(X,Y,−) .

Lemma. ∇ is metric and geodesics preserving iff its torsion T lies in
Λ3(TM). In this case, 2A = T , and the ∇-Killing vector fields coincide
with the Riemannian Killing vector fields.

Connections used in superstring theory

• A ∈ R
n: “Connections with vectorial torsion”, V a vector field:

∇XY := ∇g
XY − g(X,Y ) · V + g(Y, V ) ·X .

In particular, any metric connection on a surface is of this type!
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Mercator map

• conformal (angle preserving),
hence maps loxodromes to straight
lines
• Cartan (1923):
“On this manifold, the straight
lines [of the flat connection] are
the loxodromes, which intersect the
meridians at a constant angle. The
only straight lines realizing shortest
paths are those which are normal
to the torsion in every point: these
are the meridians. S2 − {N, S} → I × R (1569)

• Explanation & generalisation to arbitrary manifolds?

• Existence of a Clairaut style invariant?
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Thm. (M, g) Riemannian manifold, σ ∈ C∞(M) and g̃ = e2σg the
conformally changed metric. Let

∇̃g: metric connection with vectorial torsion V = −gradσ on (M, g),

∇̃g
XY = ∇g

XY − g(X,Y )V + g(Y, V )X

∇g̃: Levi-Civita connection of (M, g̃). Then

(1) Every ∇̃g-geodesic γ(t) is (up to reparametrisation) a ∇g̃-geodesic;

(2) If X is a Killing vector field of g̃, then eσg(γ′,X) is a constant of motion
for every ∇̃g-geodesic γ(t). [A-Thier, 2003]

N.B. The curvatures of ∇̃g and ∇g̃ coincide, but the curvatures of ∇g and
∇g̃ are unrelated.

Beltrami’s theorem does not hold anymore [“If a portion of a surface S can

be mapped LC-geodesically onto a portion of a surface S∗ of constant Gaussian curvature,

the Gaussian curvature of S must also be constant”]
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Connections with vectorial torsion on surfaces

• Curve: α =
(

r(s), h(s)
)

• Surface of revolution:
(

r(s) cosϕ, r(s) sinϕ, h(s)
)

• Riemannian metric:
g = diag

(

r2(s), 1
)

• Orthonormal frame:
e1 =

1
r
∂ϕ, e2 = ∂s

x

y

z

h(s)

r(s)

ϕ

ν1 ν2

Dfn: Call two tangent vectors v1 and v2 of same length parallel if their
angles ν1 and ν2 with the generating curves through their origins coincide

‘Mercator connection ∇’
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• Hence ∇e1 = ∇e2 = 0

• Torsion: T (e1, e2) =
r′(s)
r(s) e2

• Corresponding vector field:

V = r′(s)
r(s) e1 = −grad

(

− ln r(s)
)

loxodrome with direction 292.5o

• geodesics are LC geodesics of the conformally equivalent metric g̃ = e2σg =
diag(1/r2, 1) (coincides with euclidian metric under x = ϕ, y =

∫

ds/r(s))

• X = ∂ϕ is Killing vector field for g̃, invariant of motion:

const = eσg(γ̇, X) = 1
r(s)g(γ̇, ∂ϕ) = g(γ̇, e2)
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Mercator’s world map (1569)
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[www.progonos.com]

Comparison of a loxodrome and a great circle on the Mercator map – by
habit, we take for granted that the straight line corresponds to the shortest
distance!

N.B. It is conformal, but not area-preserving (compare former Sovjet Union
with Africa or Europe with South America)
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Holonomy of arbitrary connections

• γ from p to q, ∇ any connection

• Pγ : TpM → TqM is the unique map
s. t. V (q) := PγV (p) is parallel along
γ, ∇V (s)/ds = ∇γ̇V = 0.

• C(p): closed loops through p
Hol(p;∇) = {Pγ | γ ∈ C(p)}

• C0(p): null-homotopic el’ts in C(p)
Hol0(p;∇) = {Pγ | γ ∈ C0(p)}

p

TpMPγ

γ
M

Independent of p, so drop p in notation: Hol(M ;∇), Hol0(M ;∇).

A priori:

(1) Hol(M ;∇) is a Lie subgroup of GL(n,R),

(2) Hol0(p) is the connected component of the identity of Hol(M ;∇).
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Holonomy of metric connections

Assume: M carries a Riemannian metric g, ∇ metric

⇒ parallel transport is an isometry:

d

ds
g
(

V (s),W (s)
)

= g
(∇V (s)

ds
,W (s)

)

+
(

V (s),
∇W (s)

ds

)

= 0.

and Hol(M ;∇) ⊂ O(n,R), Hol0(M ;∇) ⊂ SO(n,R).

Notation: Hol(0)(M ;∇g) = “Riemannian (restricted) holonomy group”

N.B. (1) Hol(0)(M ;∇) needs not to be closed!

(2) The holonomy representation needs not to be irreducible on

irreducible manifolds!

Larger variety of holonomy groups, but classification difficult
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Curvature & Holonomy

Holonomy can be computed through curvature:

Thm (Ambrose-Singer, 1953). For any connection ∇ on (M, g), the
Lie algebra hol(p;∇) of Hol(p;∇) in p ∈ M is exactly the subalgebra of
so(TpM) generated by the elements

P−1
γ ◦ R(PγV, PγW ) ◦ Pγ V,W ∈ TpM, γ ∈ C(p).

But only of restricted use:

Thm (Bianchi I). (1) For a metric connection with vectorial torsion

V ∈ TMn:
X,Y,Z
σ R(X,Y )Z =

X,Y,Z
σ dV (X,Y )Z.

(2) For a metric connection with skew symmetric torsion T ∈ Λ3(Mn):

X,Y,Z
σ R(X,Y,Z, V ) = dT (X,Y,Z, V )−σT (X,Y,Z, V )+(∇V T )(X,Y,Z),

2σT :=
n
∑

i=1

(ei T ) ∧ (ei T ) for any orthonormal frame e1, . . . , en.
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Thm (Berger, Simons, > 1955). For a non symmetric Riemannian
manifold (M, g) and the Levi-Civita connection ∇g, the possible holonomy
groups are SO(n) or

4n 2n 2n 4n 7 8 16

SpnSp1 U(n) SU(n) Spn G2 Spin(7) (Spin(9))

quatern. Kähler Calabi- hyper- par. par. par.
Kähler Yau Kähler

∇J 6= 0 ∇gJ = 0 ∇gJ = 0 ∇gJ = 0 ∇gω3 = 0 ∇gΩ4 = 0 −−

Ric = λg −− Ric = 0 Ric = 0 Ric = 0 Ric = 0 −−

Existence of Ricci flat compact manifolds:

• Calabi-Yau, hyper-Kähler: Yau, 1980’s.

• G2, Spin(7): D. Joyce since ∼ 1995, Kovalev (2003). Both rely on heavy
analysis and algebraic geometry !

Later: Reformulate Bianchi id. and get replacement for Berger’s thm!
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General Holonomy Principle

Thm (General Holonomy Principle). M a manifold, E a (real or complex)
vector bundle over M with (any!) connection ∇. Then the following are
equivalent:

(1) E has a global section α which is invariant under parallel transport,
i. e. α(q) = Pγ(α(p)) for any path γ from p to q;

(2) E has a parallel global section α, i. e. ∇α = 0;

(3) In some point p ∈M , there exists an algebraic vector α0 ∈ Ep which is
invariant under the holonomy representation on the fiber.

Corollary. The number of parallel global sections of E coincides with the
number of trivial representations occuring in the holonomy representation
on the fibers.
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Example. Orientability from a holonomy point of view:

Lemma. The determinant ist an SO(n)-invariant element in Λn(Rn) that
is not O(n)-invariant.

Corollary. (Mn, g) is orientable iff Hol(M ;∇) ⊂ SO(n) for any metric

connection ∇, and the volume form is then ∇-parallel.

[Take dMp := det = e1 ∧ . . . ∧ en in p ∈ M , then apply holonomy principle to

E = Λn(TM).]

An orthonormal frame that is parallel transported along the drawn curve reverses its

orientation.
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Geometric stabilizers

Philosophy: Invariants of geometric representations are candidates
for parallel objects. Find these!

• Invariants for G ⊂ SO(m) in tensor bundles (as just seen)

• Assume that G ⊂ SO(m) can be lifted to a subgroup G ⊂ Spin(m)

⇒ G acts on the spin representation ∆m of Spin(m)

Recall: • m = 2k even: ∆m = ∆+
m ⊕∆−

m, both have dimension 2k−1

• m = 2k + 1 odd: ∆m is irreducible, of dimension 2k

Elements of ∆m: “algebraic spinors” (in opposition to spinors on M that

are sections of the spinor bundle)

Now decompose ∆m under the action of G.

In particular: Are there invariant algebraic spinors?
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U(n) in dimension 2n

• Hermitian metric h(V,W ) = g(V,W )− ig(JV,W )

• h is invariant under A ∈ End(R2n) iff A leaves invariant g and the Kähler
form Ω(V,W ) := g(JV,W ) ⇒

U(n) = {A ∈ SO(2n) | A∗Ω = Ω}.

Lemma. Under the restricted action of U(n), Λ2k(R2n), k = 1, . . . , n
contains the trivial representation once, namely, Ω,Ω2, . . . ,Ωn.

Only the Lie algebra u(n) can be lifted to a subgroup of spin(2n), but it
has no invariant algebraic spinors:

Ω generates the one-dimensional center of u(n) (identify Λ2(R2n) ∼= so(2n)).

Set Sr = {ψ ∈ ∆2n : Ωψ = i(n− 2r)ψ}, dimSr =
(

n
r

)

, 0 ≤ r ≤ n.
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Sr
∼= (0, r)-forms with values in S0 and

∆+
2n

∣

∣

U(n)
∼= Sn ⊕ Sn−2 ⊕ . . . , ∆−

2n

∣

∣

U(n)
∼= Sn−1 ⊕ Sn−3 ⊕ . . .

⇒

• no trivial u(n)-representation for n odd

• For n = 2k even, Ω has eigenvalue zero on Sk, but this space is an
irreducible representation of dimension

(

2k
k

)

6= 1

• S0 and Sn are one-dimensional, and they become trivial under SU(n)
(SU(n) does lift into Spin(2n))

Lemma. ∆±
2n contain no u(n)-invariant spinors. If one restricts further to

SU(n), there are exactly two invariant spinors.
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G2 in dimension 7

• Geometry of 3-forms plays an exceptional role in Riemannian geometry, as
it ocurs only in dimensions seven and eight:

n dimGL(n,R)− dimΛ3Rn dimSO(n)

3 9− 1 = 8 3

4 16− 4 = 12 6

5 25− 10 = 15 10

6 36− 20 = 16 15

7 49− 35 = 14 21

8 64− 56 = 8 28

⇒ stabilizer Gn
ω3 := {A ∈ GL(n,R) | ω3 = A∗ω3} of a generic 3-form ω3

cannot lie in SO(n) for n ≤ 6 (for example: G3
ω3 = SL(3,R)).
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Engel had had this idea already in 1886. From a letter to Killing (8.4.1886):

“There seem to be relatively few simple groups. Thus first of all, the
two types mentioned by you [SO(n,C) and SL(n,C]. If I am not
mistaken, the group of a linear complex in space of 2n− 1 dimensions
(n > 1) with (2n + 1)2n/2 parameters [Sp(n,C)] is distinct from
these. In 3-fold space [CP3] this group [Sp(4,C)] is isomorphic to
that [SO(5,C)] of a surface of second degree in 4-fold space. I do
not know whether a similar proposition holds in 5-fold space. The
projective group of 4-fold space [CP4] that leaves invariant a trilinear
expression of the form

1...5
∑

ijk

aijk

∣

∣

∣

∣

∣

∣

xi yi zi
xk yk zk
xj yj zj

∣

∣

∣

∣

∣

∣

= 0

will probably also be simple. This group has 15 parameters, the
corresponding group in 5-fold space has 16, in 6-fold space [CP6] has
14, in 7-fold space [CP7] has 8 parameters. In 8-fold space there
is no such group. These numbers are already interesting. Are the
corresponding groups simple? Probably this is worth investigating.
But also Lie, who long ago thought about similar things, has not yet
done so.”
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Reichel, 1907 (Ph D student of F. Engel in Greifswald):

• computed a system of invariants for a 3-form in seven variables

• showed that there are exactly two GL(7,R)-open orbits of 3-forms

• showed that stabilizers of any representatives ω3, ω̃3 of these orbits are
14-dimensional simple Lie groups of rank two, a compact and a non-compact
one:

G7
ω3

∼= G2 ⊂ SO(7), G7
ω̃3

∼= G∗
2 ⊂ SO(3, 4)

• realized g2 and g∗2 as explicit subspaces of so(7) and so(3, 4)

As in the case of almost hermitian geometry, one has a favourite normal
form for a 3-form with isotropy group G2:

ω3 := e127 + e347 − e567 + e135 − e245 + e146 + e236.

An element of the second orbit (→ G∗
2) may be obtained by reversing any

of the signs in ω3.
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Lemma. Under G2: Λ
3(R7) ∼= R⊕ R7 ⊕ S0(R

7), where

R7: 7-dimensional standard representation of G2 ⊂ SO(7)

S0(R
7): traceless symmetric endomorphisms of R7 (has dimension 27).

• G2 can be lifted to a subgroup of Spin(7). From a purely representation
theoretic point of view, this case is trivial:

dim∆7 = 8 and the only irreducible representations of G2 of dimension ≤ 8
are the trivial and the 7-dimensional representation ⇒

Lemma. Under G2: ∆7
∼= R⊕ R7.

In fact, the invariant 3-form ω3 and the invariant algebraic spinor ψ are
equivalent data:

ω3(X, Y,Z) = 〈X · Y · Z · ψ, ψ〉.

But dim∆7 = 8 < dimΛ3(R7) = 35, so the spinorial picture is easier to
treat!
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Assume now that G ⊂ G2 fixes a second spinor ⇒ G ∼= SU(3)

• this is one of the three maximal Lie subgroups of G2, SU(3), SO(4) and
SO(3)

• SU(3) has irreducible real representations in dimension 1, 6 and 8, so

Lemma. Under SU(3) ⊂ G2: ∆7
∼= R⊕ R⊕ R

6 and R
7 = R⊕ R

6.

This implies:

• If ∇g on (M7, g) has two parallel spinors, M has to be (locally) reducible,
M7 =M6 ×M1 and the situation reduces to the 6-dimensional case.

• If ∇ is some other metric connection on (M7, g) with two parallel spinors,
M7 will, in general, not be a product manifold. Its Riemannian holonomy
will typically be SO(7), so ∇g does not measure this effect!

⇒ geometric situations not known from Riemannian holonomy will
typically appear.
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In a similar way, one treats the cases

Spin(7) in dimension 8. As just seen, Spin(7) has an 8-dimensional
representation, hence it can be viewed as a subgroup of SO(8). ∆8 has
again one Spin(7)-invariant spinor.

Sp(n) in dimension 4n. Identifying quaternions with pairs (z1, z2) ∈ C
2

yields Sp(n) ⊂ SU(2n), and SU(2n) is then realized inside SO(4n) as
before. It has n+ 1 invariant spinors.
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The easiest case: ∇g-parallel spinors

Thm (Wang, 1989).

(Mn, g): complete, simply connected, irreducible Riemannian manifold

N : dimension of the space of parallel spinors w. r. t. ∇g

If (Mn, g) is non-flat and N > 0, then one of the following holds:

(1) n = 2m (m ≥ 2), Riemannian holonomy repr.: SU(m) on Cm, and
N = 2 (“Calabi-Yau case”),

(2) n = 4m (m ≥ 2), Riemannian holonomy repr.: Sp(m) on C
2m, and

N = m+ 1 (“hyperkähler case”),

(3) n = 7, Riemannian holonomy repr.: 7-dimensional representation of G2,
and N = 1 (“parallel G2 case”),

(4) n = 8, Riemannian holonomy repr.: spin representation of Spin(7), and
N = 1 (“parallel Spin(7) case”).
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