Non-integrable geometries, torsion, and holonomy II b): Geometric structures modelled on some rank two symmetric spaces

Prof. Dr. habil. Ilka Agricola
Philipps-Universität Marburg

Torino, Carnival Differential Geometry school

dim.	5	8	14	26	comments
symm. model	$\mathrm{SU}(3) / \mathrm{SO}(3)$	$\mathrm{SU}(3)$	$\mathrm{SU}(6) / \mathrm{Sp}(3)$	E_{6} / F_{4}	rk=2, non herm.
family	AI	A_{2}	All	EIV	
isotropy rep.	$H_{5}=\mathrm{SO}(3)$ on $S_{0}\left(\mathbb{R}^{3}\right)$	$H_{8}=\mathrm{SU}(3)$ on $\operatorname{Her}_{0}\left(\mathbb{C}^{3}\right)$	$H_{14}=\operatorname{Sp}(3)$ on $\operatorname{Her}_{0}\left(\mathbb{H}^{3}\right)$	$H_{26}=F_{4}$ on $\operatorname{Her}_{0}\left(\mathbb{O}^{3}\right)$	
ducing symm. 3-tensor Υ	Υ from tr M	Υ	Υ, Υ conj	$\Upsilon, \Upsilon \circ$ conj	these are all examples
geom. descr.		4	special quat. str. on \mathbb{C}^{6}		?
\# irreps in $\Lambda^{3}\left(\mathbb{R}^{n}\right)$	2	4	3	all mult. free	
\exists char. conn					

Thm. The reduced holonomy $\operatorname{Hol}_{0}\left(M ; \nabla^{g}\right)$ of the LC connection ∇^{g} is either that of a symmetric space or

$$
\operatorname{Sp}(n) \operatorname{Sp}(1)[\mathrm{qK}], \mathrm{U}(n)[\mathrm{K}], \underbrace{\mathrm{SU}(n)[\mathrm{CY}], \operatorname{Sp}(n)[\mathrm{hK}], G_{2}, \operatorname{Spin}(7)}_{\left.\begin{array}{c}
\text { Ric }=0 \\
{[\text { Berger } / \text { Simons, }}
\end{array} \geq 1955\right]} .
$$

- in this part: geometries modelled on symmetric spaces.

A look back to 1938: Cartan's work on isoparametric hypersurfaces

Dfn. M^{m-1} immersed into \mathbb{R}^{m}, S^{m}, or H^{m} is called an isoparametric hypersurface if its principal curvatures are constant. [\Rightarrow const. mean curv.]

Set $p:=\#$ of different principal curvatures
Thm. In $S^{n-1} \subset \mathbb{R}^{n}$:
[Cartan 1938-40]

- If $p=1: M^{n-2}$ is a hypersphere in S^{n-1}
- If $p=2: M^{n-2}=S^{p}(r) \times S^{p}(s)$ for $p+q=n-2, r^{2}+s^{2}=1$
- If $p=3: M^{n-2}$ is a tube of constant radius over a generalized Veronese emb. of $\mathbb{K} \mathbb{P}^{2}$ into S^{n-1} for $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$
- Thus, for $p=3, n$ must be $5,8,14$, or 26 !

Construction: use harmonic homog. polynomial F of degree p on \mathbb{R}^{n} satisfying

$$
\|\operatorname{grad} F\|^{2}=p^{2}\|x\|^{2 p-2}
$$

The level sets of $\left.F\right|_{S^{n-1}}$ define an isoparametric hypersurface family.
For $p=3$, Cartan described explicitly the polynomial F.
Link to geometry:
F can be understood as a symmetric rank p tensor Υ, and each level set M will be invariant under the stabilizer of Υ !

Connection to rank 2 symmetric spaces

Fundamental oberservation: If $M^{n-2} \subset S^{n-1}=\mathrm{SO}(n) / S O(n-1)$ is an orbit of $G \subset \mathrm{SO}(n)$, then it is isoparametric (because it is homogeneous).

$$
\begin{aligned}
& \text { classif. of all } G \subset \operatorname{SO}(n) \text { s.t. } \\
& \text { codim }\left.\right|_{S^{n-1}}(\text { princ. } G \text {-orbit })=1 \\
& \quad \text { or, equiv., codim }\left.\right|_{\mathbb{R}^{n}}=2
\end{aligned}
$$

classif. of homogeneous isopar. hypersurfaces in S^{n-1}

Needed: a classification of all irred. reps. of $G \subset \operatorname{SO}(n)$ on \mathbb{R}^{n} with codimension 2 principal orbits.

Thm. These are exactly the isotropy representations of rank 2 symmetric spaces. [Hsiang ${ }^{2}$ / Lawson, 1970/71]

Proof produces a list, and it turns out to coincide with the list of isotropy representations.

Takagi \& Takahashi (1972) made the relation more precise:
Thm. Let $M^{n}=G / H$ cpct symmetric space, $\mathrm{rk}=2, \mathfrak{g}=\mathfrak{h} \oplus \mathfrak{p}$.

- An H-orbit M of a unit vector in $S^{n-1} \subset \mathfrak{p}$ is an isoparametric hypersurface.
- normal great circles $\leftrightarrow \mathfrak{a} \cap S^{n-1}$, focal points \leftrightarrow singular elements in \mathfrak{a}
- the principal curvatures and their mult. are computed from the root data, for example: The order of the Weyl group is $2 p$.
\Rightarrow only $p=1,2,3,4,6$ are possible
\Rightarrow there are 4 symmetric spaces yielding isoparametric hypersurfaces with $p=3$:

$$
\mathrm{SU}(3) / S O(3), \mathrm{SU}(3), \mathrm{SU}(6) / \mathrm{Sp}(3), E_{6} / F_{4}
$$

Description of their isotropy representations

Let \mathbb{R}^{n} be $(n=5,8,14,26)$

- $\operatorname{Her}_{0}\left(\mathbb{K}^{3}\right)$ Hermitian trace-free endomorphisms on $\mathbb{K}^{3}, \mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ with the conjugation action of $H_{n}=\mathrm{SO}(3), \mathrm{SU}(3), \mathrm{Sp}(3)$, or F_{4}, resp.

Define for $X, Y, Z \in \mathbb{R}^{n}$ a symmetric 3 -tensor by polarisation from tr :

$$
\begin{aligned}
\Upsilon(X, Y, Z):= & 2 \sqrt{3}\left[\operatorname{tr} X^{3}+\operatorname{tr} Y^{3}+\operatorname{tr} Z^{3}\right]-\operatorname{tr}(X+Y)^{3} \\
& -\operatorname{tr}(X+Z)^{3}-\operatorname{tr}(Y+Z)^{3}+\operatorname{tr}(X+Y+Z)^{3} .
\end{aligned}
$$

For $\mathbb{K}=\mathbb{H}, \mathbb{O}$, a second tensor is obtained as $\tilde{\Upsilon}(X, Y, Z):=\Upsilon(\bar{X}, \bar{Y}, \bar{Z})$ - it is not conjugate to Υ under $\mathrm{SO}(n)$.

Thm. For $n=5,8,14,26: \quad H_{n}=\left\{A \in \mathrm{SO}(n): A^{*} \Upsilon=\Upsilon\right\}$ and for any basis $V_{1}, \ldots V_{n}$ of $\mathbb{R}^{n} \cong \operatorname{Her}_{0}\left(\mathbb{K}^{3}\right)$

- Υ is totally symmetric,
- Υ is trace-free, i. e. $\sum_{i} \Upsilon\left(X, V_{i}, V_{i}\right)=0$,
- Υ satisfies the identity (g : metric)

$$
\sum_{X, Y, Z}^{c} \sum_{i} \Upsilon\left(X, Y, V_{i}\right) \Upsilon\left(Z, U, V_{i}\right)=\sum_{X, Y, Z}^{c} g(X, Y) g(Z, U)
$$

In particular: Υ determines g !
N.B. For $n=14,26$, the non-commutativity of \mathbb{K} implies existence of two determinants, $\operatorname{det}_{1}, \operatorname{det}_{2}$. But $3 \operatorname{det}_{1}(X)=\operatorname{tr} X^{3}$, hence polarisation from det would yield the same tensor(s).

For $n=8,14, \exists$ an alternative tensor reducing $\mathrm{SO}(n)$ to H_{n} :

- $n=8$: a 3 -form, $n=14$: a 5 -form (129 terms. . .)

H_{n}-structures on Riemannian manifolds

Dfn. For $n=5,8,14,26$:
A n-mnfd with a H_{n}-structure is a Riemannian $\operatorname{mnfd}\left(M^{n}, g\right)$ with a reduction of the frame bundle $\mathcal{R}\left(M^{n}\right)$ to H_{n}.
\Rightarrow has automatically a 3 -tensor Υ with the properties above!
Thm. An integrable H_{n}-structure $\left(\Leftrightarrow \nabla^{g} \Upsilon=0\right)$ is isometric to one of the symmetric spaces G_{n} / H_{n}, i. e.

$$
\mathrm{SU}(3) / S O(3), \mathrm{SU}(3), \mathrm{SU}(6) / \mathrm{Sp}(3), E_{6} / F_{4}
$$

or one of their non-compact dual symmetric spaces.
[Nurowski, 2007]

Questions:

- topological conditions for existence of H_{n}-structure ?
- non-symmetric examples of H_{n}-mnfds?

Topological conditions: the case $H_{5}=\mathrm{SO}(3)$
\exists two nonequivalent embeddings $\mathrm{SO}(3) \rightarrow \mathrm{SO}(5)$:

* as upper diagonal block matrices: ' $\mathrm{SO}(3)_{\mathrm{st}}$ '
* by the irreducible 5-dim. representation of $\mathrm{SO}(3)$: ' $\mathrm{SO}(3)_{\mathrm{ir}}$ '

Question: Conditions for $\mathrm{SO}(3)_{s t^{-}}$or $\mathrm{SO}(3)_{i r^{-}}$-structures ?
Dfn. Kervaire semi-characteristics:

$$
\begin{aligned}
k\left(M^{5}\right) & :=\sum_{i=0}^{2} \operatorname{dim}_{\mathbb{R}}\left(H^{2 i}\left(M^{5} ; \mathbb{R}\right)\right) \bmod 2 \\
\hat{\chi}_{2}\left(M^{5}\right) & :=\sum_{i=0}^{2} \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{i}\left(M^{5} ; \mathbb{Z}_{2}\right)\right) \quad \bmod 2 .
\end{aligned}
$$

Thm. $k\left(M^{5}\right)-\hat{\chi}_{2}\left(M^{5}\right)=w_{2}\left(M^{5}\right) \cup w_{3}\left(M^{5}\right)$. In particular, if M^{5} is spin, then $k\left(M^{5}\right)=\hat{\chi}_{2}\left(M^{5}\right) . \quad$ [Lusztig-Milnor-Peterson 1969]
$S O(3)_{s t}$-structure ($\Leftrightarrow \exists$ two global lin. indep. vector fields)
Thm. A compact oriented 5 -mnfd admits an $\mathrm{SO}(3)_{s t}$-structure iff $w_{4}\left(M^{5}\right)=0, k\left(M^{5}\right)=0$.
[Thomas 1967; Atiyah 1969]
$S O(3)_{i r}$-structures
[IA-Becker-Bender-Fr, 2010]
Example. $M^{5}=\mathrm{SU}(3) / \mathrm{SO}(3)$ has an $\mathrm{SO}(3)_{i r}$-structure.
Some topological properties of this space:

- M^{5} is simply connected and a rational homology sphere.
- M^{5} does not admit any Spin- or Spin ${ }^{\mathbb{C}}$-structure.
- $k\left(M^{5}\right)=1$ and $\hat{\chi}_{2}\left(M^{5}\right)=0$

In particular, $M^{5}=\mathrm{SU}(3) / \mathrm{SO}(3)$ does not admit any $\mathrm{SO}(3)_{s t}$-structure!

Prop. $\quad M^{5}$ admits an $\mathrm{SO}(3)_{i r}$-structure iff there exists a 3 -dim. real bundle E^{3} such that $T\left(M^{5}\right)=S_{0}^{2}\left(E^{3}\right)$.

Thm. Suppose that $T\left(M^{5}\right)=S_{0}^{2}\left(E^{3}\right)$. Then

- $p_{1}\left(M^{5}\right)=5 \cdot p_{1}\left(E^{3}\right)$; in particular, $p_{1}\left(M^{5}\right) / 5 \in H^{4}\left(M^{5} ; \mathbb{Z}\right)$ is integral.
- $w_{1}\left(M^{5}\right)=w_{4}\left(M^{5}\right)=w_{5}\left(M^{5}\right)=0$.
- $w_{2}\left(M^{5}\right)=w_{2}\left(E^{3}\right)$ and $w_{3}\left(M^{5}\right)=w_{3}\left(E^{3}\right)$.

Example. $\mathbb{R P}^{5}$ has none of both $\mathrm{SO}(3)$-str., since $w_{4}\left(\mathbb{R} P^{5}\right) \neq 0$.
Conjecture: M^{5} admits an $\mathrm{SO}(3)_{i r}$-structure iff

$$
w_{4}\left(M^{5}\right)=0, \quad \hat{\chi}_{2}\left(M^{5}\right)=0, \quad \frac{p_{1}\left(M^{5}\right)}{5} \in H^{4}\left(M^{5} ; \mathbb{Z}\right)
$$

(${ }^{\prime} \Rightarrow$ ' follows from previous Thm)

Can only prove:
Thm. A compact, s.c. spin mnfd admitting a $\mathrm{SO}(3)_{i r^{-}}$or $\mathrm{SO}(3)_{s t^{-}}$-str. is parallelizable.

Cor. S^{5} has none of both $\mathrm{SO}(3)$-structures.
Example. The connected sums $(2 l+1) \#\left(S^{2} \times S^{3}\right)$ are s.c., spin and admit a $\mathrm{SO}(3)_{s t}$-structure.

A rather sophisticated construction yields:
Thm. There exist mnfds $p \mathbb{C P}^{2} \# q \overline{\mathbb{C P}^{2}}$ such that every S^{1} bundle over them admits a $\mathrm{SO}_{i r}$-structure. (for example: $(p, q)=$ $(21,1),(43,3),(197,17) \ldots)$

Topological conditions: the case $H_{14}=\mathrm{Sp}(3)$
\ldots very hard. From $H^{*}(B \operatorname{Sp}(3), \mathbb{Z})=\mathbb{Z}\left[q_{4}, q_{8}, q_{12}\right]$ (with $q_{i} \in H^{i}$), one deduces: Every cpct 14-dimensional mnfd with a $\operatorname{Sp}(3)$-structure satisfies

- $\chi(M)=0$ and $w_{i}(M)=0$ except for $i=4,8,12$

In particular, it is orientable and spin; for exa. S^{14} has no $\operatorname{Sp}(3)$-structure.
Open problem: sufficient and necessary conditions ?!?
Some non-compact examples: use isom. $\operatorname{Spin}(5) \cong \operatorname{Sp}(2) \subset \operatorname{Sp}(3)$ and the decomposition $\mathbb{R}^{14} \stackrel{\operatorname{Spin}(5)}{=} \mathbb{R} \oplus \mathbb{R}^{5} \oplus \Delta_{5}$ (the 5-dim. spin rep.) Every S^{1}-bundle M^{14} over one of the following

- spin bundle of a 5 -dim. spin mnfd $X^{5}(=8$-dim VB)
- associated bundle $\mathcal{R}\left(Y^{8}\right) \times_{\text {Spin(5) }} \mathbb{R}^{5}$ over an 8 -dim. $m n f d Y^{8}$ with an $\mathrm{Sp}(2)$-structure (hyper-Kähler, quaternionic-Kähler etc.)
carries a $\mathrm{Sp}(3)$-structure.
[IA-Fr, 2011]

Possible types of H_{n}-structures

Decompose $\Lambda^{3}\left(\mathbb{R}^{n}\right)$ under H_{n}-action:

- $n=5: \quad \Lambda^{3}\left(\mathbb{R}^{5}\right) \cong \Lambda^{2}\left(\mathbb{R}^{5}\right) \cong \mathfrak{s o}(5)=\mathfrak{s o}(3)_{\mathrm{ir}} \oplus V^{7}$
- $n=8: \quad \Lambda^{3}\left(\mathbb{R}^{8}\right) \cong \mathbb{R} \oplus \mathfrak{s u}(3) \oplus V^{20} \oplus V^{27}$
- $n=14: \quad \Lambda^{3}\left(\mathbb{R}^{14}\right) \cong \mathfrak{s p}(3) \oplus V^{70} \oplus V^{84} \oplus V^{189}$
- $n=26: \quad \Lambda^{3}\left(\mathbb{R}^{26}\right) \cong V^{273} \oplus V^{1053} \oplus V^{1274}$.

Recall:
Thm. A geometric G-structure $\mathcal{R} \subset \mathcal{F}\left(M^{n}\right)$ admits a metric G connection with antisymmetric torsion iff Γ lies in the image of Θ,

$$
\begin{equation*}
\left.\Theta: \Lambda^{3}\left(M^{n}\right) \rightarrow T^{*}\left(M^{n}\right) \otimes \mathfrak{m}, \quad \Theta(T):=\sum_{i=1}^{n} e_{i} \otimes \operatorname{pr}_{\mathfrak{m}}\left(e_{i}\right\lrcorner T\right) \tag{Fr,2003}
\end{equation*}
$$

So mnfds whose intrinsic torsion has parts in $\mathbb{R}^{n} \otimes \mathfrak{m}$ that are not in the image of Θ cannot admit a characteristic connection. Uniqueness?

Characteristic connections

Recall:
Thm. If $G \not \subset \mathrm{SO}(n)$ acts irreducibly and not by its adjoint rep. on $\mathbb{R}^{n} \cong T_{p} M^{n}$, then $\operatorname{ker} \Theta=\{0\}$, and hence the characteristic connection of a G-structure on a Riemannian manifold $\left(M^{n}, g\right)$ is, if existent, unique.
[A-Fr-Höll, 2013]

- $n=5$: injectivity of Θ can be established by elementary methods
[Fr 2003, Bobienski-Nurowski 2006]
- $n=8$: this is an adjoint action, so the thm cannot be applied, and indeed the characteristic connection is not unique
[Puhle, 2012]
- $n=14,26$: The thm is applicable, $\operatorname{ker} \Theta=\{0\}$ so the characteristic connection is unique (when existent).

Remark.If the H_{n}-manifold (M, g) admits a characteristic connection ∇ with torsion $T \in \Lambda^{3}\left(M^{n}\right)$, it satisfies $\nabla \Upsilon=0$ by the general holonomy principle. A short calculation then shows $\nabla_{V}^{g} \Upsilon(V, V, V)=0$.

Homogeneous examples: the case $H_{5}=\mathrm{SO}(3)$

Exa 1: 'twisted' Stiefel mnfd $V_{2,4}^{\mathrm{ir}}=\mathrm{SO}(3) \times \mathrm{SO}(3) / \mathrm{SO}(2)_{\mathrm{ir}}$
Recall: classical Stiefel manifold $V_{2,4}^{\text {st }}=\mathrm{SO}(4) / \mathrm{SO}(2)$:
Carries an $\mathrm{SO}(3)_{\text {st }}$ structure, an Einstein-Sasaki metric, 2 Riemannian Killing spinors
[Jensen 75, Fr 1981]
Consider now $H:=\mathrm{SO}(2) \subset \mathrm{SO}(3)_{\text {ir }}$,
$H \ni A \longmapsto\left(A, A^{2}\right) \in \mathrm{SO}(3) \times \mathrm{SO}(3)=: G, \quad V_{2,4}^{\mathrm{ir}}:=\mathrm{SO}(3) \times$ $\mathrm{SO}(3) / \mathrm{SO}(2)_{\mathrm{ir}}$.

- isotropy rep.: $\lambda: \mathrm{SO}(2) \rightarrow \mathrm{SO}(5), \lambda(A)=\operatorname{diag}\left(1, A, A^{2}\right)$
- decompose $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}, \mathfrak{m}=\mathfrak{n} \oplus \mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ of $\operatorname{dims} 1,2,2$
- new metric: $g_{\alpha, \beta, \gamma}=\left.\left.\left.\alpha \cdot g\right|_{\mathfrak{n}} \oplus \beta \cdot g\right|_{\mathfrak{m}_{1}} \oplus \gamma \cdot g\right|_{\mathfrak{m}_{2}}, \alpha, \beta, \gamma>0$

Thm. $V_{2,4}^{\mathrm{ir}}=\mathrm{SO}(3) \times \mathrm{SO}(3) / S O(2)_{\text {ir }}$ with $g_{\alpha \beta \gamma}$ satisfies:

- If $\alpha \beta+4 \gamma \alpha-25 \beta \gamma=0$, the $\mathrm{SO}(3)_{\text {ir }}$ structure admits a char. connection and the torsion $T^{\alpha \beta \gamma}$ of its characteristic connection $\nabla^{\alpha \beta \gamma}$ is

$$
T^{\alpha \beta \gamma}=\frac{2 \sqrt{\alpha}}{5 \beta} e_{1} \wedge e_{2} \wedge e_{3}-\frac{\sqrt{\alpha}}{5 \gamma} e_{1} \wedge e_{4} \wedge e_{5} .
$$

- Its holonomy is $\mathrm{SO}(2)_{\text {ir }}$ and its torsion is parallel, $\nabla^{\alpha \beta \gamma} T^{\alpha \beta \gamma}=0$.
- The metric of the $\mathrm{SO}(3)_{\text {ir }}$ structure is naturally reductive if and only if $\alpha=5 \beta=5 \gamma$.
- \exists_{1} Einstein metric, not nat. reductive (for complicated values of α, β, γ)
- \exists two invariant almost contact metric structures, characterized by

$$
\xi \cong \eta=e_{1}, \quad \varphi_{ \pm}=-E_{23} \pm E_{45}, \quad d F_{ \pm}=0 .
$$

Both admit a unique characteristic connection with the torsion above.

- The contact structure is Sasakian (but never Einstein) if and only if $\alpha=25 \beta^{2}=100 \gamma^{2}$; it is in addition an $\mathrm{SO}(3)_{\text {ir }}$ structure for $(\alpha, \beta, \gamma)=$ $\left(\frac{25}{36}, \frac{1}{6}, \frac{1}{12}\right)$.
- this is a very well-behaved example.
N.B. $V_{2,4}^{\mathrm{ir}}$ has a non-compact partner, $\tilde{V}_{2,4}^{\mathrm{ir}}:=\mathrm{SO}(2,1) \times \mathrm{SO}(3) / \mathrm{SO}(2)_{\text {ir }}$
- very similar, but the metric of the $\mathrm{SO}(3)_{\text {ir }}$ structure admitting a char. connection is never naturally reductive and never Einstein.

Exa 2: $W^{\text {ir }}=\mathbb{R} \times\left(\mathrm{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}\right) / \mathrm{SO}(2)_{\text {ir }}$
Construction: $G=\mathbb{R} \times\left(\mathrm{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}\right) ; X, E^{ \pm}$standard basis of $\mathfrak{s l}(2, \mathbb{R})$

- choose basis for $\mathfrak{g}=\mathbb{R} \oplus \mathfrak{s l}(2, \mathbb{R}) \oplus \mathbb{R}^{2}$ that depends on $\mu \in \mathbb{R}$, $\bar{e}_{0}^{\mu}=E_{+}-E_{-}+\mu, \bar{e}_{1}^{\mu}=1-\mu\left(E_{+}-E_{-}\right)$, remaining el'ts standard.
\bar{e}_{0}^{μ} generates a one-dimensional $\mathrm{SO}(2) \cong H_{\mu} \subset G$, with same isotropy repr. as in previous example
- $\mu=0$ corresponds to the standard embedding $\mathfrak{s o}(2) \rightarrow \mathfrak{s l}(2, \mathbb{R})$
- decompose again $\mathfrak{m}=\mathfrak{n}^{\mu} \oplus \mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ with same Ansatz for metric Thm.
- $\forall \beta>0$ and $\alpha, \gamma>0$ s.t. $\alpha \geq 12 \gamma$, the $\mathrm{SO}(3)_{\text {ir }}$ structure admits a char. connection for the two embeddings of $\mathrm{SO}(2) \cong H_{\mu} \rightarrow \mathrm{SO}(5)$

$$
\mu=(2 \sqrt{3 \gamma})^{-1}[\sqrt{\alpha} \pm \sqrt{\alpha-12 \gamma}]
$$

- the torsion $T^{\alpha \beta \gamma}$ of its characteristic connection $\nabla^{\alpha \beta \gamma}$ is

$$
T^{\alpha \beta \gamma}=-\frac{2 \sqrt{3}}{\sqrt{\gamma}}\left(e_{1} \wedge e_{2} \wedge e_{3}+e_{1} \wedge e_{4} \wedge e_{5}\right)
$$

- Its holonomy is $\mathrm{SO}(3)_{\text {ir }} \subset \mathrm{SO}(5)$. Its torsion is not parallel, but it is divergence-free, $\delta T^{\alpha \beta \gamma}=0$.
- The metric of the $\mathrm{SO}(3)_{\text {ir }}$ str. is never naturally reductive and never Einstein.
- \nexists a compatible contact structure.

Consequence:

- $\mathrm{SO}(3)_{\text {ir }}$ structures are conceptionally really different from contact structures; they define a new type of geometry on 5-manifolds.
- It can happen that the torsion is not parallel.

Homogeneous examples: the case $H_{14}=\mathrm{Sp}(3)$
Exa 1: Higher Aloff-Wallach mnfd $M^{14}=\mathrm{SU}(4) / S^{1}$
Embed S^{1} as $\operatorname{diag}\left(e^{-i t}, e^{-i t}, e^{i t}, e^{-i t}\right) \subset \operatorname{SU}(4)$.
$\bullet \mathfrak{s u}(4)=\mathbb{R} \oplus \mathfrak{m}^{14}, \mathfrak{m}=\bigoplus_{i=1}^{4} V_{i} \oplus \bigoplus_{j=1}^{6} W_{j}, \quad \operatorname{dim} V_{i}=2, \quad \operatorname{dim} W_{j}=1$.

- new metric g depending on $\alpha_{1}, \ldots, \alpha_{10}$

Thm.

- \exists a 3-dim. space of metrics that are nearly integrable $\operatorname{Sp}(3)$-structures
- Ric has then 3 EV's of mult. 4 and twice EV 0. In particular, the metric is never Einstein.
- the $\operatorname{Sp}(3)$ - structure is always of general type, i.e. its torsion has contributions in all summands of $\Lambda^{3}(M)$. For some metrics, the torsion is parallel.

Exa 2: the homogeneous space $M^{14}=\mathrm{SU}(5) / \mathrm{Sp}(2)$

as a mnfd, same as $\mathrm{SU}(6) / \mathrm{Sp}(3)$, but not symmetric

- $\mathfrak{s u}(5)=\mathfrak{s p}(2) \oplus \mathfrak{m}^{14}, \mathfrak{m}^{14}=\mathbb{R} \oplus \mathbb{R}^{5} \oplus \Delta_{5}($ recall $\operatorname{Sp}(2) \cong \operatorname{Spin}(5))$
- 3 deformation parameters in the metric

Thm.

- all metrics are nearly integrable $\operatorname{Sp}(3)$-structures
- the characteristic connection has full holonomy $\operatorname{Sp}(3)$.
- the $\operatorname{Sp}(3)$-structure can be of general type or of type $\mathfrak{s p}(3), V^{189}$, the torsion is sometimes parallel.
- Ric has then 3 EV's of mult. 1, 5, 8. In particular, the metric is never Einstein.

Literature

I. Agricola, J. Becker-Bender, T. Friedrich On the topology and the geometry of SO(3)-manifolds, Ann. Global Anal. Geom. 40 (2011), 67-84.
I. Agricola, T. Friedrich, J. Höll, $\mathrm{Sp}(3)$ structures on 14-manifolds, J. Geom. Phys. 69 (2013), 12-30.
M. Bobieński and P. Nurowski, Irreducible SO(3)-geometries in dimension five, J. Reine Angew. Math. 605, 51-93 (2007).
S. Chiossi and A. Fino, Nearly integrable SO(3) structures on 5dimensional Lie groups, J. Lie Theory 17 (2007), 539-562.
S.Chiossi, Ó.Maciá, SO(3)-structures on 8-manifolds, Annals Glob. Anal. Geom. 43 (2013), 1-18.
C. Puhle, Riemannian manifolds with structure group $\operatorname{PSU}(3)$, J. Lond. Math. Soc. 85 (2012), 79-100.
F. Witt, Special metrics and Triality, Adv. Math. 219 (2008), 1972-2005.

