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Thm. The reduced holonomy Hol0(M ;∇g) of the LC connection ∇g is
either that of a symmetric space or

Sp(n)Sp(1) [qK], U(n) [K], SU(n) [CY], Sp(n) [hK], G2, Spin(7)
︸ ︷︷ ︸

Ric=0

.

[Berger / Simons, ≥ 1955]

– in this part: geometries modelled on symmetric spaces.
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A look back to 1938: Cartan’s work on isoparametric
hypersurfaces

Dfn. Mm−1 immersed into R
m, Sm, or Hm is called an isoparametric

hypersurface if its principal curvatures are constant. [⇒ const.mean curv.]

Set p := # of different principal curvatures

Thm. In Sn−1 ⊂ Rn: [Cartan 1938-40]

• If p = 1: Mn−2 is a hypersphere in Sn−1

• If p = 2: Mn−2 = Sp(r)× Sp(s) for p+ q = n− 2, r2 + s2 = 1

• If p = 3: Mn−2 is a tube of constant radius over a generalized Veronese
emb. of KP

2 into Sn−1 for K = R, C, H, O

– Thus, for p = 3, n must be 5, 8, 14, or 26 !
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Construction: use harmonic homog. polynomial F of degree p on R
n

satisfying

‖gradF‖2 = p2‖x‖2p−2

The level sets of F
∣
∣
Sn−1 define an isoparametric hypersurface family.

For p = 3, Cartan described explicitly the polynomial F .

Link to geometry:

F can be understood as a symmetric rank p tensor Υ, and each level set
M will be invariant under the stabilizer of Υ!
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Connection to rank 2 symmetric spaces

Fundamental oberservation: If Mn−2 ⊂ Sn−1 = SO(n)/SO(n − 1)
is an orbit of G ⊂ SO(n), then it is isoparametric (because it is
homogeneous).

classif. of all G ⊂ SO(n) s.t.
codim

∣
∣
Sn−1 (princ. G-orbit)=1

or, equiv., codim
∣
∣
Rn=2

⇒ classif. of homogeneous
isopar. hypersurfaces in Sn−1

Needed: a classification of all irred. reps. of G ⊂ SO(n) on R
n with

codimension 2 principal orbits.

Thm. These are exactly the isotropy representations of rank 2 symmetric
spaces. [Hsiang2 / Lawson, 1970/71]

Proof produces a list, and it turns out to coincide with the list of isotropy
representations.
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Takagi & Takahashi (1972) made the relation more precise:

Thm. Let Mn = G/H cpct symmetric space, rk = 2, g = h⊕ p.

• An H-orbit M of a unit vector in Sn−1 ⊂ p is an isoparametric
hypersurface.

• normal great circles ↔ a∩Sn−1, focal points ↔ singular elements in a

• the principal curvatures and their mult. are computed from the root
data, for example: The order of the Weyl group is 2p.

⇒ only p = 1, 2, 3, 4, 6 are possible

⇒ there are 4 symmetric spaces yielding isoparametric
hypersurfaces with p = 3:

SU(3)/SO(3), SU(3), SU(6)/Sp(3), E6/F4
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Description of their isotropy representations

Let Rn be (n = 5, 8, 14, 26)

• Her0(K
3) Hermitian trace-free endomorphisms on K3, K = R,C,H,O

with the conjugation action of Hn = SO(3),SU(3), Sp(3), or F4, resp.

Define for X,Y,Z ∈ Rn a symmetric 3-tensor by polarisation from tr :

Υ(X,Y,Z) := 2
√
3[trX3 + trY 3 + trZ3]− tr(X + Y )3

−tr (X + Z)3 − tr (Y + Z)3 + tr (X + Y + Z)3.

For K = H,O, a second tensor is obtained as Υ̃(X,Y,Z) := Υ(X̄, Ȳ , Z̄)
– it is not conjugate to Υ under SO(n).
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Thm. For n = 5, 8, 14, 26: Hn = {A ∈ SO(n) : A∗Υ = Υ}

and for any basis V1, . . . Vn of Rn ∼= Her0(K
3)

• Υ is totally symmetric,

• Υ is trace-free, i. e.
∑

iΥ(X,Vi, Vi) = 0,

• Υ satisfies the identity (g: metric)
∑

X,Y,Z

c
∑

i

Υ(X,Y, Vi)Υ(Z,U, Vi) =
∑

X,Y,Z

c g(X,Y )g(Z,U)

In particular: Υ determines g!

N.B. For n = 14, 26, the non-commutativity of K implies existence of
two determinants, det1,det2. But 3 det1(X) = trX3, hence polarisation
from det would yield the same tensor(s).

For n = 8, 14, ∃ an alternative tensor reducing SO(n) to Hn:

• n = 8: a 3-form, n = 14: a 5-form (129 terms. . . )
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Hn-structures on Riemannian manifolds

Dfn. For n = 5, 8, 14, 26:

A n-mnfd with a Hn-structure is a Riemannian mnfd (Mn, g) with a
reduction of the frame bundle R(Mn) to Hn.

⇒ has automatically a 3-tensor Υ with the properties above!

Thm. An integrable Hn-structure (⇔ ∇gΥ = 0) is isometric to one of
the symmetric spaces Gn/Hn, i. e.

SU(3)/SO(3), SU(3), SU(6)/Sp(3), E6/F4,

or one of their non-compact dual symmetric spaces. [Nurowski, 2007]

Questions:

• topological conditions for existence of Hn-structure ?

• non-symmetric examples of Hn-mnfds?
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Topological conditions: the case H5 = SO(3)

∃ two nonequivalent embeddings SO(3) → SO(5):

∗ as upper diagonal block matrices: ‘SO(3)st’

∗ by the irreducible 5-dim. representation of SO(3): ‘SO(3)ir’

Question: Conditions for SO(3)st- or SO(3)ir-structures ?

Dfn. Kervaire semi-characteristics:

k(M5) :=
2∑

i=0

dimR

(
H2i(M5;R)

)
mod 2 ,

χ̂2(M
5) :=

2∑

i=0

dimZ2

(
Hi(M

5;Z2)
)

mod 2 .

Thm. k(M5) − χ̂2(M
5) = w2(M

5) ∪ w3(M
5). In particular, if M5 is

spin, then k(M5) = χ̂2(M
5). [Lusztig-Milnor-Peterson 1969]
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SO(3)st-structure (⇔ ∃ two global lin. indep. vector fields)

Thm. A compact oriented 5-mnfd admits an SO(3)st-structure iff
w4(M

5) = 0, k(M5) = 0. [Thomas 1967; Atiyah 1969]

SO(3)ir-structures [IA-Becker-Bender-Fr, 2010]

Example. M5 = SU(3)/SO(3) has an SO(3)ir-structure.

Some topological properties of this space:

• M5 is simply connected and a rational homology sphere.

• M5 does not admit any Spin- or SpinC-structure.

• k(M5) = 1 and χ̂2(M
5) = 0

In particular, M5 = SU(3)/SO(3) does not admit any SO(3)st-structure!
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Prop. M5 admits an SO(3)ir-structure iff there exists a 3-dim. real
bundle E3 such that T (M5) = S2

0(E
3).

Thm. Suppose that T (M5) = S2
0(E

3). Then

• p1(M
5) = 5 ·p1(E3); in particular, p1(M

5)/5 ∈ H4(M5;Z) is integral.

• w1(M
5) = w4(M

5) = w5(M
5) = 0.

• w2(M
5) = w2(E

3) and w3(M
5) = w3(E

3).

Example. RP
5 has none of both SO(3)-str., since w4(RP

5) 6= 0.

Conjecture: M5 admits an SO(3)ir-structure iff

w4(M
5) = 0 , χ̂2(M

5) = 0 ,
p1(M

5)

5
∈ H4(M5;Z) .

(‘⇒’ follows from previous Thm)
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Can only prove:

Thm. A compact, s.c. spin mnfd admitting a SO(3)ir- or SO(3)st-str.
is parallelizable.

Cor. S5 has none of both SO(3)-structures.

Example. The connected sums (2l + 1)#(S2 × S3) are s.c., spin and
admit a SO(3)st-structure.

A rather sophisticated construction yields:

Thm. There exist mnfds pCP2#qCP2 such that every S1-
bundle over them admits a SOir-structure. (for example: (p, q) =
(21, 1), (43, 3), (197, 17) . . .)
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Topological conditions: the case H14 = Sp(3)

. . . very hard. From H∗(BSp(3),Z) = Z[q4, q8, q12] (with qi ∈ Hi), one
deduces: Every cpct 14-dimensional mnfd with a Sp(3)-structure satisfies

• χ(M) = 0 and wi(M) = 0 except for i = 4, 8, 12

In particular, it is orientable and spin; for exa. S14 has no Sp(3)-structure.

Open problem: sufficient and necessary conditions ?!?

Some non-compact examples: use isom. Spin(5) ∼= Sp(2) ⊂ Sp(3)

and the decomposition R
14 Spin(5)

= R⊕ R
5 ⊕∆5 (the 5-dim. spin rep.)

Every S1-bundle M14 over one of the following

• spin bundle of a 5-dim. spin mnfd X5 (= 8-dim VB)

• associated bundle R(Y 8)×Spin(5) R
5 over an 8-dim. mnfd Y 8 with an

Sp(2)-structure (hyper-Kähler, quaternionic-Kähler etc.)

carries a Sp(3)-structure. [IA-Fr, 2011]
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Possible types of Hn-structures

Decompose Λ3(Rn) under Hn-action:

• n = 5: Λ3(R5) ∼= Λ2(R5) ∼= so(5) = so(3)ir ⊕ V 7

• n = 8: Λ3(R8) ∼= R⊕ su(3)⊕ V 20 ⊕ V 27

• n = 14: Λ3(R14) ∼= sp(3)⊕ V 70 ⊕ V 84 ⊕ V 189

• n = 26: Λ3(R26) ∼= V 273 ⊕ V 1053 ⊕ V 1274.

Recall:

Thm. A geometric G-structure R ⊂ F(Mn) admits a metric G-
connection with antisymmetric torsion iff Γ lies in the image of Θ,

Θ : Λ3(Mn) → T ∗(Mn)⊗m, Θ(T ) :=
∑n

i=1 ei ⊗ prm(ei T ).

[Fr, 2003]

So mnfds whose intrinsic torsion has parts in R
n ⊗m that are not in the

image of Θ cannot admit a characteristic connection. Uniqueness?
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Characteristic connections

Recall:

Thm. If G 6⊂ SO(n) acts irreducibly and not by its adjoint rep. on
R

n ∼= TpM
n, then kerΘ = {0}, and hence the characteristic connection

of a G-structure on a Riemannian manifold (Mn, g) is, if existent, unique.

[A-Fr-Höll, 2013]

• n = 5: injectivity of Θ can be established by elementary methods

[Fr 2003, Bobienski-Nurowski 2006]

• n = 8: this is an adjoint action, so the thm cannot be applied, and
indeed the characteristic connection is not unique [Puhle, 2012]

• n = 14, 26: The thm is applicable, kerΘ = {0} so the characteristic
connection is unique (when existent).

Remark.If the Hn-manifold (M, g) admits a characteristic connection ∇
with torsion T ∈ Λ3(Mn), it satisfies ∇Υ = 0 by the general holonomy
principle. A short calculation then shows ∇g

VΥ(V, V, V ) = 0.
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Homogeneous examples: the case H5 = SO(3)

Exa 1: ‘twisted’ Stiefel mnfd V ir
2,4 = SO(3)× SO(3)/SO(2)ir

Recall: classical Stiefel manifold V st
2,4 = SO(4)/SO(2):

Carries an SO(3)st structure, an Einstein-Sasaki metric, 2 Riemannian
Killing spinors [Jensen 75, Fr 1981]

Consider now H := SO(2) ⊂ SO(3)ir,

H ∋ A 7−→ (A,A2) ∈ SO(3) × SO(3) =: G, V ir
2,4 := SO(3) ×

SO(3)/SO(2)ir.

• isotropy rep.: λ : SO(2) → SO(5), λ(A) = diag(1, A,A2)

• decompose g = h⊕m, m = n⊕m1 ⊕m2 of dims 1, 2, 2

• new metric: gα,β,γ = α · g
∣
∣
n
⊕ β · g

∣
∣
m1

⊕ γ · g
∣
∣
m2
, α, β, γ > 0
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Thm. V ir
2,4 = SO(3)× SO(3)/SO(2)ir with gαβγ satisfies:

• If αβ + 4 γα − 25βγ = 0, the SO(3)ir structure admits a
char. connection and the torsion Tαβγ of its characteristic connection
∇αβγ is

Tαβγ =
2
√
α

5β
e1 ∧ e2 ∧ e3 −

√
α

5γ
e1 ∧ e4 ∧ e5.

• Its holonomy is SO(2)ir and its torsion is parallel, ∇αβγTαβγ = 0.

• The metric of the SO(3)ir structure is naturally reductive if and only if
α = 5β = 5γ.

• ∃1 Einstein metric, not nat. reductive (for complicated values of α, β, γ)

• ∃ two invariant almost contact metric structures, characterized by

ξ ∼= η = e1, ϕ± = −E23 ± E45, dF± = 0.

Both admit a unique characteristic connection with the torsion above.
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• The contact structure is Sasakian (but never Einstein) if and only if
α = 25β2 = 100γ2; it is in addition an SO(3)ir structure for (α, β, γ) =
(2536,

1
6,

1
12).

– this is a very well-behaved example.

N.B. V ir
2,4 has a non-compact partner, Ṽ ir

2,4 := SO(2, 1)×SO(3)/SO(2)ir

• very similar, but the metric of the SO(3)ir structure admitting a
char. connection is never naturally reductive and never Einstein.
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Exa 2: W ir = R× (SL(2,R)⋉ R
2)/SO(2)ir

Construction: G = R×(SL(2,R)⋉R2); X,E± standard basis of sl(2,R)

• choose basis for g = R⊕ sl(2,R)⊕ R2 that depends on µ ∈ R,

ēµ0 = E+ − E− + µ, ēµ1 = 1− µ(E+ − E−), remaining el’ts standard.

ēµ0 generates a one-dimensional SO(2) ∼= Hµ ⊂ G, with same isotropy
repr. as in previous example

• µ = 0 corresponds to the standard embedding so(2) → sl(2,R)

• decompose again m = nµ ⊕m1 ⊕m2 with same Ansatz for metric

Thm.

• ∀ β > 0 and α, γ > 0 s.t. α ≥ 12γ, the SO(3)ir structure admits a
char. connection for the two embeddings of SO(2) ∼= Hµ → SO(5)

µ = (2
√

3γ)−1[
√
α±

√

α− 12γ]
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• the torsion Tαβγ of its characteristic connection ∇αβγ is

Tαβγ = −2
√
3√
γ

(e1 ∧ e2 ∧ e3 + e1 ∧ e4 ∧ e5).

• Its holonomy is SO(3)ir ⊂ SO(5). Its torsion is not parallel, but it is
divergence-free, δTαβγ = 0.

• The metric of the SO(3)ir str. is never naturally reductive and never
Einstein.

• 6 ∃ a compatible contact structure.

Consequence:

• SO(3)ir structures are conceptionally really different from contact
structures; they define a new type of geometry on 5-manifolds.

• It can happen that the torsion is not parallel.
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Homogeneous examples: the case H14 = Sp(3)

Exa 1: Higher Aloff-Wallach mnfd M14 = SU(4)/S1

Embed S1 as diag(e−it, e−it, eit, e−it) ⊂ SU(4).

• su(4) = R⊕m14, m =
4⊕

i=1

Vi ⊕
6⊕

j=1

Wj, dimVi = 2, dimWj = 1.

• new metric g depending on α1, . . . , α10

Thm.

• ∃ a 3-dim. space of metrics that are nearly integrable Sp(3)-structures

• Ric has then 3 EV’s of mult. 4 and twice EV 0. In particular, the
metric is never Einstein.

• the Sp(3)- structure is always of general type, i. e. its torsion has
contributions in all summands of Λ3(M). For some metrics, the torsion
is parallel.



23

Exa 2: the homogeneous space M14 = SU(5)/Sp(2)

as a mnfd, same as SU(6)/Sp(3), but not symmetric

• su(5) = sp(2)⊕m14, m14 = R⊕ R5 ⊕∆5 (recall Sp(2) ∼= Spin(5))

• 3 deformation parameters in the metric

Thm.

• all metrics are nearly integrable Sp(3)-structures

• the characteristic connection has full holonomy Sp(3).

• the Sp(3)-structure can be of general type or of type sp(3), V 189, the
torsion is sometimes parallel.

• Ric has then 3 EV’s of mult. 1, 5, 8. In particular, the metric is never
Einstein.
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