Non-integrable geometries, torsion, and holonomy
II a): Geometric structures and connections

Prof. Dr. habil. Ilka Agricola
Philipps-Universität Marburg

Torino, Carnival Differential Geometry school

General philosophy:

Given a mnfd M^{n} with G-structure $(G \subset S O(n))$, replace ∇^{g} by a metric connection ∇ with skew torsion that preserves the geometric structure!

$$
\text { torsion: } T(X, Y, Z):=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)
$$

Special case: require $T \in \Lambda^{3}\left(M^{n}\right)\left(\Leftrightarrow\right.$ same geodesics as $\left.\nabla^{g}\right)$

$$
\Rightarrow g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2} T(X, Y, Z)
$$

1) representation theory yields

- a clear answer which G-structures admit such a connection; if existent, it's unique and called the 'characteristic connection'
- a classification scheme for G-structures with characteristic connection:
$T_{x} \in \Lambda^{3}\left(T_{x} M\right) \stackrel{G}{=} V_{1} \oplus \ldots \oplus V_{p}$

2) Analytic tool: Dirac operator $I D$ of the metric connection with torsion T/3: 'characteristic Dirac operator' (generalizes the Dolbeault operator) ${ }_{1}$

In this lecture:

1) Algebra of 3 -forms, and in particular, a 'Skew Holonomy Theorem'
2) Characteristic connections: Existence, examples, uniqueness
3) An important class of examples: Naturally reductive homogeneous spaces

Algebraic Torsion Forms in \mathbb{R}^{n}

Consider $T \in \Lambda^{3}\left(\mathbb{R}^{n}\right)$, an algebraic 3 -form in $\mathbb{R}^{n}=: V$, fix a positive def. scalar product $\langle-,-\rangle$ on V.

- T defines a metric connection: $\nabla_{X} Y:=\nabla_{X}^{g} Y+\frac{1}{2} T(X, Y,-)$.
- ∇ lifts to a connection on spinor fields $\psi: \mathbb{R}^{n} \longrightarrow \Delta_{n}$,

$$
\left.\nabla_{X} \psi:=\nabla_{X}^{g} \psi+\frac{1}{4}(X\lrcorner T\right) \cdot \psi
$$

Dfn. For T 3-form, define

- kernel: $\left.\operatorname{ker} T=\left\{X \in R^{n} \mid X\right\lrcorner T=0\right\} \quad$ (for later)
- Lie algebra generated by its image: $\mathfrak{g}_{T}:=\operatorname{Lie}\langle X\lrcorner T\left|X \in \mathbb{R}^{n}\right\rangle$ isotropy Lie algebra : $\mathfrak{h}_{T}:=\left\{A \in \mathfrak{g l}(n, \mathbb{R}) \mid A^{*} T=0\right\}$
\mathfrak{g}_{T} is not related in any obvious way to \mathfrak{h}_{T} !

Examples:

- $n=3,4, T=e_{123}$: then $\left.e_{i}\right\lrcorner T=e_{23},-e_{13}, e_{12}$, so $\mathfrak{g}_{T}=\mathfrak{s o}(3)$, and $\mathfrak{h}_{T}=\mathfrak{s o}(3)$.
- $n=5: T=\varrho e_{125}+\lambda_{345} \neq 0$, then
$* \varrho \lambda=0: \mathfrak{g}_{T}=\mathfrak{s o}(3), \mathfrak{h}_{T}=\mathfrak{s o}(3) \oplus \mathfrak{s o}(2)$
* $\varrho \lambda \neq 0: \mathfrak{g}_{T}=\mathfrak{s o}(5), \mathfrak{h}_{T}=\mathfrak{s o}(2) \oplus \mathfrak{s o}(2)($ if $\varrho \neq \lambda)$, else $\mathfrak{h}_{T}=\mathfrak{u}(2)$.
- $n=7$, $=e_{127}+e_{135}-e_{146}-e_{236}-e_{245}+e_{347}+e_{567}$ a 3 -form with stabilizer G_{2}, i.e. $\mathfrak{h}_{T}=\mathfrak{g}_{2}$. Moreover, $\mathfrak{s o}(7) \stackrel{G_{2}}{=} \mathfrak{g}_{2} \oplus \mathfrak{m}$, where \mathfrak{m} is the space of all inner products $X\lrcorner \mathrm{T}$. The Lie algebra generated by these elements is isomorphic to $\mathfrak{s o}(7)=\mathfrak{g}_{T}$.
- \mathfrak{g} a compact, semisimple Lie algebra acting on itself $\mathfrak{g} \cong \mathbb{R}^{n}$ by the adjoint rep., β its Killing form, $T(X, Y, Z):=\beta([X, Y], Z)$. Then $\mathfrak{g}_{T}=\mathfrak{g}$.

Observe: \mathfrak{g}_{T} does not always act irreducibly on $V=\mathbb{R}^{n}$.
Thm. The representation $\left(\mathfrak{g}_{T}, V\right)$ is reducible iff there exists a proper subspace $W \subset \mathbb{R}^{n}$ and two 3 -forms $T_{1} \in \Lambda^{3}(W)$ and $T_{2} \in \Lambda^{3}\left(W^{\perp}\right)$ such that $T=T_{1}+T_{2}$. In this case, $\mathfrak{g}_{T}=\mathfrak{g}_{T_{1}} \oplus \mathfrak{g}_{T_{2}}$.

Proof. Consider a \mathfrak{g}_{T}-invariant subspace W, fix bases e_{1}, \cdots, e_{k} of W, e_{k+1}, \cdots, e_{n} of W^{\perp}. Then $\forall X \in \mathbb{R}^{n}, \forall i=1, \ldots, k, \alpha=k+1, \ldots, n$, we obtain $T\left(X, e_{i}, e_{\alpha}\right)=0$.

Since T is skew-symmetric, we conclude

$$
T\left(e_{i}, e_{j}, e_{\alpha}\right)=0 \quad \text { and } \quad T\left(e_{i}, e_{\alpha}, e_{\beta}\right)=0
$$

Next step: In its original version, Berger's holonomy theorem is not suitable for generalization to connections with skew torsion.

Formulate a holonomy theorem in terms of \mathfrak{g}_{T} !

The skew torsion holonomy theorem

Dfn. Let $0 \neq T \in \Lambda^{3}(V), \mathfrak{g}_{T}$ as before, $G_{T} \subset \mathrm{SO}(n)$ its Lie group. Hence, $X\lrcorner T \in \mathfrak{g}_{T} \subset \mathfrak{s o}(V) \cong \Lambda^{2}(V) \forall X \in V$. Then $\left(G_{T}, V, T\right)$ is called a skew-torsion holonomy system (STHS). It is said to be

- irreducible if G_{T} acts irreducibly on V,
- transitive if G_{T} acts transitively on the unit sphere of V,
- and symmetric if T is G_{T}-invariant.

Recall: The only transitive sphere actions are:
$\mathrm{SO}(n)$ on $S^{n-1} \subset \mathbb{R}^{n}, \mathrm{SU}(n)$ on $S^{2 n-1} \subset \mathbb{C}^{n}, \mathrm{Sp}(n)$ on $S^{4 n-1} \subset \mathbb{H}^{n}$, G_{2} on $S^{6}, \operatorname{Spin}(7)$ on $S^{7}, \operatorname{Spin}(9)$ on S^{15}. [Montgomery-Samelson, 1943]

Thm (STHT). Let $\left(G_{T}, V, T\right)$ be an irreducible STHS. If it is transitive, $G_{T}=\mathrm{SO}(n)$. If it is not transitive, it is symmetric, and

- V is a simple Lie algebra of rank ≥ 2 w.r.t. the bracket $[X, Y]=$ $T(X, Y)$, and G_{T} acts on V by its adjoint representation,
- T is unique up to a scalar multiple.
[transitive: AFr 2004, general: Olmos-Reggiani, 2012; Nagy 2013] 6

The newer proofs are based on general holonomy theory. The statement about transitive actions is easily verified, for example:

Thm. Let $T \in \Lambda^{3}\left(\mathbb{R}^{2 n}\right)$ be a 3 -form s.t. there exists a 2 -form Ω such that

$$
\Omega^{n} \neq 0 \text { and }\left[\mathfrak{g}_{T}, \Omega\right]=0 .
$$

Then T is zero, $T=0$.
Sketch of Proof. Fix an ONB in $\mathbb{R}^{2 n}$ s.t. Ω is given by

$$
\Omega=A_{1} e_{12}+\ldots+A_{k} e_{2 n-1,2 n}, \quad A_{1} \cdot \ldots \cdot A_{k} \neq 0
$$

The condition $\left[\hat{\mathfrak{g}}_{\mathrm{T}}, \Omega\right]=0$ is equivalent to $\sum_{j=1}^{2 n} \Omega_{\alpha j} \cdot \mathrm{~T}_{\beta j \gamma}=$ $\sum_{j=1}^{2 n} \mathrm{~T}_{\beta \alpha j} \cdot \Omega_{j \gamma}$ for any $1 \leq \alpha, \beta, \gamma \leq 2 n$. Using the special form of Ω we obtain the equations $(1 \leq \alpha, \gamma \leq k)$:
$A_{\alpha} \cdot \mathrm{T}_{\beta, 2 \alpha, 2 \gamma-1}=-A_{\gamma} \cdot \mathrm{T}_{\beta, 2 \alpha-1,2 \gamma}, \quad A_{\alpha} \cdot \mathrm{T}_{\beta, 2 \alpha-1,2 \gamma-1}=A_{\gamma} \cdot \mathrm{T}_{\beta, 2 \alpha, 2 \gamma}$.
This system of algebraic equations implies that $\mathrm{T}=0$.
Want to apply this to existence of characteristic connections!

The characteristic connection of a geometric structure
Fix $G \subset \operatorname{SO}(n), \Lambda^{2}\left(\mathbb{R}^{n}\right) \cong \mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{m}, \mathcal{F}\left(M^{n}\right)$: frame bundle of $\left(M^{n}, g\right)$.

Dfn. A geometric G-structure on M^{n} is a G-PFB \mathcal{R} which is subbundle of $\mathcal{F}\left(M^{n}\right): \mathcal{R} \subset \mathcal{F}\left(M^{n}\right)$.

Choose a G-adapted local ONF e_{1}, \ldots, e_{n} in \mathcal{R} and define connection 1 -forms of ∇^{g} :

$$
\omega_{i j}(X):=g\left(\nabla_{X}^{g} e_{i}, e_{j}\right), \quad g\left(e_{i}, e_{j}\right)=\delta_{i j} \Rightarrow \omega_{i j}+\omega_{j i}=0 .
$$

Define a skew symmetric matrix Ω with values in $\Lambda^{1}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}^{n}$ by $\Omega(X):=\left(\omega_{i j}(X)\right) \in \mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{m}$ und set

$$
\Gamma:=\operatorname{pr}_{\mathfrak{m}}(\Omega) .
$$

- Γ is a 1 -Form on M^{n} with values in $\mathfrak{m}, \Gamma_{x} \in \mathbb{R}^{n} \otimes \mathfrak{m}\left(x \in M^{n}\right)$ ["intrinsic torsion", Swann/Salamon]

Fact: $\Gamma=0 \Leftrightarrow \nabla^{g}$ is a G-connection $\Leftrightarrow \operatorname{Hol}\left(\nabla^{g}\right) \subset G$
Via Γ, geometric G-structures $\mathcal{R} \subset \mathcal{F}\left(M^{n}\right)$ correspond to irreducible components of the G-representation $\mathbb{R}^{n} \otimes \mathfrak{m}$.

Thm. A geometric G-structure $\mathcal{R} \subset \mathcal{F}\left(M^{n}\right)$ admits a metric G connection with antisymmetric torsion iff Γ lies in the image of Θ,

$$
\begin{equation*}
\left.\Theta: \Lambda^{3}\left(M^{n}\right) \rightarrow T^{*}\left(M^{n}\right) \otimes \mathfrak{m}, \quad \Theta(T):=\sum_{i=1}^{n} e_{i} \otimes \operatorname{pr}_{\mathfrak{m}}\left(e_{i}\right\lrcorner T\right) \tag{Fr,2003}
\end{equation*}
$$

If such a connection exists, it is called the characteristic connection ∇^{c} \rightarrow replace the (unadapted) LC connection by ∇^{c}.

Thm. If $G \not \subset \mathrm{SO}(n)$ acts irreducibly and not by its adjoint rep. on $\mathbb{R}^{n} \cong T_{p} M^{n}$, then $\operatorname{ker} \Theta=\{0\}$, and hence the characteristic connection of a G-structure on a Riemannian manifold $\left(M^{n}, g\right)$ is, if existent, unique.
[A-Fr-Höll, 2013]

Uniqueness of characteristic connections

This is a consequence of the STHT:
Proof. $T \in \operatorname{ker} \Theta$ iff all $X\lrcorner T \in \mathfrak{g} \subset \mathfrak{s o}(n)$, that is,

$$
\operatorname{ker} \Theta=\left\{T \in \Lambda^{3}\left(\mathbb{R}^{n}\right) \mid \mathfrak{g}_{T} \subset \mathfrak{g}\right\},
$$

so (T, G, \mathbb{R}^{n}) defines an irreducible STHS, which by assumption is non transitive (because $G \not \subset \mathrm{SO}(n)$). By the STHT, it has to be a Lie algebra with the adjoint representation. Since this was excluded as well, it follows that $\operatorname{ker} \Theta=\{0\}$.

For many G-structures, uniqueness can be proved directly case by case including a few cases where the G-action is not irreducible.
$\mathrm{U}(n)$ structures in dimension $2 n$

- $\left(S^{6}, g_{\text {can }}\right): S^{6} \subset \mathbb{R}^{7}$ has an almost complex structure $J\left(J^{2}=-\mathrm{id}\right)$ inherited from "cross product" on \mathbb{R}^{7}.
- J is not integrable, $\nabla^{g} J \neq 0$
- Problem (Hopf): Does S^{6} admit an (integrable) complex structure ?

J is an example of a nearly Kähler structure: $\nabla_{X}^{g} J(X)=0$
More generally: $\left(M^{2 n}, g, J\right)$ almost Hermitian mnfd: J almost complex structure, g a compatible Riemannian metric.

Fact: structure group $G \subset \mathrm{U}(n) \subset \mathrm{SO}(2 n)$, but $\operatorname{Hol}_{0}\left(\nabla^{g}\right)=\mathrm{SO}(2 n)$.
Examples: twistor spaces $\left(\mathbb{C P}^{3}, F_{1,2}\right)$ with their $n K$ str., compact complex mnfd with $b_{1}(M)$ odd (\nexists Kähler metric) . . .

Thm. An almost hermitian manifold $\left(M^{2 n}, g, J\right)$ admits a characteristic connection ∇ if and only if the Nijenhuis tensor

$$
N(X, Y, Z):=g(N(X, Y), Z)
$$

is skew-symmetric. Its torsion is then

$$
T(X, Y, Z)=-d \Omega(J X, J Y, J Z)+N(X, Y, Z)
$$

and it satisfies: $\nabla \Omega=0, \operatorname{Hol}(\nabla) \subset \mathrm{U}(n)$.
[Fr-Ivanov, 2002]
'Trivial case': If $\left(M^{2 n}, g, J\right)$ is Kähler $(N=0$ and $d \Omega=0)$, then $T=0$, the LC connection ∇^{g} is the characteristic connection.

In particular for $\underline{n=3}$:
$\bullet \mathfrak{s o}(6)=\mathfrak{u}(3) \oplus \mathfrak{m}^{6},\left.\Gamma \in \mathbb{R}^{6} \otimes \mathfrak{m}^{6}\right|_{\mathrm{U}(3)} \cong W_{1}^{2} \oplus W_{2}^{16} \oplus W_{3}^{12} \oplus W_{4}^{6}$

- N is skew-symmetric $\Leftrightarrow \Gamma$ has no W_{2}-part
- $\Gamma \in W_{1}$: nearly Kähler manifolds $\left(S^{6}, S^{3} \times S^{3}, F(1,2), \mathbb{C P}^{3}\right)$
- $\Gamma \in W_{3} \oplus W_{4}$: hermitian manifolds $(N=0)$

Contact structures

- $\left(M^{2 n+1}, g, \eta\right)$ contact mnfd, η : 1-form (\cong vector field)
- $\langle\eta\rangle^{\perp}$ admits an almost complex structure J compatible with g

- Contact condition: $\eta \wedge(d \eta)^{n} \neq 0 \Rightarrow \nabla^{g} \eta \neq 0$, i. e. contact structures are never integrable! (no analogue on Berger's list)
- structure group: $G \subset \mathrm{U}(n) \subset \mathrm{SO}(2 n+1)$

Examples: $S^{2 n+1}=\frac{\mathrm{SU}(n+1)}{\mathrm{SU}(n)}, V_{4,2}=\frac{\mathrm{SO}(4)}{\mathrm{SO}(2)}, M^{11}=\frac{G_{2}}{\mathrm{Sp}(1)}, M^{31}=\frac{F_{4}}{\mathrm{Sp}(3)}$
Thm. An almost metric contact manifold $\left(M^{2 n+1}, g, \eta\right)$ admits a connection ∇ with skew-symmetric torsion and preserving the structure if and only if ξ is a Killing vector field and the tensor $N(X, Y, Z):=$ $g(N(X, Y), Z)$ is totally skew-symmetric. In this case, the connection is unique, and its torsion form is given by the formula

$$
\left.T=\eta \wedge d \eta+d^{\phi} F+N-\eta \wedge \xi\right\lrcorner N
$$

A large class of almost metric contact manifolds thus admits a char. connection ∇, and for these: $\operatorname{Hol}_{0}(\nabla) \subset \mathrm{U}(n) \subset \mathrm{SO}(2 n+1)$.

A special class: Sasaki manifolds: Riemannian manifolds $\left(M^{2 n+1}, g\right)$ equipped with a contact form η, its dual vector field ξ and an endomorphism $\varphi: T M^{7} \rightarrow T M^{7}$ s.t.:

- $\eta \wedge(d \eta)^{n} \neq 0, \quad \eta(\xi)=1, \quad g(\xi, \xi)=1$
- $g(\varphi X, \varphi Y)=g(X, Y)$ and $\varphi^{2}=-\operatorname{Id}$ on $\langle\eta\rangle^{\perp}$,
- $\nabla_{X}^{g} \xi=-\varphi X,\left(\nabla_{X}^{g} \varphi\right)(Y)=g(X, Y) \cdot \xi-\eta(Y) \cdot X$.

For Sasaki manifolds, the formula is particularly simple,

$$
g\left(\nabla_{X}^{c} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2} \eta \wedge d \eta(X, Y, Z)
$$

and $\nabla T=0$ holds.
[Kowalski-Wegrzynowski, 1987]

G_{2} structures in dimension 7

Fix $G_{2} \subset \mathrm{SO}(7), \mathfrak{s o}(7)=\mathfrak{g}_{2} \oplus \mathfrak{m}^{7} \cong \mathfrak{g}_{2} \oplus \mathbb{R}^{7}$.
Intrinsic torsion Γ lies in $\mathbb{R}^{7} \otimes \mathfrak{m}^{7} \cong \mathbb{R}^{1} \oplus \mathfrak{g}_{2} \oplus S_{0}\left(\mathbb{R}^{7}\right) \oplus \mathbb{R}^{7}=: \bigoplus_{i=1}^{4} \mathcal{X}_{i}$
\Rightarrow four classes of geometric G_{2} structures $\quad[F e r n a n d e z-G r a y, ~ ' 82] ~$

- Decomposition of 3 -forms: $\Lambda^{3}\left(\mathbb{R}^{7}\right)=\mathbb{R}^{1} \oplus \mathrm{~S}_{0}\left(\mathbb{R}^{7}\right) \oplus \mathbb{R}^{7}$.
G_{2} is the isotropy group of a generic element of $\omega \in \Lambda^{3}\left(\mathbb{R}^{7}\right)$:

$$
G_{2}=\{A \in \mathrm{SO}(7) \mid A \cdot \omega=\omega\} .
$$

Thm. A 7-dimensional Riemannian $\operatorname{mfd}\left(M^{7}, g, \omega\right)$ with a fixed G_{2} structure $\omega \in \Lambda^{3}\left(M^{7}\right)$ admits a characteristic connection ∇
\Leftrightarrow the \mathfrak{g}_{2} component of Γ vanishes
\Leftrightarrow There exists a VF β with $\delta \omega=-\beta\lrcorner \omega$
The torsion of ∇ is then $T=-* d \omega-\frac{1}{6}(d \omega, * \omega) \omega+*(\beta \wedge \omega)$, and ∇ admits (at least) one parallel spinor.
[Fr-Ivanov, 2002]

name	class	characterization
parallel G_{2}-manifold	\{0\}	a) $\nabla^{g} \omega=0$ b) \exists a ∇^{g}-parallel spinor
nearly parallel G_{2}-manifold	\mathcal{X}_{1}	a) $d \omega=\lambda * \omega$ for some $\lambda \in \mathbb{R}$ b) \exists real Killing spinor
almost parallel or closed (or calibrated symplectic) G_{2}-m.	\mathcal{X}_{2}	$d \omega=0$
balanced G_{2}-manifold	\mathcal{X}_{3}	$\delta \omega=0$ and $d \omega \wedge \omega=0$
locally conformally parallel G_{2}-m.	$\mathcal{X} 4$	$\begin{gathered} d \omega=\frac{3}{4} \theta \wedge \omega \text { and } \\ d * \omega=\theta \wedge * \omega \text { for some } \theta \end{gathered}$
cocalibrated (or semi-parallel or cosymplectic) G_{2}-manifold	$\mathcal{X}_{1} \oplus \mathcal{X}_{3}$	$\delta \omega=0$
locally conformally (almost) parallel G_{2}-manifold	$\mathcal{X}_{2} \oplus \mathcal{X}_{4}$	$d \omega=\frac{3}{4} \theta \wedge \omega$
$G_{2} T$-manifold	$\mathcal{X}_{1} \oplus \mathcal{X}_{3} \oplus \mathcal{X}_{4}$	a) $d * \omega=\theta \wedge * \omega$ for some θ b) \exists char. connection ∇^{c}

Easiest examples:

- $S^{7}=\frac{\mathrm{Spin}(7)}{G_{2}}, M_{k, l}^{A W}=\frac{\mathrm{SU}(3)}{\mathrm{U}(1)_{k, l}}, V_{5,2}=\frac{\mathrm{SO}(5)}{\mathrm{SO}(3)}, \ldots$
- Explicit constructions of G_{2} structures:
[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki. . .]
- Every orientable hypersurface in \mathbb{R}^{8} carries a cocalibrated G_{2}-structure
- S^{1}-PFB over 6 -dim. Kähler manifolds, nearly Kähler manifolds. . .
N^{6} : 3-dimensional complex solvable group, $M^{7}:=N^{6} \times \mathbb{R}^{1}$. There exists a left invariant metric and a left invariant G_{2}-structure on M^{7} such that the structural equations are:
$d e_{3}=e_{13}-e_{24}, \quad d e_{4}=e_{23}+e_{14}, \quad d e_{5}=-e_{15}+e_{26}, \quad d e_{6}=-e_{25}-e_{16}$,
all other $d e_{i}=0$.
M^{7} has a G_{2}-invariant characteristic connection ∇^{c} and
- $T=2 \cdot e_{256}-2 \cdot e_{234}, \quad \delta(T)=0$.
- $\mathrm{Scal}^{c}=-16$.
- There are two ∇^{c}-parallel spinors, and both satisfy $T^{c} \cdot \Psi=0$.

An interesting subclass of G_{2}-mnfds: 7-dim. 3-Sasaki mnfds
$M^{7}: 3$-Sasaki mnfd, corresponds to $\mathrm{SU}(2) \subset G_{2} \subset \mathrm{SO}(7)$.

- 3 orth. Sasaki structures $\eta_{i} \in T^{*} M^{7},\left[\eta_{1}, \eta_{2}\right]=2 \eta_{3},\left[\eta_{2}, \eta_{3}\right]=$ $2 \eta_{1},\left[\eta_{3}, \eta_{1}\right]=2 \eta_{2}$ and $\varphi_{3} \circ \varphi_{2}=-\varphi_{1}$ etc. on $\left\langle\eta_{2}, \eta_{3}\right\rangle^{\perp}$
- Known: A 3-Sasaki mnfd is always Einstein and has 3 Riemannian Killing spinors, define $T^{v}:=\left\langle\xi_{1}, \xi_{2} \xi_{3}\right\rangle, T^{h}=\left(T^{v}\right)^{\perp}$
- each Sasaki structures η_{i} induces a characteristic connection ∇^{i}, but $\nabla^{1} \neq \nabla^{2} \neq \nabla^{3}$?!? \Rightarrow Ansatz: $\quad T=\sum_{i, j=1}^{3} \alpha_{i j} \eta_{i} \wedge d \eta_{j}+\gamma \eta_{1} \wedge \eta_{2} \wedge \eta_{3}$

Thm. Every 7 -dimensional 3 -Sasaki mnfd admits a \mathbb{P}^{2}-family of metric connections with skew torsion and parallel spinors. Its holonomy is G_{2}.
[A-Fr, 2003]
Thm. There exists a cocalibrated G_{2}-structure with char. connection ∇^{c} with parallel spinor ψ on M^{7} with the properties:

- ∇^{c} preserves T^{v} and T^{h}, and $\nabla^{c} T=0$
- $\xi_{i} \cdot \psi$ are the 3 Riemannian Killing spinors on M^{7}

Example: Naturally reductive spaces

- Homogeneous non symmetric spaces provide a rich source for manifolds with characteristic connection

Let $M=G / H$ be reductive, i. e. $\exists \mathfrak{m} \subset \mathfrak{g}$ s.t. $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ and $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$; isotropy repr. Ad : $H \rightarrow \mathrm{SO}(\mathfrak{m})$. \langle,$\rangle a pos. def. scalar product on \mathfrak{m}$.

The PFB $G \rightarrow G / H$ induces a distinguished connection on G / H, the so-called canonical connection ∇^{1}. Its torsion is

$$
T^{1}(X, Y, Z)=-\left\langle[X, Y]_{\mathfrak{m}}, Z\right\rangle \quad(=0 \text { for } M \text { symmetric })
$$

Dfn. The metric \langle,$\rangle is called naturally reductive if T^{1}$ defines a 3-form,

$$
\left\langle[X, Y]_{\mathfrak{m}}, Z\right\rangle+\left\langle Y,[X, Z]_{\mathfrak{m}}\right\rangle=0 \text { for all } X, Y, Z \in \mathfrak{m}
$$

They generalize symmetric spaces: $\nabla^{1} T^{1}=0, \nabla^{1} \mathcal{R}^{1}=0$.

Naturally reductive spaces - basic facts

Thm. A Riemannian manifold equipped with a [regular] homogeneous structure, i.e. a metric connection ∇ with torsion T and curvature \mathcal{R} such that $\nabla \mathcal{R}=0$ and $\nabla T=0$, is locally isometric to a homogeneous space.

Hence: Naturally reductive spaces have a metric connection ∇ with skew torsion such that $\nabla T=\nabla \mathcal{R}=0$
N.B. Well-known: Some mnfds carry several nat.red.structures, for exa.

$$
\begin{aligned}
& S^{2 n+1}=\mathrm{SO}(2 n+2) / \mathrm{SO}(2 n+1)=\mathrm{SU}(n+1) / \mathrm{SU}(n) \\
& S^{6}=G_{2} / \mathrm{SU}(3), S^{7}=\operatorname{Spin}(7) / G_{2}, S^{15}=\operatorname{Spin}(9) / \operatorname{Spin}(7)
\end{aligned}
$$

But, another consequence of the STHT:
Thm. If (M, g) is not loc. isometric to a sphere or a Lie group, then its admits at most one naturally reductive homogeneous structure.

Classical construction of naturally reductive spaces

General construction:

Consider $M=G / H$ with restriction of the Killing form to \mathfrak{m} :

$$
\beta(X, Y):=-\operatorname{tr}\left(X^{t} Y\right),\langle X, Y\rangle=\beta(X, Y) \text { for } X, Y \in \mathfrak{m}
$$

Suppose that \mathfrak{m} is an orthogonal sum $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ such that

$$
\left[\mathfrak{h}, \mathfrak{m}_{2}\right]=0,\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right] \subset \mathfrak{m}_{2} .
$$

Then the new metric, depending on a parameter $s>0$

$$
\tilde{\beta}_{s}=\left.\left.\beta\right|_{\mathfrak{m}_{1}} \oplus s \cdot \beta\right|_{\mathfrak{m}_{2}}
$$

is naturally reductive for $s \neq 1 \mathrm{w} . \mathrm{r} . \mathrm{t}$. the realisation as

$$
M=\left(G \times M_{2}\right) /\left(H \times M_{2}\right)=: \bar{G} / \bar{H}
$$

[Chavel, 1969; Ziller / D'Atri, 1979]
This description gets quickly rather tedious - thus, we shall usually describe nat. reductive spaces through their connections with parallel torsion and curvature.

Example: Lie groups

Let $M=G$ be a connected Lie group, $\mathfrak{g}=T_{e} G$.
the metric g on G is biinvariant

$$
\begin{align*}
& \Leftrightarrow L_{a}, R_{a} \text { are isometries } \forall a \in G \\
& \Rightarrow \operatorname{ad} V \in \mathfrak{s o}(\mathfrak{g}) \text {, i. e. } g(\operatorname{ad}(V) X, Y)+g(X, \operatorname{ad}(V) Y)=0 \tag{*}
\end{align*}
$$

Easy: $\nabla_{X}^{g} Y=\frac{1}{2}[X, Y]$.
Ansatz: T proportional to [,], i.e. $\nabla_{X} Y=\lambda[X, Y]$

- torsion: $T^{\nabla}(X, Y)=(2 \lambda-1)[X, Y]$, hence $T \in \Lambda^{3}(G) \Leftrightarrow(*)$
- curvature:
$\mathcal{R}^{\nabla}(X, Y) Z=\lambda(1-\lambda)[Z,[X, Y]]= \begin{cases}\frac{1}{4}[Z,[X, Y]] & \text { for LC conn. }\left(\lambda=\frac{1}{2}\right) \\ 0 & \text { for } \lambda=0,1\end{cases}$

Interpretation in the framework of homogeneous spaces

Take $\tilde{G}=G \times G$ with involution $\theta(a, b)=(b, a)$.

- $K:=\tilde{G}^{\theta}=\{(a, a) \in \tilde{G}\}=\Delta G$ with Lie alg. $\mathfrak{k}=\{(X, X) \mid X \in \mathfrak{g}\} \subset \tilde{\mathfrak{g}}$

To make $\tilde{G} / \Delta G$ symmetric, one usually chooses as complement of \mathfrak{k} in \mathfrak{g}

$$
\mathfrak{m}_{\mathrm{sym}}:=\{(X,-X) \mid X \in \mathfrak{g}\}
$$

for it satisfies $\left[\mathfrak{m}_{\text {sym }}, \mathfrak{m}_{\text {sym }}\right] \subset \mathfrak{k}$. But every space

$$
\mathfrak{m}_{t}:=\left\{X_{t}:=(t X,(t-1) X) \mid X \in \mathfrak{g}\right\}, \quad t \in \mathbb{R}
$$

also defines a reductive complement, $\left[\mathfrak{k}, \mathfrak{m}_{t}\right] \subset \mathfrak{m}_{t}$.

Fact: Every reductive homogeneous space has a canonical connection ∇^{c} induced from the PFB $\tilde{G} \rightarrow \tilde{G} / \Delta G$ (the ∇^{c}-parallel tensors are exactly the \tilde{G}-invariant ones), $[]=,[,]_{\mathfrak{k}}+[,]_{\mathfrak{m}}$

$$
\begin{gathered}
\nabla^{c} T^{c}=0, \quad T^{c}(X, Y)=-[X, Y]_{\mathfrak{m}} \\
\nabla^{c} \mathcal{R}^{c}=0, \quad \mathcal{R}^{c}(X, Y)=-\left[[X, Y]_{\mathfrak{k}}, Z\right] .
\end{gathered}
$$

This turns G into a naturally reductive space.
One checks for $X_{t}=(t X,(t-1) X), Y_{t}=(t Y,(t-1) Y) \in \mathfrak{m}_{t}$

$$
\left[X_{t}, Y_{t}\right]=\left(t^{2}[X, Y],(t-1)^{2}[X, Y]\right): \text { hence } " \in \mathfrak{m}_{t}^{\prime \prime} \Leftrightarrow t=0,1
$$

i. e. $\mathcal{R}^{c}=0$ for $t=0,1$ - these are again the \pm-connections of CartanSchouten.

In particular, $\nabla T=0$ for these connections on Lie groups.

Connections on homogeneous spaces - Wang's Theorem

Wang's Thm.

Let $M^{n}=G / H$ be reductive, $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$. Then there is a bijection between GL(n)-invariant connections ∇ on M^{n} and maps $\Lambda: \mathfrak{m} \rightarrow \mathfrak{g l}(n)$ satisfying

$$
\Lambda(\operatorname{Ad} h) X=\operatorname{Ad}(h) \Lambda(X) \operatorname{Ad}(h)^{-1} \text { for all } h \in H \text { and } X \in \mathfrak{m} .
$$

[Idea: Λ is the evaluation of the connection form at eH]
Comments:

- If $\Lambda: \mathfrak{m} \rightarrow \mathfrak{s o}(n)$, the corresponding connection is metric
- $\Lambda=0$ is a solution, corresponds to the canonical connection
- Torsion: $T(X, Y)=\Lambda(X) Y-\Lambda(Y) X-[X, Y]_{\mathrm{m}}$
- Curvature: $\mathcal{R}(X, Y) Z=\Lambda(X) \Lambda(Y) Z-\Lambda(Y) \Lambda(X) Z-\operatorname{Ad}\left([X, Y]_{\mathfrak{h}}\right) Z$

Example: The Berger sphere $M^{5}=\mathrm{SU}(3) / \mathrm{SU}(2)$

$\mathfrak{s u}(3) \subset \mathcal{M}_{3}(\mathbb{C}), \mathfrak{s u}(2) \cong\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & B\end{array}\right]: B \in \mathfrak{s u}(2)\right\}, \mathfrak{m}_{0}:=\left\{\left[\begin{array}{cc}0 & -\bar{v}^{t} \\ v & 0\end{array}\right]: v \in \mathbb{C}^{2}\right\}$
Hence, we get a reductive decomposition

$$
\mathfrak{s u}(3)=\mathfrak{s u}(2) \oplus \mathfrak{m}, \mathfrak{m}=\mathfrak{m}_{0} \oplus\langle\eta\rangle \text { with } \eta=\frac{1}{\sqrt{3}} \operatorname{diag}(-2 i, i, i)
$$

Basis of $\mathfrak{m}_{0}: e_{1}, \ldots e_{4}$ corresponding to $v=(1,0),(i, 0),(0,1),(0, i)$. Deform the Killing form $\beta(X, Y)=-\operatorname{tr}(X Y) / 2$ of $\mathfrak{s u}(3)$ on \mathfrak{m} to the family of metrics

$$
g_{\gamma}:=\left.\left.\beta\right|_{\mathfrak{m}_{0}} \oplus \frac{1}{\gamma} \beta\right|_{\langle\eta\rangle}, \quad \gamma>0
$$

- $\tilde{\eta}=\eta / \sqrt{\gamma}=: e_{5}$ and $\varphi:=e_{12}+e_{34}$ defines an α-Sasakian on M^{5}, its characteristic connection is described by $\Lambda: \mathfrak{m} \rightarrow \mathfrak{s o}(\mathfrak{m})$

$$
\Lambda\left(e_{i}\right)=0 \text { for } i=1, \ldots, 4, \Lambda\left(e_{5}\right)=(\sqrt{3 / \gamma}-\sqrt{3 \gamma})\left(E_{12}+E_{34}\right)
$$

- Torsion $T=\tilde{\eta} \wedge d \tilde{\eta}=\sqrt{3 / \gamma}\left(e_{12}++e_{34}\right) \wedge e_{5}$

Link to Dirac operators

Without torsion:

- Classical Schrödinger-Lichnerowicz formula on Riemannian spin mnfds
- Parthasarathy formula on symmetric spaces: $\left(D^{g}\right)^{2}=\Omega+\frac{1}{8} \mathrm{Scal}{ }^{g}$, where Ω : Casimir operator
With torsion: Assume $\left(M^{n}, g\right)$ is mnfd with G-structure and characteristic connection ∇ with torsion T
DD: Dirac operator of connection with torsion $T / 3$
- Generalized SL formula:

$$
\not D^{2}=\Delta_{T}+\frac{1}{4} \mathrm{Scal}^{g}+\frac{1}{8}\|T\|^{2}-\frac{1}{4} T^{2}
$$

[1/3 rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), IA (2002)]

- Similarly, $\not D^{2}=\Omega+$ const on naturally reductive homogeneous spaces

Almost hermitian manifolds and their Dirac operators

Literature

I. Agricola and Th. Friedrich, On the holonomy of connections with skew-symmetric torsion, Math. Ann. 328 (2004), 711-748.
I. Agricola and Th. Friedrich, A note on flat metric connections with antisymmetric torsion, Differ. Geom. Appl. 28 (2010), 480-487.
I. Agricola, T. Friedrich, J. Höll, $\mathrm{Sp}(3)$ structures on 14-manifolds, J. Geom. Phys. 69 (2013), 12-30.

Th. Friedrich, On types of non-integrable geometries, Rend. del Circ. Mat. di Palermo 72 (2003), 99-113.

Th. Friedrich and St. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian Journ. Math. 6 (2002), 303-336.
C. Olmos, S. Reggiani, The skew-torsion holonomy theorem and naturally reductive spaces, Journ. Reine Angew. Math. 664 (2012), 29-53.

