

Non-integrable geometries, torsion, and holonomy II a): Geometric structures and connections

Prof. Dr. habil. Ilka Agricola Philipps-Universität Marburg

Torino, Carnival Differential Geometry school

Т

General philosophy:

Given a mnfd M^n with G-structure ($G \subset SO(n)$), replace ∇^g by a metric connection ∇ with skew torsion that preserves the geometric structure!

torsion:
$$T(X, Y, Z) := g(\nabla_X Y - \nabla_Y X - [X, Y], Z)$$

Special case: require $T \in \Lambda^3(M^n)$ (\Leftrightarrow same geodesics as ∇^g)

$$\Rightarrow g(\nabla_X Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2}T(X, Y, Z)$$

1) representation theory yields

- a clear answer *which* G-structures admit such a connection; if existent, it's unique and called the *'characteristic connection'*

- a *classification scheme* for *G*-structures with characteristic connection: $T_x \in \Lambda^3(T_x M) \stackrel{G}{=} V_1 \oplus \ldots \oplus V_p$

2) Analytic tool: Dirac operator D of the metric connection with torsion T/3: *characteristic Dirac operator*' (generalizes the Dolbeault operator) ₁

In this lecture:

- 1) Algebra of 3-forms, and in particular, a 'Skew Holonomy Theorem'
- 2) Characteristic connections: Existence, examples, uniqueness

3) An important class of examples: Naturally reductive homogeneous spaces

Algebraic Torsion Forms in \mathbb{R}^n

Consider $T \in \Lambda^3(\mathbb{R}^n)$, an algebraic 3-form in $\mathbb{R}^n =: V$, fix a positive def. scalar product $\langle -, - \rangle$ on V.

• T defines a metric connection: $\nabla_X Y := \nabla_X^g Y + \frac{1}{2}T(X, Y, -).$

• ∇ lifts to a connection on spinor fields $\psi: \mathbb{R}^n \longrightarrow \Delta_n$,

$$\nabla_X \psi := \nabla_X^g \psi + \frac{1}{4} (X \,\lrcorner\, T) \cdot \psi$$

Dfn. For T 3-form, define [introduced in AFr, 2004]

- kernel: ker $T = \{X \in \mathbb{R}^n \mid X \,\lrcorner\, T = 0\}$ (for later)
- Lie algebra generated by its image: $\mathfrak{g}_T := \operatorname{Lie}\langle X \,\lrcorner\, T \,|\, X \in \mathbb{R}^n \rangle$

isotropy Lie algebra : $\mathfrak{h}_T := \{A \in \mathfrak{gl}(n, \mathbb{R}) \mid A^*T = 0\}$ \mathfrak{g}_T is *not* related in any obvious way to $\mathfrak{h}_T!$

Examples:

• $n = 3, 4, T = e_{123}$: then $e_i \, \lrcorner \, T = e_{23}, -e_{13}, e_{12}$, so $\mathfrak{g}_T = \mathfrak{so}(3)$, and $\mathfrak{h}_T = \mathfrak{so}(3)$.

•
$$n = 5$$
: $T = \varrho e_{125} + \lambda_{345} \neq 0$, then
* $\varrho \lambda = 0$: $\mathfrak{g}_T = \mathfrak{so}(3)$, $\mathfrak{h}_T = \mathfrak{so}(3) \oplus \mathfrak{so}(2)$
* $\varrho \lambda \neq 0$: $\mathfrak{g}_T = \mathfrak{so}(5)$, $\mathfrak{h}_T = \mathfrak{so}(2) \oplus \mathfrak{so}(2)$ (if $\varrho \neq \lambda$), else $\mathfrak{h}_T = \mathfrak{u}(2)$.

• n = 7, $= e_{127} + e_{135} - e_{146} - e_{236} - e_{245} + e_{347} + e_{567}$ a 3-form with stabilizer G_2 , i. e. $\mathfrak{h}_T = \mathfrak{g}_2$. Moreover, $\mathfrak{so}(7) \stackrel{G_2}{=} \mathfrak{g}_2 \oplus \mathfrak{m}$, where \mathfrak{m} is the space of all inner products $X \sqcup T$. The Lie algebra generated by these elements is isomorphic to $\mathfrak{so}(7) = \mathfrak{g}_T$.

• \mathfrak{g} a compact, semisimple Lie algebra acting on itself $\mathfrak{g} \cong \mathbb{R}^n$ by the adjoint rep., β its Killing form, $T(X, Y, Z) := \beta([X, Y], Z)$. Then $\mathfrak{g}_T = \mathfrak{g}$.

Observe: \mathfrak{g}_T does not always act irreducibly on $V = \mathbb{R}^n$.

Thm. The representation (\mathfrak{g}_T, V) is reducible iff there exists a proper subspace $W \subset \mathbb{R}^n$ and two 3-forms $T_1 \in \Lambda^3(W)$ and $T_2 \in \Lambda^3(W^{\perp})$ such that $T = T_1 + T_2$. In this case, $\mathfrak{g}_T = \mathfrak{g}_{T_1} \oplus \mathfrak{g}_{T_2}$.

Proof. Consider a \mathfrak{g}_T -invariant subspace W, fix bases e_1, \dots, e_k of W, e_{k+1}, \dots, e_n of W^{\perp} . Then $\forall X \in \mathbb{R}^n$, $\forall i = 1, \dots, k$, $\alpha = k+1, \dots, n$, we obtain $T(X, e_i, e_\alpha) = 0$.

Since T is skew-symmetric, we conclude

$$T(e_i, e_j, e_\alpha) = 0$$
 and $T(e_i, e_\alpha, e_\beta) = 0.$

Next step: In its original version, Berger's holonomy theorem is not suitable for generalization to connections with skew torsion.

Formulate a holonomy theorem in terms of \mathfrak{g}_T !

The skew torsion holonomy theorem

Dfn. Let $0 \neq T \in \Lambda^3(V)$, \mathfrak{g}_T as before, $G_T \subset SO(n)$ its Lie group. Hence, $X \sqcup T \in \mathfrak{g}_T \subset \mathfrak{so}(V) \cong \Lambda^2(V) \forall X \in V$. Then (G_T, V, T) is called a *skew-torsion holonomy system (STHS)*. It is said to be

- *irreducible* if G_T acts irreducibly on V,
- transitive if G_T acts transitively on the unit sphere of V,
- and symmetric if T is G_T -invariant.

Recall: The only transitive sphere actions are:

SO(n) on $S^{n-1} \subset \mathbb{R}^n$, SU(n) on $S^{2n-1} \subset \mathbb{C}^n$, Sp(n) on $S^{4n-1} \subset \mathbb{H}^n$, G_2 on S^6 , Spin(7) on S^7 , Spin(9) on S^{15} . [Montgomery-Samelson, 1943]

Thm (STHT). Let (G_T, V, T) be an irreducible STHS. If it is transitive, $G_T = SO(n)$. If it is not transitive, it is symmetric, and

• V is a simple Lie algebra of rank ≥ 2 w.r.t. the bracket [X,Y] = T(X,Y), and G_T acts on V by its adjoint representation,

• T is unique up to a scalar multiple.

[transitive: AFr 2004, general: Olmos-Reggiani, 2012; Nagy 2013] 6

The newer proofs are based on general holonomy theory. The statement about transitive actions is easily verified, for example:

Thm. Let $T \in \Lambda^3(\mathbb{R}^{2n})$ be a 3-form s.t. there exists a 2-form Ω such that

$$\Omega^n \neq 0$$
 and $[\mathfrak{g}_T, \Omega] = 0.$

Then T is zero, T = 0.

Sketch of Proof. Fix an ONB in \mathbb{R}^{2n} s.t. Ω is given by

 $\Omega = A_1 e_{12} + \ldots + A_k e_{2n-1,2n}, \quad A_1 \cdot \ldots \cdot A_k \neq 0.$

The condition $[\hat{\mathfrak{g}}_{T}, \Omega] = 0$ is equivalent to $\sum_{j=1}^{2n} \Omega_{\alpha j} \cdot T_{\beta j \gamma} = \sum_{j=1}^{2n} T_{\beta \alpha j} \cdot \Omega_{j \gamma}$ for any $1 \leq \alpha, \beta, \gamma \leq 2n$. Using the special form of Ω we obtain the equations $(1 \leq \alpha, \gamma \leq k)$:

 $A_{\alpha} \cdot T_{\beta,2\alpha,2\gamma-1} = -A_{\gamma} \cdot T_{\beta,2\alpha-1,2\gamma}, \quad A_{\alpha} \cdot T_{\beta,2\alpha-1,2\gamma-1} = A_{\gamma} \cdot T_{\beta,2\alpha,2\gamma}.$ This system of algebraic equations implies that T = 0.

Want to apply this to existence of characteristic connections!

The characteristic connection of a geometric structure

Fix $G \subset SO(n)$, $\Lambda^2(\mathbb{R}^n) \cong \mathfrak{so}(n) = \mathfrak{g} \oplus \mathfrak{m}$, $\mathcal{F}(M^n)$: frame bundle of (M^n, g) .

Dfn. A geometric *G*-structure on M^n is a *G*-PFB \mathcal{R} which is subbundle of $\mathcal{F}(M^n)$: $\mathcal{R} \subset \mathcal{F}(M^n)$.

Choose a *G*-adapted local ONF e_1, \ldots, e_n in \mathcal{R} and define *connection* 1-*forms of* ∇^g :

$$\omega_{ij}(X) := g(\nabla_X^g e_i, e_j), \quad g(e_i, e_j) = \delta_{ij} \Rightarrow \omega_{ij} + \omega_{ji} = 0.$$

Define a skew symmetric matrix Ω with values in $\Lambda^1(\mathbb{R}^n) \cong \mathbb{R}^n$ by $\Omega(X) := (\omega_{ij}(X)) \in \mathfrak{so}(n) = \mathfrak{g} \oplus \mathfrak{m}$ und set

 $\Gamma := \operatorname{pr}_{\mathfrak{m}}(\Omega).$

• Γ is a 1-Form on M^n with values in \mathfrak{m} , $\Gamma_x \in \mathbb{R}^n \otimes \mathfrak{m}$ $(x \in M^n)$ ["intrinsic torsion", Swann/Salamon] Fact: $\Gamma = 0 \Leftrightarrow \nabla^g$ is a *G*-connection $\Leftrightarrow \operatorname{Hol}(\nabla^g) \subset G$

Via Γ , geometric *G*-structures $\mathcal{R} \subset \mathcal{F}(M^n)$ correspond to irreducible components of the *G*-representation $\mathbb{R}^n \otimes \mathfrak{m}$.

Thm. A geometric G-structure $\mathcal{R} \subset \mathcal{F}(M^n)$ admits a metric Gconnection with antisymmetric torsion iff Γ lies in the image of Θ ,

$$\Theta: \Lambda^{3}(M^{n}) \to T^{*}(M^{n}) \otimes \mathfrak{m}, \quad \Theta(T) := \sum_{i=1}^{n} e_{i} \otimes \operatorname{pr}_{\mathfrak{m}}(e_{i} \,\lrcorner\, T).$$
[Fr, 2003]

If such a connection exists, it is called the *characteristic connection* ∇^c \rightarrow replace the (unadapted) LC connection by ∇^c .

Thm. If $G \not\subset SO(n)$ acts irreducibly and not by its adjoint rep. on $\mathbb{R}^n \cong T_p M^n$, then ker $\Theta = \{0\}$, and hence the characteristic connection of a *G*-structure on a Riemannian manifold (M^n, g) is, if existent, unique.

[A-Fr-Höll, 2013]

Uniqueness of characteristic connections

This is a consequence of the STHT:

Proof. $T \in \ker \Theta$ iff all $X \sqcup T \in \mathfrak{g} \subset \mathfrak{so}(n)$, that is,

 $\ker \Theta = \{ T \in \Lambda^3(\mathbb{R}^n) \, | \, \mathfrak{g}_T \subset \mathfrak{g} \},\$

so (T, G, \mathbb{R}^n) defines an irreducible STHS, which by assumption is non transitive (because $G \not\subset SO(n)$). By the STHT, it has to be a Lie algebra with the adjoint representation. Since this was excluded as well, it follows that ker $\Theta = \{0\}$.

For many G-structures, uniqueness can be proved directly case by case – including a few cases where the G-action is not irreducible.

U(n) structures in dimension 2n

• (S^6, g_{can}) : $S^6 \subset \mathbb{R}^7$ has an almost complex structure J $(J^2 = -id)$ inherited from "cross product" on \mathbb{R}^7 .

- J is not integrable, $\nabla^g J \neq 0$
- **Problem (Hopf):** Does S^6 admit an (integrable) complex structure ?

11

J is an example of a nearly Kähler structure: $\nabla^g_X J(X) = 0$

More generally: (M^{2n}, g, J) almost Hermitian mnfd: *J* almost complex structure, *g* a compatible Riemannian metric.

Fact: structure group $G \subset U(n) \subset SO(2n)$, but $Hol_0(\nabla^g) = SO(2n)$.

Examples: twistor spaces ($\mathbb{CP}^3, F_{1,2}$) with their nK str., compact complex mnfd with $b_1(M)$ odd ($\not\exists$ Kähler metric)...

Thm. An almost hermitian manifold (M^{2n}, g, J) admits a characteristic connection ∇ if and only if the Nijenhuis tensor

$$N(X,Y,Z) := g(N(X,Y), Z)$$

is skew-symmetric. Its torsion is then

$$T(X, Y, Z) = -d\Omega(JX, JY, JZ) + N(X, Y, Z)$$

and it satisfies: $\nabla \Omega = 0$, $Hol(\nabla) \subset U(n)$. [Fr-Ivanov, 2002]

'Trivial case': If (M^{2n}, g, J) is Kähler $(N = 0 \text{ and } d\Omega = 0)$, then T = 0, the LC connection ∇^g is the characteristic connection.

In particular for $\underline{n=3}$: [Gray-Hervella]

- $\mathfrak{so}(6) = \mathfrak{u}(3) \oplus \mathfrak{m}^6$, $\Gamma \in \mathbb{R}^6 \otimes \mathfrak{m}^6 \big|_{\mathrm{U}(3)} \cong W_1^2 \oplus W_2^{16} \oplus W_3^{12} \oplus W_4^6$
- N is skew-symmetric $\Leftrightarrow \Gamma$ has no W_2 -part
- $\Gamma \in W_1$: nearly Kähler manifolds $(S^6, S^3 \times S^3, F(1, 2), \mathbb{CP}^3)$

•
$$\Gamma \in W_3 \oplus W_4$$
: hermitian manifolds $(N = 0)$

12

Contact structures

- (M^{2n+1}, g, η) contact mnfd, η : 1-form (\cong vector field)
- $\langle \eta \rangle^{\perp}$ admits an almost complex structure J compatible with g

• Contact condition: $\eta \wedge (d\eta)^n \neq 0 \Rightarrow \nabla^g \eta \neq 0$, i.e. contact structures are never integrable ! (no analogue on Berger's list)

• structure group: $G \subset U(n) \subset SO(2n+1)$

Examples: $S^{2n+1} = \frac{\mathrm{SU}(n+1)}{\mathrm{SU}(n)}$, $V_{4,2} = \frac{\mathrm{SO}(4)}{\mathrm{SO}(2)}$, $M^{11} = \frac{G_2}{\mathrm{Sp}(1)}$, $M^{31} = \frac{F_4}{\mathrm{Sp}(3)}$

Thm. An almost metric contact manifold (M^{2n+1}, g, η) admits a connection ∇ with skew-symmetric torsion and preserving the structure if and only if ξ is a Killing vector field and the tensor N(X, Y, Z) := g(N(X, Y), Z) is totally skew-symmetric. In this case, the connection is unique, and its torsion form is given by the formula

$$T = \eta \wedge d\eta + d^{\phi}F + N - \eta \wedge \xi \, \lrcorner \, N. \qquad \qquad \text{[Fr-Ivanov, 2002]} \quad {}_{13}$$

A large class of almost metric contact manifolds thus admits a char. connection ∇ , and for these: $\operatorname{Hol}_0(\nabla) \subset \operatorname{U}(n) \subset \operatorname{SO}(2n+1)$.

A special class: Sasaki manifolds: Riemannian manifolds (M^{2n+1}, g) equipped with a contact form η , its dual vector field ξ and an endomorphism $\varphi: TM^7 \to TM^7$ s.t.:

• $\eta \wedge (d\eta)^n \neq 0$, $\eta(\xi) = 1$, $g(\xi, \xi) = 1$

•
$$g(\varphi X, \varphi Y) = g(X, Y)$$
 and $\varphi^2 = -\text{Id on } \langle \eta \rangle^{\perp}$,

•
$$\nabla_X^g \xi = -\varphi X, \ (\nabla_X^g \varphi)(Y) = g(X, Y) \cdot \xi - \eta(Y) \cdot X.$$

For Sasaki manifolds, the formula is particularly simple,

$$g(\nabla_X^c Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2}\eta \wedge d\eta(X, Y, Z),$$

and $\nabla T = 0$ holds.

[Kowalski-Wegrzynowski, 1987]

G_2 structures in dimension 7

Fix $G_2 \subset SO(7)$, $\mathfrak{so}(7) = \mathfrak{g}_2 \oplus \mathfrak{m}^7 \cong \mathfrak{g}_2 \oplus \mathbb{R}^7$. Intrinsic torsion Γ lies in $\mathbb{R}^7 \otimes \mathfrak{m}^7 \cong \mathbb{R}^1 \oplus \mathfrak{g}_2 \oplus S_0(\mathbb{R}^7) \oplus \mathbb{R}^7 =: \bigoplus_{i=1}^4 \mathcal{X}_i$

⇒ four classes of geometric G_2 structures [Fernandez-Gray, '82] • Decomposition of 3-forms: $\Lambda^3(\mathbb{R}^7) = \mathbb{R}^1 \oplus S_0(\mathbb{R}^7) \oplus \mathbb{R}^7$.

 G_2 is the isotropy group of a generic element of $\omega \in \Lambda^3(\mathbb{R}^7)$:

$$G_2 = \{A \in \mathrm{SO}(7) \mid A \cdot \omega = \omega\}.$$

Thm. A 7-dimensional Riemannian mfd (M^7, g, ω) with a fixed G_2 structure $\omega \in \Lambda^3(M^7)$ admits a characteristic connection ∇

 $\Leftrightarrow \text{ the } \mathfrak{g}_2 \text{ component of } \Gamma \text{ vanishes}$ $\Leftrightarrow \text{ There exists a VF } \beta \text{ with } \delta \omega = -\beta \,\lrcorner\, \omega$

The torsion of ∇ is then $T = -* d\omega - \frac{1}{6}(d\omega, *\omega)\omega + *(\beta \wedge \omega)$, and ∇ admits (at least) one parallel spinor. [Fr-lvanov, 2002] 15

name	class	characterization	
parallel G_2 -manifold	{0}	a) $ abla^g \omega = 0$ b) \exists a $ abla^g$ -parallel spinor	
nearly parallel G_2 -manifold	\mathcal{X}_1	a) $d\omega = \lambda * \omega$ for some $\lambda \in \mathbb{R}$ b) \exists real Killing spinor	
almost parallel or closed (or calibrated symplectic) G_2 -m.	\mathcal{X}_2	$d\omega = 0$	
balanced G_2 -manifold	\mathcal{X}_3	$\delta \omega = 0$ and $d \omega \wedge \omega = 0$	
locally conformally parallel G_2 -m.	\mathcal{X}_4	$d\omega = rac{3}{4} heta\wedge\omega$ and $d*\omega = heta\wedge*\omega$ for some $ heta$	
cocalibrated (or semi-parallel or cosymplectic) G_2 -manifold	$\mathcal{X}_1\oplus\mathcal{X}_3$	$\delta \omega = 0$	
locally conformally (almost) parallel G_2 -manifold	$\mathcal{X}_2\oplus\mathcal{X}_4$	$d\omega = \frac{3}{4}\theta \wedge \omega$	
G_2T -manifold	$\mathcal{X}_1 \oplus \mathcal{X}_3 \oplus \mathcal{X}_4$	a) $d * \omega = \theta \wedge *\omega$ for some θ b) \exists char. connection ∇^c_{16}	

Easiest examples:

•
$$S^7 = \frac{\text{Spin}(7)}{G_2}$$
, $M_{k,l}^{AW} = \frac{\text{SU}(3)}{\text{U}(1)_{k,l}}$, $V_{5,2} = \frac{\text{SO}(5)}{\text{SO}(3)}$, ...

• Explicit constructions of G_2 structures:

[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki. . .]

- Every orientable hypersurface in \mathbb{R}^8 carries a cocalibrated G_2 -structure
- S^1 -PFB over 6-dim. Kähler manifolds, nearly Kähler manifolds. . .

Example

[Fernandez-Ugarte, '98]

 N^6 : 3-dimensional complex solvable group, $M^7 := N^6 \times \mathbb{R}^1$. There exists a left invariant metric and a left invariant G_2 -structure on M^7 such that the structural equations are:

$$de_3 = e_{13} - e_{24}, \quad de_4 = e_{23} + e_{14}, \quad de_5 = -e_{15} + e_{26}, \quad de_6 = -e_{25} - e_{16},$$

all other $de_i = 0$.

 M^7 has a G_2 -invariant characteristic connection ∇^c and

- $T = 2 \cdot e_{256} 2 \cdot e_{234}, \quad \delta(T) = 0.$
- $\operatorname{Scal}^c = -16.$
- There are two ∇^c -parallel spinors, and both satisfy $T^c \cdot \Psi = 0$.

An interesting subclass of G_2 -mnfds: 7-dim. 3-Sasaki mnfds

 M^7 : 3-Sasaki mnfd, corresponds to $SU(2) \subset G_2 \subset SO(7)$.

• 3 orth. Sasaki structures $\eta_i \in T^*M^7$, $[\eta_1, \eta_2] = 2\eta_3$, $[\eta_2, \eta_3] = 2\eta_1$, $[\eta_3, \eta_1] = 2\eta_2$ and $\varphi_3 \circ \varphi_2 = -\varphi_1$ etc. on $\langle \eta_2, \eta_3 \rangle^{\perp}$

• Known: A 3-Sasaki mnfd is always Einstein and has 3 Riemannian Killing spinors, define $T^v := \langle \xi_1, \xi_2 \xi_3 \rangle$, $T^h = (T^v)^{\perp}$

• each Sasaki structures η_i induces a characteristic connection ∇^i , but $\nabla^1 \neq \nabla^2 \neq \nabla^3$?!? \Rightarrow Ansatz: $T = \sum_{i,j=1}^3 \alpha_{ij} \eta_i \wedge d\eta_j + \gamma \eta_1 \wedge \eta_2 \wedge \eta_3$

Thm. Every 7-dimensional 3-Sasaki mnfd admits a \mathbb{P}^2 -family of metric connections with skew torsion and parallel spinors. Its holonomy is G_2 . [A-Fr, 2003]

Thm. There exists a cocalibrated G_2 -structure with char. connection ∇^c with parallel spinor ψ on M^7 with the properties:

- ∇^c preserves T^v and T^h , and $\nabla^c T = 0$
- $\xi_i \cdot \psi$ are the 3 Riemannian Killing spinors on M^7 [A-Fr, 2010] 19

Example: Naturally reductive spaces

• Homogeneous *non symmetric* spaces provide a rich source for manifolds with characteristic connection

Let M = G/H be <u>reductive</u>, i. e. $\exists \mathfrak{m} \subset \mathfrak{g} \text{ s. t. } \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m} \text{ and } [\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$; isotropy repr. Ad : $H \to SO(\mathfrak{m})$. \langle , \rangle a pos. def. scalar product on \mathfrak{m} .

The PFB $G \to G/H$ induces a distinguished connection on G/H, the so-called *canonical connection* ∇^1 . Its torsion is

$$T^{1}(X, Y, Z) = -\langle [X, Y]_{\mathfrak{m}}, Z \rangle \qquad (= 0 \text{ for } M \text{ symmetric})$$

Dfn. The metric \langle , \rangle is called *naturally reductive* if T^1 defines a 3-form,

 $\langle [X,Y]_{\mathfrak{m}},Z \rangle + \langle Y,[X,Z]_{\mathfrak{m}} \rangle = 0 \text{ for all } X,Y,Z \in \mathfrak{m}.$

They generalize symmetric spaces: $\nabla^1 T^1 = 0, \nabla^1 \mathcal{R}^1 = 0.$

Naturally reductive spaces – basic facts

Thm. A Riemannian manifold equipped with a [regular] homogeneous structure, i.e. a metric connection ∇ with torsion T and curvature \mathcal{R} such that $\nabla \mathcal{R} = 0$ and $\nabla T = 0$, is locally isometric to a homogeneous space. [Ambrose-Singer, 1958, Tricerri 1993]

Hence: Naturally reductive spaces have a metric connection ∇ with skew torsion such that $\nabla T=\nabla \mathcal{R}=0$

N.B. Well-known: Some mnfds carry several nat.red.structures, for exa.

$$S^{2n+1} = SO(2n+2)/SO(2n+1) = SU(n+1)/SU(n),$$

 $S^6 = G_2/SU(3), S^7 = Spin(7)/G_2, S^{15} = Spin(9)/Spin(7).$

But, another consequence of the STHT:

Thm. If (M, g) is not loc. isometric to a sphere or a Lie group, then its admits at most <u>one</u> naturally reductive homogeneous structure.

Classical construction of naturally reductive spaces

General construction:

Consider M = G/H with restriction of the Killing form to \mathfrak{m} :

$$\beta(X,Y) := -\operatorname{tr}(X^tY), \ \langle X,Y \rangle = \beta(X,Y) \text{ for } X,Y \in \mathfrak{m}.$$

Suppose that \mathfrak{m} is an orthogonal sum $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2$ such that

 $[\mathfrak{h},\mathfrak{m}_2]=0, \ [\mathfrak{m}_2,\mathfrak{m}_2]\subset\mathfrak{m}_2.$

Then the new metric, depending on a parameter s > 0

$$\tilde{\beta}_s = \beta \big|_{\mathfrak{m}_1} \oplus s \cdot \beta \big|_{\mathfrak{m}_2}$$

is naturally reductive for $s \neq 1$ w.r.t. the realisation as

$$M = (G \times M_2) / (H \times M_2) =: \overline{G} / \overline{H}$$

[Chavel, 1969; Ziller / D'Atri, 1979]

This description gets quickly rather tedious – thus, we shall usually describe nat. reductive spaces through their connections with parallel torsion and curvature.

Example: Lie groups

Let M = G be a connected Lie group, $\mathfrak{g} = T_e G$.

the metric g on G is biinvariant

 $\Leftrightarrow L_a, \ R_a \text{ are isometries } \forall a \in G$ $\Rightarrow \operatorname{ad} V \in \mathfrak{so}(\mathfrak{g}), \text{ i. e. } g(\operatorname{ad}(V)X, Y) + g(X, \operatorname{ad}(V)Y) = 0 \qquad (*)$ Easy: $\nabla_X^g Y = \frac{1}{2}[X, Y].$

Ansatz: T proportional to [,], i.e. $\nabla_X Y = \lambda[X,Y]$

• torsion: $T^{\nabla}(X,Y) = (2\lambda - 1)[X,Y]$, hence $T \in \Lambda^3(G) \Leftrightarrow$ (*)

• curvature:

$$\mathcal{R}^{\nabla}(X,Y)Z = \lambda(1-\lambda)[Z,[X,Y]] = \begin{cases} \frac{1}{4}[Z,[X,Y]] & \text{for LC conn.}(\lambda = \frac{1}{2}) \\ 0 & \text{for } \lambda = 0,1 \end{cases}$$

[\pm -connection, Cartan-Schouten, 1926] 23

Interpretation in the framework of homogeneous spaces

Take
$$\tilde{G} = G \times G$$
 with involution $\theta(a, b) = (b, a)$.
• $K := \tilde{G}^{\theta} = \{(a, a) \in \tilde{G}\} = \Delta G$ with Lie alg. $\mathfrak{k} = \{(X, X) | X \in \mathfrak{g}\} \subset \tilde{\mathfrak{g}}$
To make $\tilde{G}/\Delta G$ symmetric, one usually chooses as complement of \mathfrak{k} in \mathfrak{g}

$$\mathfrak{m}_{\text{sym}} := \{ (X, -X) | X \in \mathfrak{g} \},\$$

for it satisfies $[\mathfrak{m}_{\rm sym},\mathfrak{m}_{\rm sym}]\subset\mathfrak{k}.$ But every space

$$\mathfrak{m}_t := \{ X_t := (tX, (t-1)X) | X \in \mathfrak{g} \}, \quad t \in \mathbb{R},$$

also defines a reductive complement, $[\mathfrak{k},\mathfrak{m}_t] \subset \mathfrak{m}_t$.

Fact: Every reductive homogeneous space has a canonical connection ∇^c induced from the PFB $\tilde{G} \to \tilde{G}/\Delta G$ (the ∇^c -parallel tensors are exactly the \tilde{G} -invariant ones), $[,] = [,]_{\mathfrak{k}} + [,]_{\mathfrak{m}}$

$$\nabla^{c}T^{c} = 0, \quad T^{c}(X,Y) = -[X,Y]_{\mathfrak{m}},$$
$$\nabla^{c}\mathcal{R}^{c} = 0, \quad \mathcal{R}^{c}(X,Y) = -[[X,Y]_{\mathfrak{k}},Z].$$

This turns G into a naturally reductive space.

One checks for $X_t = (tX, (t-1)X), Y_t = (tY, (t-1)Y) \in \mathfrak{m}_t$

$$[X_t, Y_t] = (t^2[X, Y], (t-1)^2[X, Y]):$$
 hence " $\in \mathfrak{m}_t'' \Leftrightarrow t = 0, 1$

i. e. $\mathcal{R}^c = 0$ for t = 0, 1 – these are again the \pm -connections of Cartan-Schouten.

In particular, $\nabla T = 0$ for these connections on Lie groups.

Connections on homogeneous spaces – Wang's Theorem

Wang's Thm.

[see Kobayashi-Nomizu]

Let $M^n = G/H$ be reductive, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$. Then there is a bijection between $\operatorname{GL}(n)$ -invariant connections ∇ on M^n and maps $\Lambda : \mathfrak{m} \to \mathfrak{gl}(n)$ satisfying

$$\Lambda(\mathrm{Ad}h)X = \mathrm{Ad}(h)\Lambda(X)\mathrm{Ad}(h)^{-1}$$
 for all $h \in H$ and $X \in \mathfrak{m}$

[Idea: Λ is the evaluation of the connection form at eH]

Comments:

- If $\Lambda : \mathfrak{m} \to \mathfrak{so}(n)$, the corresponding connection is metric
- $\Lambda = 0$ is a solution, corresponds to the canonical connection
- Torsion: $T(X,Y) = \Lambda(X)Y \Lambda(Y)X [X,Y]_{\mathfrak{m}}$
- Curvature: $\mathcal{R}(X,Y)Z = \Lambda(X)\Lambda(Y)Z \Lambda(Y)\Lambda(X)Z \mathrm{Ad}([X,Y]_{\mathfrak{h}})Z$

Example: The Berger sphere $M^5 = SU(3)/SU(2)$

$$\mathfrak{su}(3) \subset \mathcal{M}_3(\mathbb{C}), \mathfrak{su}(2) \cong \left\{ \begin{bmatrix} 0 & 0 \\ 0 & B \end{bmatrix} : B \in \mathfrak{su}(2) \right\}, \mathfrak{m}_0 := \left\{ \begin{bmatrix} 0 & -\bar{v}^t \\ v & 0 \end{bmatrix} : v \in \mathbb{C}^2 \right\}$$

Hence, we get a reductive decomposition

$$\mathfrak{su}(3) = \mathfrak{su}(2) \oplus \mathfrak{m}, \ \mathfrak{m} = \mathfrak{m}_0 \oplus \langle \eta \rangle \ \text{ with } \eta = \frac{1}{\sqrt{3}} \operatorname{diag}(-2i, i, i)$$

Basis of \mathfrak{m}_0 : $e_1, \ldots e_4$ corresponding to v = (1,0), (i,0), (0,1), (0,i). Deform the Killing form $\beta(X,Y) = -\operatorname{tr}(XY)/2$ of $\mathfrak{su}(3)$ on \mathfrak{m} to the family of metrics

$$g_{\gamma} := \beta \big|_{\mathfrak{m}_0} \oplus \frac{1}{\gamma} \beta \big|_{\langle \eta \rangle}, \quad \gamma > 0.$$

• $\tilde{\eta} = \eta/\sqrt{\gamma} =: e_5$ and $\varphi := e_{12} + e_{34}$ defines an α -Sasakian on M^5 , its characteristic connection is described by $\Lambda : \mathfrak{m} \to \mathfrak{so}(\mathfrak{m})$

$$\Lambda(e_i) = 0$$
 for $i = 1, \dots, 4, \ \Lambda(e_5) = (\sqrt{3/\gamma} - \sqrt{3\gamma})(E_{12} + E_{34})$

• Torsion $T = \tilde{\eta} \wedge d\tilde{\eta} = \sqrt{3/\gamma}(e_{12} + e_{34}) \wedge e_5$

27

Link to Dirac operators

Without torsion:

• Classical Schrödinger-Lichnerowicz formula on Riemannian spin mnfds

• Parthasarathy formula on symmetric spaces: $(D^g)^2 = \Omega + \frac{1}{8} \text{Scal}^g$, where Ω : Casimir operator

With torsion: Assume (M^n,g) is mnfd with $G\mbox{-structure}$ and characteristic connection ∇ with torsion T

 \mathbb{D} : Dirac operator of connection with torsion T/3

• Generalized SL formula:

[A-Fr, 2003]

$$\mathbb{D}^2 = \Delta_T + \frac{1}{4}\operatorname{Scal}^g + \frac{1}{8}||T||^2 - \frac{1}{4}T^2$$

 $[1/3 \text{ rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), IA (2002)]$

• Similarly, $D^2 = \Omega + const$ on naturally reductive homogeneous spaces [Kostant 1999, A 2002]

28

Almost hermitian manifolds and their Dirac operators

/	SL:		B/K/A-F/S:		
	$(D^g)^2 = \Delta + \frac{1}{4} \mathrm{Scal}^g$		$D^2 = \Delta_T + \frac{1}{4} \operatorname{Scal}^g + \frac{1}{8} T ^2 - \frac{1}{4} T^2$		
non homog.		Kähler mnfds $D^g = \text{Dolbeault op.}$	almost Herm. mnfds (nearly/almost/quasi/semi K, Hermitian, loc.conf.K etc.) $D^g \neq D = Dolbeault op.$		
homog.		Hermitian symm. spaces	almost Herm. nat. red. homogeneous spaces	almost	
	Part (D	hasarathy: $(g^g)^2 = \Omega + \frac{1}{8} \text{Scal}^g$	Kostant: $D \!$	mnfds	
		symmetric	naturally reductive	29	
	T = 0 (integrable)		$T \neq 0$ (non integrab	le)	

Literature

I. Agricola and Th. Friedrich, *On the holonomy of connections with skew-symmetric torsion*, Math. Ann. 328 (2004), 711-748.

I. Agricola and Th. Friedrich, A note on flat metric connections with antisymmetric torsion, Differ. Geom. Appl. 28 (2010), 480-487.

I. Agricola, T. Friedrich, J. Höll, Sp(3) structures on 14-manifolds, J. Geom. Phys. 69 (2013), 12-30.

Th. Friedrich, *On types of non-integrable geometries*, Rend. del Circ. Mat. di Palermo 72 (2003), 99-113.

Th. Friedrich and St. Ivanov, *Parallel spinors and connections with skew-symmetric torsion in string theory*, Asian Journ. Math. 6 (2002), 303-336.

C. Olmos, S. Reggiani, *The skew-torsion holonomy theorem and naturally reductive spaces*, Journ. Reine Angew. Math. 664 (2012), 29-53.