Non-integrable geometries, torsion, and holonomy
IV: Classification of naturally reductive homogeneous spaces

Prof. Dr. habil. Ilka Agricola
Philipps-Universität Marburg

Torino, Carnival Differential Geometry school

Naturally reductive homogeneous spaces

Traditional approach:
(M, g) a Riemannian manifold, $M=G / H$ s.t. G is a group of isometries acting transitively and effectively

Dfn. $M=G / H$ is naturally reductive if \mathfrak{h} admits a reductive complement \mathfrak{m} in \mathfrak{g} s.t.

$$
\begin{equation*}
\left\langle[X, Y]_{\mathfrak{m}}, Z\right\rangle+\left\langle Y,[X, Z]_{\mathfrak{m}}\right\rangle=0 \text { for all } X, Y, Z \in \mathfrak{m} \tag{*}
\end{equation*}
$$

where $\langle-,-\rangle$ denotes the inner product on \mathfrak{m} induced from g.
The PFB $G \rightarrow G / H$ induces a metric connection ∇ with torsion

$$
g(T(X, Y), Z):=T(X, Y, Z)=-\left\langle[X, Y]_{\mathfrak{m}}, Z\right\rangle
$$

the so-called canonical connection. It always satisfies $\nabla T=\nabla \mathcal{R}=0$.
Observation: condition $(*) \Leftrightarrow T$ is a 3 -form, i.e. $T \in \Lambda^{3}(M)$.

Conversely:
Thm. A Riemannian manifold equipped with a [regular] homogeneous structure, i. e. a metric connection ∇ with torsion T and curvature \mathcal{R} such that $\nabla \mathcal{R}=0$ and $\nabla T=0$, is locally isometric to a homogeneous space. [Ambrose-Singer, 1958, Tricerri 1993]

However, a classification in all dimensions is impossible!
Main pb: \nexists invariant theory for $\Lambda^{3}\left(\mathbb{R}^{n}\right)$ under $\operatorname{SO}(n)$ for $n \geq 6$

- Use torsion (instead of curvature) as basic geometric quantity, find a G-structure inducing the nat. red. structure
In this talk: General strategy, some general results, classification for $n \leq 6$ [joint work with Ana C. Ferreira, Th. Friedrich]

Set-up: (M, g) Riemannian mnfd, ∇ metric conn., ∇^{g} Levi-Civita conn.

$$
\begin{aligned}
T(X, Y, Z) & =g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right) \in \Lambda^{3}\left(M^{n}\right) \\
\nabla_{X} Y & =\nabla_{X}^{g} Y+\frac{1}{2} T(X, Y,-)
\end{aligned}
$$

(M, g, T) carries nat. red. homog. structure if $\nabla \mathcal{R}=0$ and $\nabla T=0$

Obviously:

Review of some classical results

- all isotropy irreducible homogeneous manifolds are naturally reductive
- the \pm-connections on any Lie group with a biinvariant metric are naturally reductive (and, by the way, flat)
[Cartan-Schouten, 1926]
- construction / classification (under some assumptions) of left-invariant naturally reductive metrics on compact Lie groups [D'Atri-Ziller, 1979]
- All 6-dim. homog. nearly Kähler mnfds (w.r.t. their canonical almost Hermitian structure) are naturally reductive. These are precisely: $S^{3} \times S^{3}$, $\mathbb{C P}^{3}$, the flag manifold $F(1,2)=\mathrm{U}(3) / \mathrm{U}(1)^{3}$, and $S^{6}=G_{2} / \mathrm{SU}(3)$.
- Known classifications:
- dimension 3 [Tricerri-Vanhecke, 1983], dimension 4 [Kowalski-Vanhecke, 1983], dimension 5 [Kowalski-Vanhecke, 1985]

These proceed by finding normal forms for the curvature operator, more details to follow later.

An important tool: the 4 -form σ_{T}

Dfn. For any $T \in \Lambda^{3}(M)$, define $\left(e_{1}, \ldots, e_{n}\right.$ a local ONF)
$\left.\left.\sigma_{T}:=\frac{1}{2} \sum_{i=1}^{n}\left(e_{i}\right\lrcorner T\right) \wedge\left(e_{i}\right\lrcorner T\right)=\stackrel{X, Y, Z}{\mathfrak{S}} g(T(X, Y), T(Z, V))$

- σ_{T} measures the 'degeneracy' of T and, if non degenerate, induces the geometric structure on M
- σ_{T} appears in many important relations:
* 1st Bianchi identity: $\stackrel{X, Y, Z}{S} \mathcal{R}(X, Y, Z, V)=\sigma_{T}(X, Y, Z, V)$
* $T^{2}=-2 \sigma_{T}+\|T\|^{2}$ in the Clifford algebra
* If $\nabla T=0: d T=2 \sigma_{T}$ and $\nabla^{g} T=\frac{1}{2} \sigma_{T}$
either $\sigma_{T}=0$ or $\mathfrak{h o l}^{\nabla} \subset \mathfrak{i s o}(T)$ is non-trivial

σ_{T} and the Nomizu construction

Idea: for $M=G / H$, reconstruct \mathfrak{g} from $\mathfrak{h}, T, \mathcal{R}$ and $V \cong T_{x} M$
Set-up: \mathfrak{h} a real Lie algebra, V a real f.d. \mathfrak{h}-module with \mathfrak{h}-invariant pos. def. scalar product \langle,$\rangle , i. e. \mathfrak{h} \subset \mathfrak{s o}(V) \cong \Lambda^{2} V$
$\mathcal{R}: \Lambda^{2} V \rightarrow \mathfrak{h}$ an \mathfrak{h}-equivariant map, $T \in\left(\Lambda^{3} V\right)^{\mathfrak{h}}$ an \mathfrak{h}-invariant 3 -form,
Define a Lie algebra structure on $\mathfrak{g}:=\mathfrak{h} \oplus V$ by $(A, B \in \mathfrak{h}, X, Y \in V)$:

$$
[A+X, B+Y]:=\left([A, B]_{\mathfrak{h}}-\mathcal{R}(X, Y)\right)+(A Y-B X-T(X, Y))
$$

Jacobi identity for $\mathfrak{g} \Leftrightarrow$

- ${ }^{X, Y, Z} \mathcal{S}(X, Y, Z, V)=\sigma_{T}(X, Y, Z, V) \quad$ (1st Bianchi condition)
- ${ }^{X, Y, Z} \mathcal{S}(T(X, Y), Z)=0 \quad$ (2nd Bianchi condition)

Observation: If (M, g, T) satisfies $\nabla T=0$, then $\mathcal{R}: \Lambda^{2}(M) \rightarrow \Lambda^{2}(M)$ is symmetric (as in the Riemannian case).

Consider $\mathcal{C}(V):=\mathcal{C}(V,-\langle\rangle$,$) : Clifford algebra, (recall: T^{2}=-2 \sigma_{T}+\|T\|^{2}$)
Thm. If $\mathcal{R}: \Lambda^{2} V \rightarrow \mathfrak{h} \subset \Lambda^{2} V$ is symmetric, the first Bianchi condition is equivalent to $T^{2}+\mathcal{R} \in \mathbb{R} \subset \mathcal{C}(V)\left(\Leftrightarrow 2 \sigma_{T}=\mathcal{R} \subset \mathcal{C}(V)\right)$, and the second Bianchi condition holds automatically.

Exists in the literature in various formulations: based on an algebraic identity (Kostant); crucial step in a formula of Parthasarathy type for the square of the Dirac operator (A, '03); previously used by Schoemann 2007 and Fr. 2007, but without a clear statement nor a proof.

Practical relevance: allows to evaluate the 1st Bianchi identity in one condition!

Splitting theorems

Dfn. For T 3-form, define

- kernel: $\operatorname{ker} T=\{X \in T M \mid X\lrcorner T=0\}$
- Lie algebra generated by its image: $\mathfrak{g}_{T}:=\operatorname{Lie}\langle X\lrcorner T|X \in V\rangle$
\mathfrak{g}_{T} is not related in any obvious way to the isotropy algebra of T !
Thm 1. Let (M, g, T) be a c.s.c. Riemannian mfld with parallel skew torsion T. Then $\operatorname{ker} T$ and $(\operatorname{ker} T)^{\perp}$ are ∇-parallel and ∇^{g}-parallel integrable distributions, M is a Riemannian product s.t.

$$
(M, g, T)=\left(M_{1}, g_{1}, T_{1}=0\right) \times\left(M_{2}, g_{2}, T_{2}\right), \quad \operatorname{ker} T_{2}=\{0\}
$$

Thm 2. Let (M, g, T) be a c.s.c. Riemannian mfld with parallel skew torsion T s.t. $\sigma_{T}=0, T M=\mathcal{T}_{1} \oplus \ldots \oplus \mathcal{T}_{q}$ the decomposition of $T M$ in \mathfrak{g}_{T}-irreducible, ∇-par. distributions. Then all \mathcal{T}_{i} are ∇^{g}-par. and integrable, M is a Riemannian product, and the torsion T splits accordingly

$$
(M, g, T)=\left(M_{1}, g_{1}, T_{1}\right) \times \ldots \times\left(M_{q}, g_{q}, T_{q}\right)
$$

A structure theorem for vanishing σ_{T}

Thm. Let $\left(M^{n}, g\right)$ be an irreducible, c.s.c. Riemannian mnfld with parallel skew torsion $T \neq 0$ s.t. $\sigma_{T}=0, n \geq 5$. Then M^{n} is a simple compact Lie group with biinvariant metric or its dual noncompact symmetric space.

Key ideas: $\quad \sigma_{T}=0 \Rightarrow$ Nomizu construction yields Lie algebra structure on $T M$ use \mathfrak{g}_{T}; use STHT to show that G_{T} is simple and acts on $T M$ by its adjoint rep.
prove that $\mathfrak{g}_{T}=\mathfrak{i s o}(T)=\mathfrak{h o l}^{g}$, hence acts irreducibly on $T M$, hence M is an irred. symmetric space by Berger's Thm

Exa. Fix $T \in \Lambda^{3}\left(\mathbb{R}^{n}\right)$ with constant coefficients s.t. $\sigma_{T}=0$. Then the flat space $\left(\mathbb{R}^{n}, g, T\right)$ is a reducible Riemannian mnfld with parallel skew torsion and $\sigma_{T}=0 \rightarrow$ assumption ' M irreducible' is crucial! (the Riemannian manifold is decomposable, but the torsion is not)

Classification of nat. red. spaces in $n=3$

[Tricerri-Vanhecke, 1983]
Then $\sigma_{T}=0$, and the Nomizu construction can be applied directly to obtain in a few lines:

Thm. Let $\left(M^{3}, g, T \neq 0\right)$ be a 3 -dim. c.s.c. Riemannian mnfld with a naturally reductive structure. Then $\left(M^{3}, g\right)$ is one of the following:

- \mathbb{R}^{3}, S^{3} or \mathbb{H}^{3};
- isometric to one of the following Lie groups with a suitable left-invariant metric:
$S U(2), \quad \widetilde{S L}(2, \mathbb{R}), \quad$ or the 3 -dim. Heisenberg group H^{3}
N.B. A general classification of mnfds with par. skew torsion is meaninless - any 3-dim. volume form of a metric connection is parallel.

Proof: $T=\lambda e_{123} ; M$ is either Einstein (\rightarrow space form) or $\mathfrak{h o l}{ }^{\nabla}$ is one-dim., i. e. $\mathfrak{h o l}{ }^{\nabla}=\mathbb{R} \cdot \Omega$ and $\mathcal{R}=\alpha \Omega \odot \Omega$.

By the Nomizu construction, e_{1}, e_{2}, e_{3}, and Ω are a basis of \mathfrak{g} with commutator relations

$$
\begin{array}{rll}
{\left[e_{1}, e_{2}\right]=-\alpha \Omega-\lambda e_{3}=: \tilde{\Omega},} & {\left[e_{1}, e_{3}\right]=\lambda e_{2},} & {\left[e_{2}, e_{3}\right]=-\lambda e_{1}} \\
{\left[\Omega, e_{1}\right]=e_{2},} & {\left[\Omega, e_{2}\right]=-e_{1},} & {\left[\Omega, e_{3}\right]=0 .}
\end{array}
$$

The 3 -dimensional subspace \mathfrak{h} spanned by e_{1}, e_{2}, and $\tilde{\Omega}$ is a Lie subalgebra of \mathfrak{g} that is transversal to the isotropy algebra $\mathfrak{k}($ since $\lambda \neq 0)$. Consequently, M^{3} is a Lie group with a left invariant metric. One checks that \mathfrak{h} has the commutator relations

$$
\left[e_{1}, e_{2}\right]=\tilde{\Omega}, \quad\left[\tilde{\Omega}, e_{1}\right]=\left(\lambda^{2}-\alpha\right) e_{2}, \quad\left[e_{2}, \tilde{\Omega}\right]=\left(\lambda^{2}-\alpha\right) e_{1}
$$

For $\alpha=\lambda^{2}$, this is the 3 -dimensional Heisenberg Lie algebra, otherwise it is $\mathfrak{s u}(2)$ or $\mathfrak{s l}(2, \mathbb{R})$ depending on the sign of $\lambda^{2}-\alpha$.

Classification of nat. red. spaces in $n=4$

Thm. ($\left.M^{4}, g, T \neq 0\right)$ a c.s.c. Riem. 4-mnfld with parallel skew torsion.

1) $V:=* T$ is a ∇^{g}-parallel vector field.
2) $\operatorname{Hol}\left(\nabla^{g}\right) \subset \operatorname{SO}(3)$, hence M^{4} is isometric to a product $N^{3} \times \mathbb{R}$, where $\left(N^{3}, g\right)$ is a 3-manifold with a parallel 3 -form T.

- T has normal form $T=e_{123}$, so $\operatorname{dim} \operatorname{ker} T=1$ and 2) follows at once from our 1st splitting thm: but the existence of V explains directly \& geometrically the result in a few lines.
- Thm shows that the next result does not rely on the curvature or the homogeneity

Since a Riemannian product is is nat. red. iff both factors are nar. red., we conclude:

Cor. A 4-dim. nat. reductive Riemannian manifold with $T \neq 0$ is locally isometric to a Riemannian product $N^{3} \times \mathbb{R}$, where N^{3} is a 3-dimensional naturally reductive Riemannian manifold.
[Kowalski-Vanhecke, 1983]

Classification of nat. red. spaces in $n=5$
Assume $\left(M^{5}, g, T \neq 0\right)$ is Riemannian mnfd with parallel skew torsion

- \exists a local frame s.t (for constants $\lambda, \varrho \in \mathbb{R}$)

$$
T=-\left(\varrho e_{125}+\lambda e_{345}\right), \quad * T=-\left(\varrho e_{34}+\lambda e_{12}\right), \quad \sigma_{T}=\varrho \lambda e_{1234}
$$

- Case A: $\sigma_{T}=0(\Leftrightarrow \varrho \lambda=0)$: apply 2 nd splitting thm, M^{5} is then loc. a product $N^{3} \times N^{2}$ (if nat. red., N^{2} has constant Gaussian curvature)
- Case B: $\sigma_{T} \neq 0$, two subcases:

```
* Case B.1: \(\lambda \neq \varrho, \operatorname{Iso}(T)=\mathrm{SO}(2) \times \mathrm{SO}(2)\)
* Case B.2: \(\lambda=\varrho, \operatorname{Iso}(T)=\mathrm{U}(2)\)
```

Recall: Given a G-structure on (M, g), a characteristic connection is a metric connection with skew torsion preserving the G-structure (if existent, it's unique)

$n=5$: The induced contact structure

Case B: $\sigma_{T} \neq 0$
Dfn. A metric almost contact structure (φ, η) on $\left(M^{2 n+1}, g\right)$ is called $(N$: Nijenhuis tensor, $F(X, Y):=g(X, \varphi Y))$

- quasi-Sasakian if $N=0$ and $d F=0$
- α-Sasakian if $N=0$ and $d \eta=\alpha F$ (Sasaki: $\alpha=2$)

Thm. Let $\left(M^{5}, g, T\right)$ be a Riemannian 5 -mnfld with parallel skew torsion T such that $\sigma_{T} \neq 0$. Then M is a quasi-Sasakian manifold and ∇ is its characteristic connection.
The structure is α-Sasakian iff $\lambda=\varrho$ (case B.2), and it is Sasakian if $\lambda=\varrho=2$.

Construction: $V:=* \sigma_{T} \neq 0$ is a ∇-parallel Killing vector field of constant length \equiv contact direction $\eta=e_{5}$ (up to normalisation)
Check: $T=\eta \wedge d \eta$, define $F=-\left(e_{12}+e_{34}\right)$, then prove that this
works.

$n=5:$ Classification I

For $\lambda=\varrho$ (case B.2), no classification for parallel skew torsion is possible (many non-homogeneous Sasakian mnfds are known). But for

Case B.1: $\lambda \neq \varrho$
Thm. Let $\left(M^{5}, g, T\right)$ be Riemannian 5 -manifold with parallel skew torsion s.t. T has the normal form

$$
T=-\left(\varrho e_{125}+\lambda e_{345}\right), \quad \varrho \lambda \neq 0 \text { and } \varrho \neq \lambda
$$

Then $\nabla \mathcal{R}=0$, i.e. M is locally naturally reductive, and the family of admissible torsion forms and curvature operators depends on 4 parameters.
[Use Clifford criterion to relate \mathcal{R} and σ_{T}]
Now one can apply the Nomizu construction to obtain the classification:

$n=5:$ Classification II

Thm. A c.s.c. Riemannian 5 -mnfld $\left(M^{5}, g, T\right)$ with parallel skew torsion $T=-\left(\varrho e_{125}+\lambda e_{345}\right)$ with $\varrho \lambda \neq 0$ is isometric to one of the following naturally reductive homogeneous spaces:

If $\lambda \neq \varrho(\mathrm{B} .1)$:
a) The 5-dimensional Heisenberg group H^{5} with a two-parameter family of left-invariant metrics,
b) A manifold of type $\left(G_{1} \times G_{2}\right) / \mathrm{SO}(2)$ where G_{1} and G_{2} are either $\mathrm{SU}(2), \mathrm{SL}(2, \mathbb{R})$, or H^{3}, but not both equal to H^{3} with one parameter $r \in \mathbb{Q}$ classifying the embedding of $\mathrm{SO}(2)$ and a two-parameter family of homogeneous metrics.

If $\lambda=\varrho(\mathrm{B} .2):$ One of the spaces above or $\mathrm{SU}(3) / \mathrm{SU}(2)$ or $\mathrm{SU}(2,1) / \mathrm{SU}(2)$ (the family of metrics depends on two parameters).

Example: The $(2 n+1)$-dimensional Heisenberg group

$$
H^{2 n+1}=\left\{\left[\begin{array}{ccc}
1 & x^{t} & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right] ; x, y \in \mathbb{R}^{n}, z \in \mathbb{R}\right\} \cong \begin{array}{r}
\mathbb{R}^{2 n+1}, \text { local coordinates } \\
x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z
\end{array}
$$

- Metric: parameters $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, all $\lambda_{i}>0$

$$
g_{\lambda}=\sum_{i=1}^{n} \frac{1}{\lambda_{i}}\left(d x_{i}^{2}+d y_{i}^{2}\right)+\left[d z-\sum_{j=1}^{n} x_{j} d y_{j}\right]^{2}
$$

- Contact str.: $\eta=d z-\sum_{i=1}^{n} x_{i} d y_{1}, \varphi=\sum_{i=1}^{n}\left[d x_{i} \otimes\left(\frac{\partial}{\partial y_{i}}+x_{i} \frac{\partial}{\partial z}\right)-d y_{i} \otimes \frac{\partial}{\partial x_{i}}\right]$
- Characteristic connection ∇ : torsion: $T=\eta \wedge d \eta=-\sum_{i=1}^{n} \lambda_{i} \eta \wedge \alpha_{i} \wedge \beta_{i}$

Curvature: $\mathcal{R}=\sum_{i \leq j}^{n} \lambda_{i} \lambda_{j}\left(\alpha_{i} \wedge \beta_{i}\right)^{2} \quad$ [read: symm. tensor product of 2-forms]
Nice property: For $n \geq 2, H^{2 n+1}$ admits Killing spinors with torsion, i. e. solutions of $\nabla_{X} \psi=\alpha \psi$ (but no Riemannian Killing spinors, i. e. no sol. for $\nabla=\nabla^{g} / \nexists$ Einstein metric)
[A-Becker-Bender, 2012]

The case $n=6$ I

Assume $\operatorname{ker} T=0$ from beginning. Distinction $\sigma_{T}=, \neq 0$ is too crude.
$* \sigma_{T}$: a 2-form \equiv skew-symm. endomorphism, classify by its rank! $(=0,2,4,6$ / Case A, B, C, D)

Geometry: Can $* \sigma_{T}$ be interpreted as an almost complex structure?
Exa. Recall: $\Lambda^{3}\left(\mathbb{R}^{6}\right) \stackrel{\mathfrak{s o}(n)}{=} W_{1}^{(2)} \oplus W_{3}^{(12)} \oplus W_{4}^{(6)}$: types of almost complex structures with characteristic connection

On $S^{3} \times S^{3}$, there exist 3 -forms with the following subcases:

Type	$W_{1} \oplus W_{3}$	W_{1}	$W_{3} \oplus W_{4}$	--
$\operatorname{rk}\left(* \sigma_{T}\right)$	6	6	2	0
$\mathfrak{i s o}(T)$	$\mathfrak{s o}(3)$	$\mathfrak{s u}(3)$	T^{2}	$\mathfrak{s o}(3) \times \mathfrak{s o}(3)$

$W_{1} \oplus W_{3}:$ torsion $T=\alpha e_{135}+\alpha^{\prime} e_{246}+\beta\left(e_{245}+e_{236}+e_{146}\right)$.
$W_{3} \oplus W_{4}:$ torsion $T=\left(e_{12}-e_{34}\right) \wedge\left(\sigma e_{5}+\nu e_{6}\right)+\tau\left(e_{12}-e_{34}\right) \wedge e_{5}$.

Case A: $\sigma_{T}=0$
This covers, for example, torsions of form $\mu e_{123}+\nu e_{456}$. This is basically all by our 2nd splitting thm:

Thm. A c.s.c. Riemannian 6 -mnfld with parallel skew torsion T s.t. $\sigma_{T}=0$ and $\operatorname{ker} T=0$ splits into two 3 -dimensional manifolds with parallel skew torsion,

$$
\left(M^{6}, g, T\right)=\left(N_{1}^{3}, g_{1}, T_{1}\right) \times\left(N_{2}^{3}, g_{2}, T_{2}\right)
$$

Cor. Any 6 -dim. nat. red. homog. space with $\sigma_{T}=0$ and $\operatorname{ker} T=0$ is locally isometric to a product of two 3 -dimensional nat. red. homog. spaces.

The case $n=6$ II

Case B: $\operatorname{rk}\left(* \sigma_{T}\right)=2$

A priori, it is not possible to define an almost complex structure.
Thm. Let $\left(M^{6}, g, T\right)$ be a 6 -mnfd with parallel skew torsion s.t. $\operatorname{ker} T=$ 0 , $\operatorname{rk}\left(* \sigma_{T}\right)=2$. Then $\nabla \mathcal{R}=0$, i. e. M is nat. red., and there exist constants $a, b, c, \alpha, \beta \in \mathbb{R}$ s.t.

$$
\begin{gathered}
T=\alpha\left(e_{12}+e_{34}\right) \wedge e_{5}+\beta\left(e_{12}-e_{34}\right) \wedge e_{6} \\
\mathcal{R}=a\left(e_{12}+e_{34}\right)^{2}+c\left(e_{12}+e_{34}\right) \odot\left(e_{12}-e_{34}\right)+b\left(e_{12}-e_{34}\right)^{2}
\end{gathered}
$$

with the relation $a+b=-\left(\alpha^{2}+\beta^{2}\right)$.
Now perform Nomizu construction to conclude:
Thm. A c.s.c. Riemannian 6 -mnfd with parallel skew torsion T and $\operatorname{rk}\left(* \sigma_{T}\right)=2$ is the product $G_{1} \times G_{2}$ of two Lie groups equipped with a family of left invariant metrics. G_{1} and G_{2} are either $S^{3}=\mathrm{SU}(2), \widetilde{\mathrm{SL}}(2, \mathbb{R})$, or H^{3}.

The case $n=6$ III

Case B: $\operatorname{rk}\left(* \sigma_{T}\right)=4$
Thm. For the torsion form of a metric connection with parallel skew torsion ($\operatorname{ker} T=0$), the case $r k\left(* \sigma_{T}\right)=4$ cannot occur.
[but: such forms exist if $\nabla T \neq 0$! - these results explain why a classification is possible without knowing the orbit class. of $\Lambda^{3}\left(\mathbb{R}^{6}\right)$ under $\mathrm{SO}(6)$]

The case $n=6$ IV

Case C: $\operatorname{rk}\left(* \sigma_{T}\right)=6$
Thm. Such a 6-mnfd with parallel skew torsion admits an almost complex structure J of Gray-Hervella class $W_{1} \oplus W_{3}$.

All three eigenvalues of $* \sigma_{T}$ are equal, hence $* \sigma_{T}$ is proportional to Ω, the fundamental form of J. It's either nearly Kähler $\left(W_{1}\right)$, or it is naturally reductive and $\mathfrak{h o l}{ }^{\nabla}=\mathfrak{s o}(3)$.

Why no W_{4} part? if $\sigma_{T}=* \Omega$, then $d \sigma_{T}=d * \Omega$; but $d \sigma_{T}=(d d T) / 2=0$, hence $\delta \Omega=0$.
N.B. If class $W_{1}\left(M^{6}\right.$ nearly Kähler mnfd): the only homogeneous ones are $S^{6}, S^{3} \times S^{3}, \mathbb{C P}^{3}, F(1,2)$.
[Butruille, 2005]
It is not known whether there exist non-homogeneous nearly Kähler mnfds.
Again, we have an explicit formula for torsion and curvature, then perform the Nomizu construction (. . . and survive).

Example: $\mathrm{SL}(2, \mathbb{C})$ viewed as a 6 -dimensional real mnfd

- Write $\mathfrak{s l}(2, \mathbb{C})=\mathfrak{s u}(2) \oplus i \mathfrak{s u}(2)$;

Killing form $\beta(X, Y)$ is neg. def. on $\mathfrak{s u}(2)$, pos. def.on $i \mathfrak{s u}(2)$

- $M^{6}=G / H=\mathrm{SL}(2, \mathbb{C}) \times \mathrm{SU}(2) / \mathrm{SU}(2)$ with $H=\mathrm{SU}(2)$ embedded diag (recall that $\mathfrak{h o l}{ }^{\nabla}=\mathfrak{s o}(3)$; want that isotropy rep. = holonomy rep.)
- \mathfrak{m}_{α} red. compl. of \mathfrak{h} inside $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C}) \oplus \mathfrak{s u}(2)$ depending on $\alpha \in \mathbb{R}-\{1\}$, $\mathfrak{h}=\{(B, B): B \in \mathfrak{s u}(2)\}, \quad \mathfrak{m}_{\alpha}:=\{(A+\alpha B, B): A \in i \mathfrak{s u}(2), B \in \mathfrak{s u}(2)\}$.
- Riemannian metric:
$g_{\lambda}\left(\left(A_{1}+\alpha B_{1}, B_{1}\right),\left(A_{2}+\alpha B_{2}, B_{2}\right)\right):=\beta\left(A_{1}, A_{2}\right)-\frac{1}{\lambda^{2}} \beta\left(B_{1}, B_{2}\right), \quad \lambda>0$
- In suitable ONB: almost hermitian str.: $\Omega:=x_{12}+x_{34}+x_{56}$ with torsion $T=N+d \Omega \circ J=\left[2 \lambda(1-\alpha)+\frac{4}{\lambda(1-\alpha)}\right] x_{135}+\frac{2}{\lambda(1-\alpha)}\left[x_{146}+x_{236}+x_{245}\right]$.
- Curvature: has to be a map $\mathcal{R}: \Lambda^{2}\left(M^{6}\right) \rightarrow \mathfrak{h o l}^{\nabla} \subset \mathfrak{s o}(6)$, here: mainly projection on $\mathfrak{h o l}{ }^{\nabla}=\mathfrak{s o}(3)$.
- $\nabla T=\nabla \mathcal{R}=0$, i. e. naturally reductive for all α, λ; type $W_{1} \oplus W_{3}$ or W_{3}

The case $n=6 \mathbf{V}$

Final result of Nomizu construction:
Thm. A c.s.c. Riemannian 6 -mnfd with parallel skew torsion $T, \operatorname{rk}\left(* \sigma_{T}\right)=$ 6 and $\operatorname{ker} T=0$ that is not isometric to a nearly Kähler manifold is one of the following Lie groups with a suitable family of left-invariant metrics:

- The nilpotent Lie group with Lie algebra $\mathbb{R}^{3} \times \mathbb{R}^{3}$ with commutator $\left[\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right)\right]=\left(0, v_{1} \times v_{2}\right)$,
- the direct or the semidirect product of S^{3} with \mathbb{R}^{3},
- the product $S^{3} \times S^{3}$,
- the Lie group $\mathrm{SL}(2, \mathbb{C})$ viewed as a 6 -dimensional real mnfd.
- prove that manifold is indeed a Lie group,
- identify its abstract Lie algebra by degeneracy / EV of its Killing form,
- find 3-dim. subalgebra defining a 3-dim. quotient and prove that the 6-dim. Lie alg. is its isometry algebra;
for example, $\mathrm{SL}(2, \mathbb{C})$ appears because it's the isometry group of hyperbolic space \mathbb{H}^{3}

Literature

I. Agricola, A. C. Ferreira, Th. Friedrich, Classification of naturally reductive homogeneous spaces in dimensions $n \leq 6$, preprint
B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), 447-501.
O. Kowalski and L. Vanhecke, Four-dimensional naturally reductive homogeneous spaces, Differential geometry on homogeneous spaces, Conf. Torino/Italy 1983, Rend. Semin. Mat., Torino, Fasc. Spec., 223-232 (1983).
O. Kowalski and L. Vanhecke, Classification of five-dimensional naturally reductive spaces, Math. Proc. Camb. Philos. Soc. 97 (1985), 445-463.
F. Tricerri, Locally homogeneous Riemannian manifolds, Rend. Sem. Mat. Univ. Politec. Torino 50 (1993), 411-426, Differential Geometry (Turin, 1992).

