

Non-integrable geometries, torsion, and holonomy III: Curvature properties of connections with skew torsion

Prof. Dr. habil. Ilka Agricola

Philipps-Universität Marburg

Torino, Carnival Differential Geometry school

Connections with parallel skew torsion

(M, g) Riemannian mnfd, ∇ a connection with skew torsion $T \in \Lambda^{3}(M)$

- Know already large families of such manifolds where $\nabla T=0$ holds: nearly Kähler mnfds, nearly parallel G_{2}-mnfds, Sasaki mnfds, naturally reductive homogeneous spaces. . .
Dfn. For any $T \in \Lambda^{3}(M)$, define (e_{1}, \ldots, e_{n} a local ONF)

$$
\begin{aligned}
\sigma_{T}:= & \left.\left.\frac{1}{2} \sum_{i=1}^{n}\left(e_{i}\right\lrcorner T\right) \wedge\left(e_{i}\right\lrcorner T\right)=\stackrel{X, Y, Z}{\mathfrak{S}} g(T(X, Y), T(Z, V))(=0 \text { if } n \leq 4) \\
& {\left[\text { Exa: For } T=\alpha e_{123}+\beta e_{456}, \sigma_{T}=0 ; \text { for } T=\left(e_{12}+e_{34}\right) e_{5}, \sigma_{T}=-e_{1234}\right] }
\end{aligned}
$$

σ_{T} measures the 'degeneracy' of T and appears in many import. rel.:

* 1st Bianchi identity
* $T^{2}=-2 \sigma_{T}+\|T\|^{2}$ in the Clifford algebra
* If $\nabla T=0: d T=2 \sigma_{T}, \nabla^{g} T=\frac{1}{2} \sigma_{T}, \delta T=0 .$. either $\sigma_{T}=0$ or $\mathfrak{h o l}{ }^{\nabla} \subset \mathfrak{i s o}(T)$ is non-trivial

Flat metric connections with antisymmetric torsion
Suppose ∇ is metric and has antisymmetric torsion $T \in \Lambda^{3}(M)$,

$$
\nabla_{X} Y=\nabla_{X}^{g} Y+\frac{1}{2} T(X, Y)
$$

Q: What are the manifolds with a flat metric connection with antisymmetric torsion?

We shall

- discuss a family of easy, yet interesting examples
- discuss a less simple, isolated example
- show that these are all such manifolds (up to coverings and products)

Before the proof, I shall sketch the different approaches to the problem and its history.

Assume simply connected where needed.

Flat connections

Dfn. ∇ is called flat, if $\mathcal{R}(X, Y)=0$ for all X, Y
$\Leftrightarrow \nabla: T M \rightarrow \operatorname{End}(T M), X \mapsto \nabla_{X}$ is Lie algebra homomorphism
\Leftrightarrow By Ambrose-Singer Thm $\left(\gamma \in C(p), P_{\gamma}: T_{p} M \rightarrow T_{p} M\right.$ par.tr. $):$

$$
0=\mathfrak{h o l}(\nabla, p)=\left\langle P_{\gamma}^{-1} \circ \mathcal{R}\left(P_{\gamma} V, P_{\gamma} W\right) \circ P_{\gamma}\right\rangle \subset \mathfrak{s o}\left(T_{p} M\right)
$$

i. e. $\operatorname{Hol}(p ; \nabla)$ is a discrete group
\Leftrightarrow parallel transport is path-independent
$\Rightarrow(M, g)$ is parallelisable and therefore spin

If $\nabla=\nabla^{g}$ the LC connection, Frobenius' Theorem implies:
Thm. If ∇^{g} is flat, there exists in the vicinity of every $p \in M$ a chart s.t. the coefficients of the Riemannian metric are

$$
g=\operatorname{diag}(1,1, \ldots, 1)
$$

- the proof relies on Cartan's structure equations and breaks down for connections with torsion.

Hence, (M, g) looks locally like \mathbb{R}^{n} with the euclidian metric.
Globally, of course more is possible, for example for $n=2$:

Example 1: Lie groups

Let $M=G$ be a connected Lie group, $\mathfrak{g}=T_{e} G$, with a biinvariant metric.

Easy: $\nabla_{X}^{g} Y=\frac{1}{2}[X, Y]$.
Ansatz: T proportional to [,], i.e. $\nabla_{X} Y=\lambda[X, Y]$

- torsion: $T^{\nabla}(X, Y)=(2 \lambda-1)[X, Y]$, hence $T \in \Lambda^{3}(G)$
- curvature:

$$
\mathcal{R}^{\nabla}(X, Y) Z=\lambda(1-\lambda)[Z,[X, Y]]= \begin{cases}\frac{1}{4}[Z,[X, Y]] & \text { for LC conn. }\left(\lambda=\frac{1}{2}\right) \\ 0 & \text { for } \lambda=0,1\end{cases}
$$

[士-connection, Cartan-Schouten, 1926]

- \pm-connection satisfies $\sigma_{T}=0$ and $\nabla T=0$ (hence $d T=0$).

Example 2: S^{7}

- only parallelisable sphere that is not a Lie group (but almost. . .)

Consider spin representation $\kappa^{\mathbb{C}}: \operatorname{Spin}(7) \rightarrow \operatorname{End}\left(\Delta_{7}^{\mathbb{C}}\right), \quad \Delta_{7}^{\mathbb{C}} \cong \mathbb{C}^{8}$.
In dim.7, this turns out to be complexification of 8 -dim. real rep.,

$$
\kappa: \operatorname{Spin}(7) \rightarrow \operatorname{End}\left(\Delta_{7}\right), \quad \Delta_{7} \cong \mathbb{R}^{8}
$$

κ is in fact a repr. of the Clifford algebra over $\mathbb{R}^{7}\left(\operatorname{Spin}(7) \subset \mathrm{Cl}\left(\mathbb{R}^{7}\right)!\right)$,

$$
\kappa: \mathbb{R}^{7} \subset \operatorname{Cl}\left(\mathbb{R}^{7}\right) \rightarrow \operatorname{End}\left(\Delta_{7}\right)
$$

Choose e_{1}, \ldots, e_{7} an ON basis of \mathbb{R}^{7}, and set $\kappa_{i}=\kappa\left(e_{i}\right)$.

- Embed $S^{7} \subset \Delta_{7}$ as spinors of length 1 ,
- define VFs on S^{7} by $V_{i}(x)=\kappa_{i} \cdot x$ for all $x \in S^{7} \subset \Delta^{7}$

Properties of the VFs $V_{i}(x)=\kappa\left(e_{i}\right) \cdot x$

Thm. (1) These vector fields realize a ON trivialization of S^{7}, [computation rules for Clifford multipl.]
(2) the connection ∇ defined by $\nabla V_{i}=0$ is metric, flat, and with torsion

$$
T\left(V_{i}, V_{j}, V_{k}\right)(x)=-\left\langle\left[V_{i}, V_{j}\right], V_{k}\right\rangle=2\left\langle\kappa_{i} \kappa_{j} \kappa_{k} x, x\right\rangle \in \Lambda^{3}\left(S^{7}\right)
$$

(3) $\nabla T \neq 0$ (check that T does not have constant coefficients), $\sigma_{T} \neq 0$
(4) ∇ is a G_{2} connection of Fernandez-Gray type $\mathcal{X}_{1} \oplus \mathcal{X}_{3} \oplus \mathcal{X}_{4}$.

Classification

Goal: Show that any irreducible, complete, and simply connected M with a flat, metric connection with antisymmetric torsion $T \in \Lambda^{3}(M)$ is one of these examples.

- 1926: Cartan-Schouten "On manifolds with absolute parallelism" wrong proof.
- 1968: d'Atri-Nickerson "On the existence of special orthonormal frames" - when does (M, g) admit an ONF of Killing vectors?

This is mainly an equivalent problem:

$$
\begin{equation*}
V \text { is Killing VF } \Leftrightarrow g\left(\nabla_{X}^{g} V, Y\right)+g\left(X, \nabla_{Y} V\right)=0 \tag{*}
\end{equation*}
$$

If V is parallel for ∇ with torsion T, then $\nabla_{X}^{g} V=-\frac{1}{2} T(X, V)$, hence

$$
(*) \Leftrightarrow g(T(X, V), Y)+g(X, T(Y, V))=0 \Leftrightarrow T \in \Lambda^{3}(M)
$$

- 1972: J. Wolf "On the geometry and classification of absolute parallelisms" - 2 long papers in J. Diff.Geom.
Q: Both proofs rely on classification of symmetric spaces. Direct proof?

Sketch of proof

(1) General identities:

- $\operatorname{Ric}^{g}(X, Y)=\frac{1}{4} \sum_{i}\left\langle T\left(X, e_{i}\right), T\left(Y, e_{i}\right)\right\rangle,\left(\Rightarrow \operatorname{Ric}^{g}(X, X) \geq 0\right)$
- $K^{g}(X, Y)=\frac{\|T(X, Y)\|^{2}}{4\left[\|X\|^{2}\|Y\|^{2}-\langle X, Y\rangle^{2}\right]} \geq 0$ (sectional curvature)
- $\delta T=0\left(=\right.$ antisymmetric part of $\left.\operatorname{Ric}^{\nabla}\right)$
(2) General tools: $\left.\left.\sigma_{T}=\frac{1}{2} \sum_{i}\left(e_{i}\right\lrcorner T\right) \wedge\left(e_{i}\right\lrcorner T\right) \in \Lambda^{4}(M)$ satisfies
- $T^{2}=-2 \sigma_{T}+\|T\|^{2}$ (as endomorphisms on Δ_{7})
- $\nabla T=0$ implies $d T=2 \sigma_{T} \quad$ [recall: true for G, wrong for S^{7}]
- All spinors with constant coeff. are parallel $\Rightarrow 3 d T=2 \sigma_{T}$ (SL formula)
- Bianchi I:
X, Y, Z
${ }^{\mathrm{S}} \mathcal{R}(X, Y, Z, V)=d T(X, Y, Z, V)-\sigma^{T}(X, Y, Z, V)+\left(\nabla_{V} T\right)(X, Y, Z)_{10}$

Consider the rescaled connection $\nabla^{1 / 3}$,

$$
\nabla^{1 / 3}{ }_{X} Y=\nabla_{X}^{g} Y+\frac{1}{6} T(X, Y)
$$

$-\nabla^{1 / 3}$ plays a prominent role for Dirac operators with torsion
Thm.

- $\left.\left.\nabla^{1 / 3} T=0\left(\Leftrightarrow \nabla_{V} T=-\frac{1}{3} V\right\lrcorner \sigma_{T} \Leftrightarrow \nabla_{V}^{g} T=\frac{1}{6} V\right\lrcorner \sigma_{T}\right)$

In particular, $\|T\|$ and the scalar curvature are constant, and for any tensor field \mathcal{T} polynomial in T :

$$
\nabla \mathcal{T}=-2 \nabla^{g} \mathcal{T} ; \text { in particular: } \nabla \mathcal{T}=0 \Leftrightarrow \nabla^{g} \mathcal{T}=0
$$

- $\nabla^{1 / 3} \mathcal{R}^{g}=0$

By the Ambrose-Singer Thm, M is a naturally reductive space (in particular, homogeneous).
(4) Splitting principle:

Thm. Let $M=M_{1} \times M_{2}$ be a mnfd with a flat metric connection ∇ with torsion $T \in \Lambda^{3}(M)$. Then $T=T_{1}+T_{2}$ with $T_{i} \in \Lambda^{3}\left(M_{i}\right)$.
(5) Type of M :

Thm. Let e_{1}, \ldots, e_{n} be a ONF of ∇-parallel VFs. Then:

- $\mathcal{R}^{g}\left(e_{i}, e_{j}\right) e_{k}=-\frac{1}{4}\left[\left[e_{i}, e_{j}\right], e_{k}\right][\Rightarrow M$ is Einstein $]$
- $e_{m}\left\langle\left[e_{i}, e_{j}\right], e_{k}\right\rangle=-\left(\nabla_{e_{m}} T\right)\left(e_{i}, e_{j}, e_{k}\right)=-\frac{1}{3} \sigma_{T}\left(e_{i}, e_{j}, e_{k}, e_{m}\right)$

Cor. $e_{i}\left(R_{j k l m}\right)=0$, hence $\nabla^{g} \mathcal{R}^{g}=0$ and, by (2), $\nabla \mathcal{R}^{g}=0$ and

$$
\begin{equation*}
\left.\left(\nabla_{X}-\nabla_{X}^{g}\right) \mathcal{R}^{g}=[X\lrcorner T, \mathcal{R}^{g}\right]=0 \tag{**}
\end{equation*}
$$

Cor. (M, g) is a compact symmetric Einstein space.
1st case: $\sigma_{T}=0 .(*) \Rightarrow$ all $\left\langle\left[e_{i}, e_{j}\right], e_{k}\right\rangle=$ const $\Rightarrow M$ is Lie group

2nd case: $\sigma_{T} \neq 0(n>4)$. Consider the Lie algebra

$$
\mathfrak{g}_{T}:=\operatorname{Lie}\langle X\lrcorner T\left|X \in T_{p} M\right\rangle \subset \Lambda^{2} T_{p} M \cong \mathfrak{s o}\left(T_{p} M\right)
$$

By the splitting principle, may assume: \mathfrak{g}_{T} acts irreducibly on $T_{p} M$. Let $G_{T} \subset \mathrm{SO}(n)$ be the corresponding Lie group.

$$
\Rightarrow\left(G_{T}, T_{p} M, T\right) \text { is an irred. STHS! }
$$

Thm (STHT). There are only two possible cases:
(1) G_{T} does not act not transitively on S :
$T(X, Y)=:[X, Y]$ defines a Lie bracket and M is a Lie group,
(2) or G_{T} acts transitively on S :
then $\mathfrak{g}_{T}=\mathfrak{s o}\left(T_{p} M\right)$.

Cor. If M is not a Lie group, $\mathfrak{g}_{T}=\mathfrak{s o}\left(T_{p} M\right)$ and

$$
(* *) \Rightarrow \mathcal{R}^{g}=c \cdot \operatorname{Id} \Rightarrow K^{g}(X, Y)=c \cdot \operatorname{Id}
$$

$\Rightarrow M$ is a sphere
\Rightarrow formula for $K^{g}(X, Y)$ states that T defines a vector cross product

$$
\begin{gathered}
\Rightarrow M=S^{7} \\
* * * * * * * * * * *
\end{gathered}
$$

- After description of flat mnfds: what does Einstein mean for skew torsion? -

Einstein manifolds - the classical case
A Riemannian mnfd $\left(M^{n}, g\right)$ is called Einstein if $\operatorname{Ric}^{\mathrm{g}}=c \cdot g, c \in C(M)$.

- Fact: $c=\mathrm{Scal}^{g} / n$ and has to be constant (for $n \geq 3$)
- Einstein metrics are vacuum solutions of eq. of general relativity
- If M^{n} is compact \Rightarrow Einstein metrics are critical points of the total scalar curvature functional $\int_{M} \operatorname{Scal}(g) d \operatorname{vol}_{g}$.

A few general results:

- dim $=4$: If M^{4} compact, oriented admits an Einstein metric

$$
\begin{equation*}
\Rightarrow \chi(M) \geq \frac{3}{2}|\tau(M)| . \tag{Hitchin/Thorpe,1969/74}
\end{equation*}
$$

- (M, g) Einstein, complete, $\mathrm{Scal}^{g}>0 \Rightarrow$ compact and $\pi_{1}(M)$ finite
- $\operatorname{dim} \geq 5$: No (further) topological obstructions are known.

Link to special geometric structures and differential eqs.
Many known Einstein metrics carry additional geometric structure:
Ex. $1 \quad \mathbb{C} P^{3}=S U(4) / S(U(1) \times U(3))$ and $\mathbb{F}^{3}=S U(3) / T^{2}$:
$=3$-symmetric spaces $=$ twistor spaces of S^{4} resp. $\mathbb{C} P^{2}$
$\Rightarrow \exists 2$ Einstein metrics: 1 Kähler \& 1 nearly-Kähler
Ex. $2 \quad V_{2}\left(\mathbb{R}^{4}\right)=S O(4) / S O(2)=T_{1} S^{3} \Rightarrow 1$ Sasaki-Einstein metric
Common properties of $\mathbb{C} P^{3}, \mathbb{F}^{3}$ and $V_{2}\left(\mathbb{R}^{4}\right)$:

- spin manifolds which carry Killing spinors (KS) $\psi: \nabla_{X}^{g} \psi=k X \cdot \psi$.
- KS ψ realize equality case in Friedrich's eigenvalue estimate for the Riemannian Dirac operator D^{g} on compact spin mnfds:
[Friedrich, 80]

$$
\lambda^{2}\left(D^{g}\right) \geq \frac{n}{4(n-1)} \min _{x \in M^{n}} \operatorname{Scal}^{g}
$$

Comparison of curvatures

Starting point: Compare ∇ and ∇^{g} curvatures:
Difference tensor: $S(X, Y):=\sum_{i, j=1}^{n} T\left(e_{i}, X, e_{j}\right) T\left(e_{i}, Y, e_{j}\right) \quad$ (symmetric)
Curvature: $\operatorname{Ric}^{\nabla}(X, Y)=\operatorname{Ric}^{g}(X, Y)-\frac{1}{4} S(X, Y)-\frac{1}{2} \delta T(X, Y)$

$$
s^{\nabla}=s^{g}-\frac{3}{2}\|T\|^{2}
$$

- δT measures the skew symmetric part of $\operatorname{Ric}^{\nabla}$, (recall: $\nabla T=0 \Rightarrow \delta T=0$)
- denote by $S\left(\operatorname{Ric}^{\nabla}\right)$ the symmetric part of the Ricci tensor

Einstein manifolds - the skew torsion case
Variational principle: The critical points of [This section: A-Ferreira, 2012]

$$
\int_{M}\left[s^{\nabla}-2 \Lambda\right] d \mathrm{vol}_{g}
$$

are pairs (g, T) satisfying $S\left(\operatorname{Ric}^{\nabla}\right)=\left(s^{\nabla} / 2-\Lambda\right) g$. As in the Riemannian case, taking the trace then implies $s^{\nabla} / 2-\Lambda=s^{\nabla} / n$.

Dfn. (M, g, T) is

- 'Einstein with skew torsion' if the connection ∇ with torsion T satisfies $S\left(\operatorname{Ric}^{\nabla}\right)=\left(s^{\nabla} / n\right) g$,
- 'Einstein with parallel skew torsion' if it satisfies in addition $\nabla T=0$.

Exa. $M=S^{3}$ with standard metric: Einstein, $\mathrm{Scal}^{g}=6$, parallelizable. $f: S^{3} \longrightarrow \mathbb{R}$ any non-constant function, $T:=2 f e^{1} \wedge e^{2} \wedge e^{3}$. Then

- ∇ Einstein with skew torsion, scalar curvature: $s^{\nabla}=6\left(1-f(x)^{2}\right)$: not constant, any sign possible (even on compact mnfds).

Einstein manifolds with skew torsion: Topology

Q: What is a good condition on torsion T that ensures the same properties as in the Riemannian case?

Thm. Assume (M, g, T) is Einstein with parallel skew torsion. Then

1) Scal^{∇} and Scal^{g} are constant
2) If M complete connected and $\operatorname{Scal}^{\nabla}>0$, then M is compact and $\pi_{1}(M)$ is finite

Proof.

1): Clever computation with divergences of $\operatorname{Ric}^{g}, \operatorname{Ric}^{\nabla}$ and $d s^{\nabla}, d s^{g}$.
2): Check conditions of Bonnet-Myers Thm, i. e. $\operatorname{Ric}^{g}(X, X) \geq c\|X\|^{2}$ for some $c>0$ and all $X \in T M$. But

$$
\begin{gathered}
\operatorname{Ric}^{g}(X, X)=\operatorname{Ric}^{\nabla}(X, X)+\frac{1}{4} S(X, X)=\frac{s^{\nabla}}{n}\|X\|^{2}+\frac{1}{4} S(X, X) \geq \\
\frac{s^{\nabla}}{n}\|X\|^{2}
\end{gathered}
$$

Dfn. Call T of 'Einstein type' if $S=c \cdot g$:
If ∇^{g} is Riemannian Einstein, ∇ will then be Einstein with skew torsion.
Lemma. Write $T=\sum_{i j k} T_{i j k} e_{i j k}$. T is of Einstein type iff

- no term of the form $T_{i j a} e_{i j a}+T_{i j b} e_{i j b}$ with $a=b$ occurs;
- if i and j are two indices in $1, \ldots, n$ then the number of occurrences of i and j in T coincides;
- if $\{i, j, k\}$ and $\{a, b, c\}$ are two sets of indices then $T_{i j k}^{2}=T_{a b c}^{2}$.
\rightarrow easy procedure for producing further examples of ∇-Einstein metrics for manifolds that are parallelizable and carry an Einstein metric

Normal forms of 3 -forms under GL(n, \mathbb{R}): Schouten 1931, Westwick 1981:

Riemannian Einstein manifolds (M, g) will never be Einstein with skew torsion in dimensions 4 and 5 .

Normal forms of 3 -forms $(n \leq 7)$

Outlook:

- (M, g, J) 4-dim. compact Hermitian non-Kähler mnfd, Einstein with parallel skew torsion, its universal cover is isometric to $\mathbb{R} \times S^{3}$.
- For $n=4, \exists$ alternative approach through decomposition of curvature tensor; the Hitchin-Thorpe ineq. still holds (for compact. oriented) and for parallel torsion, the notions coincide
- All nearly Kähler mnfds $(n=6)$ and nearly parallel G_{2} mnfds ($n=7$) are Einstein with parallel skew torsion ($\mathrm{Scal}^{\nabla}>0$);
- Any Einstein-Sasaki mnfd admits a deformation of the metric that is Einstein with parallel skew torsion and $\operatorname{Ric}^{\nabla}=0$
[\Rightarrow many homogeneous examples of ∇-Ricci flat manifolds which are not flat, as opposed to the Riemannian case!]
- Every 7-dim. 3-Sasaki mnfd carries 3 different connections that turn it into an Einstein manifold with parallel skew torsion; it admits a deformation of the metric that carries an Einstein structure with parallel skew torsion.

Literature

I. Agricola and A.C. Ferreira, Einstein manifolds with skew torsion, arXiv:1209.5886 [math.DG], to appear in Quart. J. Math. (published online)
I. Agricola and Th. Friedrich, A note on flat metric connections with antisymmetric torsion, Differ. Geom. Appl. 28 (2010), 480-487.
C. Olmos, S. Reggiani, The skew-torsion holonomy theorem and naturally reductive spaces, Journ. Reine Angew. Math. 664 (2012), 29-53.

