

Non-integrable geometries, torsion, and holonomy III: Curvature properties of connections with skew torsion

Prof. Dr. habil. Ilka Agricola Philipps-Universität Marburg

Torino, Carnival Differential Geometry school

Connections with parallel skew torsion

(M,g) Riemannian mnfd, ∇ a connection with skew torsion $T \in \Lambda^3(M)$

• Know already large families of such manifolds where $\nabla T = 0$ holds: nearly Kähler mnfds, nearly parallel G_2 -mnfds, Sasaki mnfds, naturally reductive homogeneous spaces. . .

Dfn. For any
$$T \in \Lambda^3(M)$$
, define $(e_1, \dots, e_n \text{ a local ONF})$
$$\sigma_T := \frac{1}{2} \sum_{i=1}^n (e_i \,\lrcorner\, T) \wedge (e_i \,\lrcorner\, T) = \overset{X,Y,Z}{\mathfrak{S}} g(T(X,Y), T(Z,V)) \ (= 0 \text{ if } n \le 4)$$

[Exa: For $T = \alpha e_{123} + \beta e_{456}$, $\sigma_T = 0$; for $T = (e_{12} + e_{34})e_5$, $\sigma_T = -e_{1234}$]

 σ_T measures the 'degeneracy' of T and appears in many import. rel.:

- * 1st Bianchi identity
- * $T^2 = -2\sigma_T + ||T||^2$ in the Clifford algebra

* If
$$\nabla T = 0$$
: $dT = 2\sigma_T$, $\nabla^g T = \frac{1}{2}\sigma_T$, $\delta T = 0$...
either $\sigma_T = 0$ or $\mathfrak{hol}^{\nabla} \subset \mathfrak{iso}(T)$ is non-trivial

Flat metric connections with antisymmetric torsion

Suppose ∇ is metric and has antisymmetric torsion $T \in \Lambda^3(M)$,

$$\nabla_X Y = \nabla_X^g Y + \frac{1}{2}T(X,Y).$$

Q: What are the manifolds with a flat metric connection with antisymmetric torsion?

We shall

[this section: A-Fr, 2010]

- discuss a family of easy, yet interesting examples
- discuss a less simple, isolated example
- show that these are all such manifolds (up to coverings and products)

Before the proof, I shall sketch the different approaches to the problem and its history.

Assume simply connected where needed.

Flat connections

Dfn. ∇ is called *flat*, if $\mathcal{R}(X, Y) = 0$ for all X, Y

- $\Leftrightarrow \nabla: TM \to \operatorname{End}(TM), \ X \mapsto \nabla_X$ is Lie algebra homomorphism
- \Leftrightarrow By Ambrose-Singer Thm ($\gamma \in C(p), P_{\gamma} : T_pM \to T_pM$ par.tr.):

 $0 = \mathfrak{hol}(\nabla, p) = \langle P_{\gamma}^{-1} \circ \mathcal{R}(P_{\gamma}V, P_{\gamma}W) \circ P_{\gamma} \rangle \subset \mathfrak{so}(T_pM),$

- i.e. $\operatorname{Hol}(p; \nabla)$ is a discrete group
- ⇔ parallel transport is path-independent
- \Rightarrow (M, g) is parallelisable and therefore spin

If $\nabla = \nabla^g$ the LC connection, Frobenius' Theorem implies:

Thm. If ∇^g is flat, there exists in the vicinity of every $p \in M$ a chart s.t. the coefficients of the Riemannian metric are

 $g = \operatorname{diag}(1, 1, \dots, 1).$

- the proof relies on Cartan's structure equations and breaks down for connections with torsion.

Hence, (M, g) looks locally like \mathbb{R}^n with the euclidian metric.

Globally, of course more is possible, for example for n = 2:

Example 1: Lie groups

Let M=G be a connected Lie group, $\mathfrak{g}=T_eG$, with a biinvariant metric.

Easy: $\nabla^g_X Y = \frac{1}{2}[X,Y].$

Ansatz: T proportional to [,], i.e. $\nabla_X Y = \lambda[X,Y]$

• torsion: $T^{\nabla}(X,Y) = (2\lambda - 1)[X,Y]$, hence $T \in \Lambda^3(G)$

• curvature:

$$\mathcal{R}^{\nabla}(X,Y)Z = \lambda(1-\lambda)[Z,[X,Y]] = \begin{cases} \frac{1}{4}[Z,[X,Y]] & \text{for LC conn.}(\lambda = \frac{1}{2}) \\ 0 & \text{for } \lambda = 0,1 \end{cases}$$

 $[\pm$ -connection, Cartan-Schouten, 1926]

• \pm -connection satisfies $\sigma_T = 0$ and $\nabla T = 0$ (hence dT = 0).

6

Example 2: S^7

only parallelisable sphere that is not a Lie group (but almost...)
Consider spin representation κ^C: Spin(7) → End(Δ₇^C), Δ₇^C ≅ C⁸.
In dim.7, this turns out to be complexification of 8-dim. real rep.,
κ: Spin(7) → End(Δ₇), Δ₇ ≅ R⁸.
κ is in fact a repr. of the Clifford algebra over R⁷ (Spin(7) ⊂ Cl(R⁷)!),

 $\kappa: \mathbb{R}^7 \subset \operatorname{Cl}(\mathbb{R}^7) \to \operatorname{End}(\Delta_7).$

Choose e_1, \ldots, e_7 an ON basis of \mathbb{R}^7 , and set $\kappa_i = \kappa(e_i)$.

- Embed $S^7 \subset \Delta_7$ as spinors of length 1,
- define VFs on S^7 by $V_i(x) = \kappa_i \cdot x$ for all $x \in S^7 \subset \Delta^7$

Properties of the VFs $V_i(x) = \kappa(e_i) \cdot x$

Thm. (1) These vector fields realize a ON trivialization of S^7 ,

[computation rules for Clifford multipl.]

(2) the connection ∇ defined by $\nabla V_i = 0$ is metric, flat, and with torsion

$$T(V_i, V_j, V_k)(x) = -\langle [V_i, V_j], V_k \rangle = 2 \langle \kappa_i \kappa_j \kappa_k x, x \rangle \in \Lambda^3(S^7),$$

(3) $\nabla T \neq 0$ (check that T does not have constant coefficients), $\sigma_T \neq 0$

(4) ∇ is a G_2 connection of Fernandez-Gray type $\mathcal{X}_1 \oplus \mathcal{X}_3 \oplus \mathcal{X}_4$.

Classification

Goal: Show that any irreducible, complete, and simply connected M with a flat, metric connection with antisymmetric torsion $T \in \Lambda^3(M)$ is one of these examples.

• 1926: Cartan-Schouten "On manifolds with absolute parallelism" – wrong proof.

• 1968: d'Atri-Nickerson "On the existence of special orthonormal frames" – when does (M, g) admit an ONF of Killing vectors?

This is mainly an equivalent problem:

$$V \text{ is Killing VF} \Leftrightarrow g(\nabla_X^g V, Y) + g(X, \nabla_Y V) = 0 \qquad (*)$$

If V is parallel for ∇ with torsion T, then $\nabla^g_X V = -\frac{1}{2}T(X,V)$, hence

$$(*) \Leftrightarrow g(T(X,V),Y) + g(X,T(Y,V)) = 0 \Leftrightarrow T \in \Lambda^3(M)$$

• 1972: J. Wolf "On the geometry and classification of absolute parallelisms" – 2 long papers in J. Diff.Geom.

Q: Both proofs rely on classification of symmetric spaces. Direct proof? ₉

Sketch of proof

(1) General identities:

[common to all authors]

- $\operatorname{Ric}^{g}(X,Y) = \frac{1}{4} \sum_{i} \langle T(X,e_{i}), T(Y,e_{i}) \rangle, \ (\Rightarrow \operatorname{Ric}^{g}(X,X) \ge 0)$
- $K^{g}(X,Y) = \frac{\|T(X,Y)\|^{2}}{4[\|X\|^{2}\|Y\|^{2} \langle X,Y \rangle^{2}]} \ge 0$ (sectional curvature)

• $\delta T = 0$ (= antisymmetric part of $\operatorname{Ric}^{\nabla}$)

(2) General tools: $\sigma_T = \frac{1}{2} \sum_i (e_i \, \lrcorner \, T) \land (e_i \, \lrcorner \, T) \in \Lambda^4(M)$ satisfies

• $T^2 = -2\sigma_T + ||T||^2$ (as endomorphisms on Δ_7)

- $\nabla T = 0$ implies $dT = 2\sigma_T$ [recall: true for G, wrong for S^7]
- All spinors with constant coeff. are parallel $\Rightarrow 3dT = 2\sigma_T$ (SL formula)
- Bianchi I:

 $\overset{X,Y,Z}{\mathfrak{S}}\mathcal{R}(X,Y,Z,V) = dT(X,Y,Z,V) - \sigma^T(X,Y,Z,V) + (\nabla_V T)(X,Y,Z)_{10}$

(3) Rescaling of connection:

[implicit in Cartan]

Consider the rescaled connection $\nabla^{1/3}$,

$$\nabla^{1/3}_X Y = \nabla^g_X Y + \frac{1}{6}T(X,Y)$$

 $- \nabla^{1/3}$ plays a prominent role for Dirac operators with torsion Thm.

•
$$\nabla^{1/3}T = 0 \quad (\Leftrightarrow \nabla_V T = -\frac{1}{3}V \,\lrcorner\, \sigma_T \Leftrightarrow \nabla^g_V T = \frac{1}{6}V \,\lrcorner\, \sigma_T)$$

In particular, ||T|| and the scalar curvature are constant, and for any tensor field \mathcal{T} polynomial in T:

$$\nabla \mathcal{T} = -2\nabla^g \mathcal{T}$$
; in particular: $\nabla \mathcal{T} = 0 \Leftrightarrow \nabla^g \mathcal{T} = 0$

• $\nabla^{1/3} \mathcal{R}^g = 0$

By the Ambrose-Singer Thm, M is a naturally reductive space (in particular, homogeneous).

(4) Splitting principle:

Thm. Let $M = M_1 \times M_2$ be a mnfd with a flat metric connection ∇ with torsion $T \in \Lambda^3(M)$. Then $T = T_1 + T_2$ with $T_i \in \Lambda^3(M_i)$.

(5) Type of *M*:

Thm. Let e_1, \ldots, e_n be a ONF of ∇ -parallel VFs. Then:

•
$$\mathcal{R}^{g}(e_{i}, e_{j})e_{k} = -\frac{1}{4}[[e_{i}, e_{j}], e_{k}] \Rightarrow M \text{ is Einstein}]$$

•
$$e_m \langle [e_i, e_j], e_k \rangle = -(\nabla_{e_m} T)(e_i, e_j, e_k) = -\frac{1}{3}\sigma_T(e_i, e_j, e_k, e_m)$$
 (*)

Cor. $e_i(R_{jklm}) = 0$, hence $\nabla^g \mathcal{R}^g = 0$ and, by (2), $\nabla \mathcal{R}^g = 0$ and

$$(\nabla_X - \nabla_X^g)\mathcal{R}^g = [X \,\lrcorner\, T, \mathcal{R}^g] = 0 \tag{**}$$

Cor. (M,g) is a compact symmetric Einstein space.

1st case: $\sigma_T = 0$. (*) \Rightarrow all $\langle [e_i, e_j], e_k \rangle = \text{const} \Rightarrow M$ is Lie group

2nd case: $\sigma_T \neq 0$ (n > 4). Consider the Lie algebra

$$\mathfrak{g}_T := \operatorname{Lie}\langle X \,\lrcorner\, T | X \in T_p M \rangle \subset \Lambda^2 T_p M \cong \mathfrak{so}(T_p M).$$

By the splitting principle, may assume: \mathfrak{g}_T acts irreducibly on T_pM . Let $G_T \subset SO(n)$ be the corresponding Lie group.

 $\Rightarrow (G_T, T_pM, T)$ is an irred. STHS!

Thm (STHT). There are only two possible cases:

(1) G_T does not act not transitively on S:

T(X,Y) =: [X,Y] defines a Lie bracket and M is a Lie group,

(2) or G_T acts transitively on S:

then $\mathfrak{g}_T = \mathfrak{so}(T_p M)$.

Cor. If M is not a Lie group, $\mathfrak{g}_T = \mathfrak{so}(T_p M)$ and

$$(**) \Rightarrow \mathcal{R}^g = c \cdot \mathrm{Id} \Rightarrow K^g(X, Y) = c \cdot \mathrm{Id}$$

 $\Rightarrow M$ is a sphere

 \Rightarrow formula for $K^g(X,Y)$ states that T defines a vector cross product

$$\Rightarrow$$
 $M = S^7$

* * * * * * * * * * *

 After description of flat mnfds: what does Einstein mean for skew torsion? –

Einstein manifolds – the classical case

A Riemannian mnfd (M^n, g) is called Einstein if $\operatorname{Ric}^{\operatorname{g}} = c \cdot g$, $c \in C(M)$.

- Fact: $c = \text{Scal}^g/n$ and has to be constant (for $n \ge 3$)
- Einstein metrics are vacuum solutions of eq. of general relativity
- If M^n is compact \Rightarrow Einstein metrics are critical points of the total scalar curvature functional $\int_M \operatorname{Scal}(g) d\operatorname{vol}_g$.

A few general results:

- dim = 4 : If M^4 compact, oriented admits an Einstein metric $\Rightarrow \chi(M) \ge \frac{3}{2} |\tau(M)|.$ [Hitchin/Thorpe, 1969/74]
- (M,g) Einstein, complete, $\mathrm{Scal}^g > 0 \Rightarrow$ compact and $\pi_1(M)$ finite
- dim ≥ 5 : No (further) topological obstructions are known.

Link to special geometric structures and differential eqs.

Many known Einstein metrics carry additional geometric structure:

- **Ex.1** $\mathbb{C}P^3 = SU(4)/S(U(1) \times U(3))$ and $\mathbb{F}^3 = SU(3)/T^2$:
- = 3-symmetric spaces = twistor spaces of S^4 resp. $\mathbb{C}P^2$
- $\Rightarrow \exists 2$ Einstein metrics: 1 Kähler & 1 nearly-Kähler
- **Ex.2** $V_2(\mathbb{R}^4) = SO(4)/SO(2) = T_1S^3 \Rightarrow 1$ Sasaki-Einstein metric Common properties of $\mathbb{C}P^3$, \mathbb{F}^3 and $V_2(\mathbb{R}^4)$:
- spin manifolds which carry Killing spinors (KS) ψ : $\nabla_X^g \psi = kX \cdot \psi$.

• KS ψ realize equality case in **Friedrich's eigenvalue estimate** for the Riemannian Dirac operator D^g on compact spin mnfds: [Friedrich, 80]

$$\lambda^2(D^g) \ge \frac{n}{4(n-1)} \min_{x \in M^n} \operatorname{Scal}^g$$

Comparison of curvatures

Starting point: Compare ∇ and ∇^g curvatures:

Difference tensor:
$$S(X,Y) := \sum_{i,j=1}^{n} T(e_i, X, e_j) T(e_i, Y, e_j)$$
 (symmetric)

Curvature:
$$\operatorname{Ric}^{\nabla}(X,Y) = \operatorname{Ric}^{g}(X,Y) - \frac{1}{4}S(X,Y) - \frac{1}{2}\delta T(X,Y)$$

 $s^{\nabla} = s^{g} - \frac{3}{2}||T||^{2}$

- δT measures the skew symmetric part of $\operatorname{Ric}^{\nabla}$, (recall: $\nabla T = 0 \Rightarrow \delta T = 0$)
- denote by $S(\operatorname{Ric}^{\nabla})$ the symmetric part of the Ricci tensor

Einstein manifolds – the skew torsion case

Variational principle: The critical points of [This section: A-Ferreira, 2012]

$$\int_M [s^{\nabla} - 2\Lambda] \, d\mathrm{vol}_g$$

are pairs (g,T) satisfying $S(\operatorname{Ric}^{\nabla}) = (s^{\nabla}/2 - \Lambda)g$. As in the Riemannian case, taking the trace then implies $s^{\nabla}/2 - \Lambda = s^{\nabla}/n$.

Dfn. (M, g, T) is

– 'Einstein with skew torsion' if the connection ∇ with torsion T satisfies $S(\operatorname{Ric}^{\nabla}) = (s^{\nabla}/n)g$,

– 'Einstein with parallel skew torsion' if it satisfies in addition $\nabla T = 0$.

Exa. $M = S^3$ with standard metric: Einstein, $\text{Scal}^g = 6$, parallelizable. $f: S^3 \longrightarrow \mathbb{R}$ any non-constant function, $T := 2fe^1 \wedge e^2 \wedge e^3$. Then

• ∇ Einstein with skew torsion, scalar curvature: $s^{\nabla} = 6(1 - f(x)^2)$: not constant, any sign possible (even on compact mnfds).

18

Einstein manifolds with skew torsion: Topology

Q: What is a good condition on torsion T that ensures the same properties as in the Riemannian case?

Thm. Assume (M, g, T) is Einstein with *parallel* skew torsion. Then 1) Scal^{∇} and Scal^g are constant 2) If M complete connected and Scal^{∇} > 0, then M is compact and $\pi_1(M)$ is finite

Proof.

1): Clever computation with divergences of Ric^g , $\operatorname{Ric}^{\nabla}$ and ds^{∇} , ds^g .

2): Check conditions of Bonnet-Myers Thm, i.e. $\operatorname{Ric}^g(X, X) \ge c \|X\|^2$ for some c > 0 and all $X \in TM$. But

$$\operatorname{Ric}^{g}(X, X) = \operatorname{Ric}^{\nabla}(X, X) + \frac{1}{4}S(X, X) = \frac{s^{\nabla}}{n} \|X\|^{2} + \frac{1}{4}S(X, X) \ge \frac{s^{\nabla}}{n} \|X\|^{2}$$

19

Dfn. Call T of 'Einstein type' if $S = c \cdot g$: If ∇^g is Riemannian Einstein, ∇ will then be Einstein with skew torsion.

Lemma. Write $T = \sum_{ijk} T_{ijk} e_{ijk}$. T is of Einstein type iff

• no term of the form $T_{ija}e_{ija} + T_{ijb}e_{ijb}$ with a = b occurs;

• if i and j are two indices in $1, \ldots, n$ then the number of occurrences of i and j in T coincides;

• if $\{i, j, k\}$ and $\{a, b, c\}$ are two sets of indices then $T_{ijk}^2 = T_{abc}^2$.

 \to easy procedure for producing further examples of $\nabla\text{-}\mathsf{Einstein}$ metrics for manifolds that are parallelizable and carry an Einstein metric

Normal forms of 3-forms under $GL(n, \mathbb{R})$: Schouten 1931, Westwick 1981:

Riemannian Einstein manifolds (M, g) will never be Einstein with skew torsion in dimensions 4 and 5.

Normal forms of 3-forms ($n \leq 7$)

21

Outlook:

• (M, g, J) 4-dim. compact Hermitian non-Kähler mnfd, Einstein with parallel skew torsion, its universal cover is isometric to $\mathbb{R} \times S^3$.

• For n = 4, \exists alternative approach through decomposition of curvature tensor; the Hitchin-Thorpe ineq.still holds (for compact. oriented) and for parallel torsion, the notions coincide [Ferreira, 2011]

• All nearly Kähler mnfds (n = 6) and nearly parallel G_2 mnfds (n = 7) are Einstein with parallel skew torsion $(\text{Scal}^{\nabla} > 0)$;

• Any Einstein-Sasaki mnfd admits a deformation of the metric that is Einstein with parallel skew torsion and ${
m Ric}^
abla=0$

[\Rightarrow many homogeneous examples of ∇ -Ricci flat manifolds which are not flat, as opposed to the Riemannian case!]

• Every 7-dim. 3-Sasaki mnfd carries 3 different connections that turn it into an Einstein manifold with parallel skew torsion; it admits a deformation of the metric that carries an Einstein structure with parallel skew torsion. [strongly related to canonical connection] 22

Literature

I. Agricola and A.C. Ferreira, *Einstein manifolds with skew torsion*, arXiv:1209.5886 [math.DG], to appear in Quart.J.Math. (published online)

I. Agricola and Th. Friedrich, *A note on flat metric connections with antisymmetric torsion*, Differ. Geom. Appl. 28 (2010), 480-487.

C. Olmos, S. Reggiani, *The skew-torsion holonomy theorem and naturally reductive spaces*, Journ. Reine Angew. Math. 664 (2012), 29-53.