

Non-integrable geometries, torsion, and holonomy II b): Geometric structures modelled on some rank two symmetric spaces

Prof. Dr. habil. Ilka Agricola Philipps-Universität Marburg

Torino, Carnival Differential Geometry school

Т

dim.	5	8	14	26	comments
symm. model	SU(3)/SO(3)	SU(3)	SU(6)/Sp(3)	E_{6}/F_{4}	rk=2, non herm.
family	AI	A_2	All	EIV	
isotropy rep.	$H_5 = \mathrm{SO}(3)$	$H_8 = \mathrm{SU}(3)$	$H_{14} = \operatorname{Sp}(3)$	$H_{26} = F_4$	
	on $S_0(\mathbb{R}^3)$	on $\operatorname{Her}_0(\mathbb{C}^3)$	on $\operatorname{Her}_0(\mathbb{H}^3)$	on $\operatorname{Her}_0(\mathbb{O}^3)$	
ducing symm.	Υ from tr M	Υ	$\Upsilon, \Upsilon \circ conj$	$\Upsilon, \Upsilon \circ conj$	these are all
3-tensor Υ					examples
geom. descr.			special quat.		?
			str. on \mathbb{C}^6		
# irreps in	2	4	4	3	all mult. free
$\Lambda^3(\mathbb{R}^n)$					
	\Leftrightarrow	\Leftarrow (\Leftrightarrow with	\Leftrightarrow	\Leftarrow (\Leftrightarrow with	nearly Kähler:
∃ char. conn		add. cond)		add. cond)	$ \Leftarrow$

Thm. The reduced holonomy $\operatorname{Hol}_0(M; \nabla^g)$ of the LC connection ∇^g is either that of a symmetric space or

 $\begin{array}{l} \mathrm{Sp}(n)\mathrm{Sp}(1) \ [\mathbf{qK}], \ \mathrm{U}(n) \ [\mathbf{K}], \ \underbrace{\mathrm{SU}(n) \ [\mathbf{CY}], \ \mathrm{Sp}(n) \ [\mathbf{hK}], \ G_2, \ \mathrm{Spin}(7)}_{\mathrm{Ric}=0} \\ \\ & [\mathrm{Berger} \ / \ \mathrm{Simons}, \ge 1955] \end{array}$

- in this part: geometries modelled on symmetric spaces.

A look back to 1938: Cartan's work on isoparametric hypersurfaces

Dfn. M^{m-1} immersed into \mathbb{R}^m , S^m , or H^m is called an *isoparametric* hypersurface if its principal curvatures are constant. [\Rightarrow const. mean curv.]

Set p := # of different principal curvatures

Thm. In $S^{n-1} \subset \mathbb{R}^n$: [Cartan 1938-40]

• If
$$p = 1$$
: M^{n-2} is a hypersphere in S^{n-1}

• If
$$p = 2$$
: $M^{n-2} = S^p(r) \times S^p(s)$ for $p + q = n - 2$, $r^2 + s^2 = 1$

• If p = 3: M^{n-2} is a tube of constant radius over a generalized Veronese emb. of \mathbb{KP}^2 into S^{n-1} for $\mathbb{K} = \mathbb{R}$, \mathbb{C} , \mathbb{H} , \mathbb{O}

– Thus, for $p=3,\ n$ must be 5,8,14, or 26 !

Construction: use harmonic homog. polynomial F of degree p on \mathbb{R}^n satisfying

$$\|\operatorname{grad} F\|^2 = p^2 \|x\|^{2p-2}$$

The level sets of $F|_{S^{n-1}}$ define an isoparametric hypersurface family.

For p = 3, Cartan described explicitly the polynomial F.

Link to geometry:

F can be understood as a symmetric rank p tensor Υ , and each level set M will be invariant under the stabilizer of Υ !

Connection to rank 2 symmetric spaces

Fundamental oberservation: If $M^{n-2} \subset S^{n-1} = SO(n)/SO(n-1)$ is an orbit of $G \subset SO(n)$, then it is isoparametric (because it is homogeneous).

classif. of all $G \subset SO(n)$ s.t. codim $|_{S^{n-1}}$ (princ. *G*-orbit)=1 or, equiv., codim $|_{\mathbb{R}^n}=2$

classif. of homogeneous isopar. hypersurfaces in S^{n-1}

Needed: a classification of all irred. reps. of $G \subset SO(n)$ on \mathbb{R}^n with codimension 2 principal orbits.

 \Rightarrow

Thm. These are exactly the isotropy representations of rank 2 symmetric spaces. [Hsiang² / Lawson, 1970/71]

Proof produces a list, and it turns out to coincide with the list of isotropy representations.

Takagi & Takahashi (1972) made the relation more precise:

Thm. Let $M^n = G/H$ cpct symmetric space, $\mathrm{rk} = 2$, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{p}$.

• An H-orbit M of a unit vector in $S^{n-1} \subset \mathfrak{p}$ is an isoparametric hypersurface.

• normal great circles $\leftrightarrow \mathfrak{a} \cap S^{n-1}$, focal points \leftrightarrow singular elements in \mathfrak{a}

• the principal curvatures and their mult. are computed from the root data, for example: The order of the Weyl group is 2p.

 \Rightarrow only p = 1, 2, 3, 4, 6 are possible

 \Rightarrow there are **4 symmetric spaces yielding isoparametric** hypersurfaces with p = 3:

 $SU(3)/SO(3), SU(3), SU(6)/Sp(3), E_6/F_4$

Description of their isotropy representations

Let \mathbb{R}^n be (n = 5, 8, 14, 26)

Her₀(K³) Hermitian trace-free endomorphisms on K³, K = R, C, H, O with the conjugation action of H_n = SO(3), SU(3), Sp(3), or F₄, resp.
Define for X, Y, Z ∈ ℝⁿ a symmetric 3-tensor by polarisation from tr :

$$\Upsilon(X, Y, Z) := 2\sqrt{3} [\operatorname{tr} X^3 + \operatorname{tr} Y^3 + \operatorname{tr} Z^3] - tr(X+Y)^3 - \operatorname{tr} (X+Z)^3 - \operatorname{tr} (Y+Z)^3 + \operatorname{tr} (X+Y+Z)^3.$$

For $\mathbb{K} = \mathbb{H}, \mathbb{O}$, a second tensor is obtained as $\tilde{\Upsilon}(X, Y, Z) := \Upsilon(\bar{X}, \bar{Y}, \bar{Z})$ - it is not conjugate to Υ under SO(n). Thm. For n = 5, 8, 14, 26: $H_n = \{A \in SO(n) : A^* \Upsilon = \Upsilon\}$

and for any basis $V_1, \ldots V_n$ of $\mathbb{R}^n \cong \operatorname{Her}_0(\mathbb{K}^3)$

- Υ is totally symmetric,
- Υ is trace-free, i.e. $\sum_{i} \Upsilon(X, V_i, V_i) = 0$,
- Υ satisfies the identity (g: metric)

$$\sum_{X,Y,Z} \sum_{i} \Upsilon(X,Y,V_i) \Upsilon(Z,U,V_i) = \sum_{X,Y,Z} g(X,Y) g(Z,U)$$

In particular: Υ determines g!

N.B. For n = 14, 26, the non-commutativity of \mathbb{K} implies existence of two determinants, \det_1, \det_2 . But $3 \det_1(X) = \operatorname{tr} X^3$, hence polarisation from det would yield the same tensor(s).

For n = 8, 14, \exists an alternative tensor reducing SO(n) to H_n :

• n = 8: a 3-form, n = 14: a 5-form (129 terms. . .)

H_n -structures on Riemannian manifolds

Dfn. For n = 5, 8, 14, 26:

A *n*-mnfd with a H_n -structure is a Riemannian mnfd (M^n, g) with a reduction of the frame bundle $\mathcal{R}(M^n)$ to H_n .

 \Rightarrow has automatically a 3-tensor Υ with the properties above!

Thm. An integrable H_n -structure ($\Leftrightarrow \nabla^g \Upsilon = 0$) is isometric to one of the symmetric spaces G_n/H_n , i.e.

 $SU(3)/SO(3), SU(3), SU(6)/Sp(3), E_6/F_4$,

or one of their non-compact dual symmetric spaces. [Nurowski, 2007]

Questions:

- topological conditions for existence of H_n -structure ?
- non-symmetric examples of H_n -mnfds?

Topological conditions: the case $H_5 = SO(3)$

 \exists two nonequivalent embeddings $SO(3) \rightarrow SO(5)$:

* as upper diagonal block matrices: 'SO(3)_{st}'

* by the irreducible 5-dim. representation of SO(3): ' $SO(3)_{ir}$ ' **Question:** Conditions for $SO(3)_{st}$ - or $SO(3)_{ir}$ -structures ?

Dfn. Kervaire semi-characteristics:

$$k(M^5) := \sum_{i=0}^{2} \dim_{\mathbb{R}} (H^{2i}(M^5; \mathbb{R})) \mod 2 ,$$

$$\hat{\chi}_2(M^5) := \sum_{i=0}^{2} \dim_{\mathbb{Z}_2} (H_i(M^5; \mathbb{Z}_2)) \mod 2 .$$

 $SO(3)_{st}$ -structure ($\Leftrightarrow \exists$ two global lin. indep. vector fields)

Thm. A compact oriented 5-mnfd admits an $SO(3)_{st}$ -structure iff $w_4(M^5) = 0, \ k(M^5) = 0.$ [Thomas 1967; Atiyah 1969]

 $SO(3)_{ir}$ -structures [IA-Becker-Bender-Fr, 2010]

Example. $M^5 = SU(3)/SO(3)$ has an $SO(3)_{ir}$ -structure.

Some topological properties of this space:

- M^5 is simply connected and a rational homology sphere.
- M^5 does not admit any Spin- or Spin^{\mathbb{C}}-structure.
- $k(M^5) = 1$ and $\hat{\chi}_2(M^5) = 0$

In particular, $M^5 = SU(3)/SO(3)$ does not admit any $SO(3)_{st}$ -structure!

Prop. M^5 admits an $SO(3)_{ir}$ -structure iff there exists a 3-dim. real bundle E^3 such that $T(M^5) = S_0^2(E^3)$.

Thm. Suppose that $T(M^5) = S_0^2(E^3)$. Then

• $p_1(M^5) = 5 \cdot p_1(E^3)$; in particular, $p_1(M^5)/5 \in H^4(M^5; \mathbb{Z})$ is integral.

•
$$w_1(M^5) = w_4(M^5) = w_5(M^5) = 0.$$

•
$$w_2(M^5) = w_2(E^3)$$
 and $w_3(M^5) = w_3(E^3)$.

Example. \mathbb{RP}^5 has none of both SO(3)-str., since $w_4(\mathbb{RP}^5) \neq 0$. **Conjecture:** M^5 admits an SO(3)_{*ir*}-structure iff

$$w_4(M^5) = 0$$
, $\hat{\chi}_2(M^5) = 0$, $\frac{p_1(M^5)}{5} \in H^4(M^5;\mathbb{Z})$.

(' \Rightarrow ' follows from previous Thm)

Can only prove:

Thm. A compact, s.c. spin mnfd admitting a $SO(3)_{ir}$ - or $SO(3)_{st}$ -str. is parallelizable.

Cor. S^5 has none of both SO(3)-structures.

Example. The connected sums $(2l+1)#(S^2 \times S^3)$ are s.c., spin and admit a $SO(3)_{st}$ -structure.

A rather sophisticated construction yields:

Thm. There exist mnfds $p \mathbb{CP}^2 \# q \overline{\mathbb{CP}^2}$ such that every S^1 bundle over them admits a SO_{ir} -structure. (for example: (p,q) = (21,1), (43,3), (197,17)...)

Topological conditions: the case $H_{14} = Sp(3)$

... very hard. From $H^*(BSp(3), \mathbb{Z}) = \mathbb{Z}[q_4, q_8, q_{12}]$ (with $q_i \in H^i$), one deduces: Every cpct 14-dimensional mnfd with a Sp(3)-structure satisfies

•
$$\chi(M) = 0$$
 and $w_i(M) = 0$ except for $i = 4, 8, 12$

In particular, it is orientable and spin; for exa. S^{14} has no Sp(3)-structure.

Open problem: sufficient and necessary conditions ?!?

Some non-compact examples: use isom. $\operatorname{Spin}(5) \cong \operatorname{Sp}(2) \subset \operatorname{Sp}(3)$ and the decomposition $\mathbb{R}^{14} \stackrel{\operatorname{Spin}(5)}{=} \mathbb{R} \oplus \mathbb{R}^5 \oplus \Delta_5$ (the 5-dim. spin rep.) Every S^1 -bundle M^{14} over one of the following

• spin bundle of a 5-dim. spin mnfd X^5 (= 8-dim VB)

• associated bundle $\mathcal{R}(Y^8) \times_{\text{Spin}(5)} \mathbb{R}^5$ over an 8-dim. mnfd Y^8 with an Sp(2)-structure (hyper-Kähler, quaternionic-Kähler etc.)

carries a Sp(3)-structure.

[IA-Fr, 2011] 14

Possible types of H_n -structures

Decompose $\Lambda^3(\mathbb{R}^n)$ under H_n -action:

•
$$n = 5$$
: $\Lambda^3(\mathbb{R}^5) \cong \Lambda^2(\mathbb{R}^5) \cong \mathfrak{so}(5) = \mathfrak{so}(3)_{\mathrm{ir}} \oplus V^7$

• n = 8: $\Lambda^3(\mathbb{R}^8) \cong \mathbb{R} \oplus \mathfrak{su}(3) \oplus V^{20} \oplus V^{27}$

•
$$n = 14$$
: $\Lambda^3(\mathbb{R}^{14}) \cong \mathfrak{sp}(3) \oplus V^{70} \oplus V^{84} \oplus V^{189}$

•
$$n = 26$$
: $\Lambda^3(\mathbb{R}^{26}) \cong V^{273} \oplus V^{1053} \oplus V^{1274}$.

Recall:

Thm. A geometric G-structure $\mathcal{R} \subset \mathcal{F}(M^n)$ admits a metric Gconnection with antisymmetric torsion iff Γ lies in the image of Θ ,

$$\Theta: \Lambda^{3}(M^{n}) \to T^{*}(M^{n}) \otimes \mathfrak{m}, \quad \Theta(T) := \sum_{i=1}^{n} e_{i} \otimes \operatorname{pr}_{\mathfrak{m}}(e_{i} \,\lrcorner\, T).$$
[Fr, 2003]

So mnfds whose intrinsic torsion has parts in $\mathbb{R}^n \otimes \mathfrak{m}$ that are not in the image of Θ cannot admit a characteristic connection. Uniqueness?

Characteristic connections

Recall:

Thm. If $G \not\subset SO(n)$ acts irreducibly and not by its adjoint rep. on $\mathbb{R}^n \cong T_p M^n$, then ker $\Theta = \{0\}$, and hence the characteristic connection of a *G*-structure on a Riemannian manifold (M^n, g) is, if existent, unique. [A-Fr-Höll, 2013]

• n = 5: injectivity of Θ can be established by elementary methods [Fr 2003, Bobienski-Nurowski 2006]

• n = 8: this is an adjoint action, so the thm cannot be applied, and indeed the characteristic connection is not unique [Puhle, 2012]

• n = 14, 26: The thm is applicable, $\ker \Theta = \{0\}$ so the characteristic connection is unique (when existent).

Remark. If the H_n -manifold (M, g) admits a characteristic connection ∇ with torsion $T \in \Lambda^3(M^n)$, it satisfies $\nabla \Upsilon = 0$ by the general holonomy principle. A short calculation then shows $\nabla_V^g \Upsilon(V, V, V) = 0$.

Homogeneous examples: the case $H_5 = SO(3)$

Exa 1: 'twisted' Stiefel mnfd $V_{2,4}^{ir} = SO(3) \times SO(3)/SO(2)_{ir}$

Recall: classical Stiefel manifold $V_{2,4}^{st} = SO(4)/SO(2)$:

Carries an $SO(3)_{st}$ structure, an Einstein-Sasaki metric, 2 Riemannian Killing spinors [Jensen 75, Fr 1981]

Consider now $H := SO(2) \subset SO(3)_{ir}$,

 $H \ni A \longmapsto (A, A^2) \in \mathrm{SO}(3) \times \mathrm{SO}(3) =: G, V_{2,4}^{\mathrm{ir}} := \mathrm{SO}(3) \times \mathrm{SO}(3)/\mathrm{SO}(2)_{\mathrm{ir}}.$

- isotropy rep.: λ : SO(2) \rightarrow SO(5), $\lambda(A) = \text{diag}(1, A, A^2)$
- decompose $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, $\mathfrak{m} = \mathfrak{n} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$ of dims 1, 2, 2

• new metric:
$$g_{\alpha,\beta,\gamma} = \alpha \cdot g \big|_{\mathfrak{n}} \oplus \beta \cdot g \big|_{\mathfrak{m}_1} \oplus \gamma \cdot g \big|_{\mathfrak{m}_2}$$
, $\alpha,\beta,\gamma > 0$

Thm. $V_{2,4}^{\text{ir}} = \text{SO}(3) \times \text{SO}(3) / SO(2)_{\text{ir}}$ with $g_{\alpha\beta\gamma}$ satisfies:

• If $\alpha\beta + 4\gamma\alpha - 25\beta\gamma = 0$, the $SO(3)_{ir}$ structure admits a char. connection and the torsion $T^{\alpha\beta\gamma}$ of its characteristic connection $\nabla^{\alpha\beta\gamma}$ is

$$T^{\alpha\beta\gamma} = \frac{2\sqrt{\alpha}}{5\beta}e_1 \wedge e_2 \wedge e_3 - \frac{\sqrt{\alpha}}{5\gamma}e_1 \wedge e_4 \wedge e_5.$$

• Its holonomy is $SO(2)_{ir}$ and its torsion is parallel, $\nabla^{\alpha\beta\gamma}T^{\alpha\beta\gamma} = 0$.

• The metric of the $SO(3)_{ir}$ structure is naturally reductive if and only if $\alpha = 5\beta = 5\gamma$.

- \exists_1 Einstein metric, not nat. reductive (for complicated values of α, β, γ)
- \exists two invariant almost contact metric structures, characterized by

$$\xi \cong \eta = e_1, \quad \varphi_{\pm} = -E_{23} \pm E_{45}, \quad dF_{\pm} = 0.$$

Both admit a unique characteristic connection with the torsion above. 18

• The contact structure is Sasakian (but never Einstein) if and only if $\alpha = 25\beta^2 = 100\gamma^2$; it is in addition an $SO(3)_{ir}$ structure for $(\alpha, \beta, \gamma) = (\frac{25}{36}, \frac{1}{6}, \frac{1}{12})$.

- this is a very well-behaved example.

N.B. $V_{2,4}^{\text{ir}}$ has a non-compact partner, $\tilde{V}_{2,4}^{\text{ir}} := \text{SO}(2,1) \times \text{SO}(3)/\text{SO}(2)_{\text{ir}}$

• very similar, but the metric of the $\mathrm{SO}(3)_{\mathrm{ir}}$ structure admitting a char. connection is never naturally reductive and never Einstein.

Exa 2: $W^{\mathrm{ir}} = \mathbb{R} \times (\mathrm{SL}(2,\mathbb{R}) \ltimes \mathbb{R}^2) / \mathrm{SO}(2)_{\mathrm{ir}}$

Construction: $G = \mathbb{R} \times (SL(2, \mathbb{R}) \ltimes \mathbb{R}^2)$; X, E^{\pm} standard basis of $\mathfrak{sl}(2, \mathbb{R})$

• choose basis for $\mathfrak{g} = \mathbb{R} \oplus \mathfrak{sl}(2,\mathbb{R}) \oplus \mathbb{R}^2$ that depends on $\mu \in \mathbb{R}$,

 $\bar{e}_0^{\mu} = E_+ - E_- + \mu, \ \bar{e}_1^{\mu} = 1 - \mu(E_+ - E_-), \ \text{remaining el'ts standard.}$

 \bar{e}_0^μ generates a one-dimensional $SO(2) \cong H_\mu \subset G$, with same isotropy repr. as in previous example

• $\mu = 0$ corresponds to the standard embedding $\mathfrak{so}(2) \to \mathfrak{sl}(2,\mathbb{R})$

• decompose again $\mathfrak{m} = \mathfrak{n}^{\mu} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2$ with same Ansatz for metric

Thm.

• $\forall \beta > 0$ and $\alpha, \gamma > 0$ s.t. $\alpha \ge 12\gamma$, the $SO(3)_{ir}$ structure admits a char. connection for the two embeddings of $SO(2) \cong H_{\mu} \to SO(5)$

$$\mu = (2\sqrt{3\gamma})^{-1} [\sqrt{\alpha} \pm \sqrt{\alpha - 12\gamma}]$$
²⁰

• the torsion $T^{\alpha\beta\gamma}$ of its characteristic connection $\nabla^{\alpha\beta\gamma}$ is

$$T^{\alpha\beta\gamma} = -\frac{2\sqrt{3}}{\sqrt{\gamma}} (e_1 \wedge e_2 \wedge e_3 + e_1 \wedge e_4 \wedge e_5).$$

• Its holonomy is $SO(3)_{ir} \subset SO(5)$. Its torsion is *not* parallel, but it is divergence-free, $\delta T^{\alpha\beta\gamma} = 0$.

 \bullet The metric of the $\mathrm{SO}(3)_{\mathrm{ir}}$ str. is never naturally reductive and never Einstein.

• $\not\exists$ a compatible contact structure.

Consequence:

• $SO(3)_{ir}$ structures are conceptionally really different from contact structures; they define a new type of geometry on 5-manifolds.

• It can happen that the torsion is not parallel.

Homogeneous examples: the case $H_{14} = Sp(3)$

Exa 1: Higher Aloff-Wallach mnfd $M^{14} = SU(4)/S^1$

Embed S^1 as diag $(e^{-it}, e^{-it}, e^{it}, e^{-it}) \subset SU(4)$.

•
$$\mathfrak{su}(4) = \mathbb{R} \oplus \mathfrak{m}^{14}$$
, $\mathfrak{m} = \bigoplus_{i=1}^{4} V_i \oplus \bigoplus_{j=1}^{6} W_j$, $\dim V_i = 2$, $\dim W_j = 1$.

• new metric
$$g$$
 depending on $\alpha_1, \ldots, \alpha_{10}$

Thm.

• \exists a 3-dim. space of metrics that are nearly integrable Sp(3)-structures

• Ric has then 3 EV's of mult. 4 and twice EV 0. In particular, the metric is never Einstein.

• the Sp(3)- structure is always of general type, i.e. its torsion has contributions in all summands of $\Lambda^3(M)$. For some metrics, the torsion is parallel.

Exa 2: the homogeneous space $M^{14} = SU(5)/Sp(2)$

as a mnfd, same as $\mathrm{SU}(6)/\mathrm{Sp}(3)$, but not symmetric

- $\mathfrak{su}(5) = \mathfrak{sp}(2) \oplus \mathfrak{m}^{14}$, $\mathfrak{m}^{14} = \mathbb{R} \oplus \mathbb{R}^5 \oplus \Delta_5$ (recall $\operatorname{Sp}(2) \cong \operatorname{Spin}(5)$)
- 3 deformation parameters in the metric

Thm.

- all metrics are nearly integrable Sp(3)-structures
- the characteristic connection has full holonomy Sp(3).
- the Sp(3)-structure can be of general type or of type $\mathfrak{sp}(3)$, V^{189} , the torsion is sometimes parallel.
- $\bullet~{\rm Ric}$ has then 3 EV's of mult. 1, 5, 8. In particular, the metric is never Einstein.

Literature

I. Agricola, J. Becker-Bender, T. Friedrich *On the topology and the geometry of SO(3)-manifolds*, Ann. Global Anal. Geom. 40 (2011), 67-84.

I. Agricola, T. Friedrich, J. Höll, Sp(3) structures on 14-manifolds, J. Geom. Phys. 69 (2013), 12-30.

M. Bobieński and P. Nurowski, *Irreducible* SO(3)-geometries in dimension five, J. Reine Angew. Math. 605, 51-93 (2007).

S. Chiossi and A. Fino, *Nearly integrable* SO(3) *structures on* 5-*dimensional Lie groups*, J. Lie Theory 17 (2007), 539-562.

S.Chiossi, Ó.Maciá, SO*(3)-structures on* 8-*manifolds*, Annals Glob. Anal. Geom. 43 (2013), 1-18.

C. Puhle, *Riemannian manifolds with structure group* PSU(3), J. Lond. Math. Soc. 85 (2012), 79-100.

F. Witt, Special metrics and Triality, Adv. Math. 219 (2008), 1972-2005. 24