DGA 2019

Generalizations of 3-Sasakian manifolds and skew torsion

Joint work with Giulia Dileo (Bari) and Leander Stecker (Marburg)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ● ●

A few classical facts

- 1960: Sasaki introduces Sasakian manifolds
- 1970: 3-Sasakian manifolds defined (Kuo, Udriste)
- Quick definition:

 (M^{4n+3},g) is 3-Sasakian if its metric cone $(\mathbb{R}^+\times M,dr^2+r^2g)$ has holonomy inside $\mathrm{Sp}(n+1),$ i.e. it is hyperkähler.

- odd Betti numbers up to middle dimension are divisible by 4, structure group is ${\rm Sp}(n) imes {\rm Id}_3$, it's spin (Kuo)
- they are Einstein (Kashiwada, 1971)
- relation to quaternionic Hopf fibration $S^3 \rightarrow S^7 \rightarrow S^4$ (Tanno, 1971) and quaternionic Kähler manifolds (Ishihara, 1974; Salamon, 1982)
- \Leftrightarrow there exist three Killing spinors (Friedrich-Kath, 1990)
- Many examples, classification of homogeneous case (Boyer-Galicki, \geq 1993)
- Berger's holonomy Theorem: Does not cover any contact manifolds, meaning that the Levi-Civita connection is not adapted for investigating such geometries

Context: Geometry of almost 3-contact metric manifolds

Goals

Define and investigate new classes of such manifolds:

- what geometric quantities are best suited for capturing their key geometric properties in particular, the relative behaviour of the 3 almost contact structures?
- should admit 'good' metric connections with skew torsion

In particular,

- introduce 'Reeb commutator function' and 'Reeb Killing function',
- define the new class of $3-(\alpha, \delta)$ -Sasaki manifolds,
- introduce notion of φ -compatible connections,
- make them unique by a certain extra condition \rightarrow canonical connection,
- compute torsion, holonomy, curvature of this connection,
- provide lots of examples, classify the homogeneous ones, further applications (metric cone, generalized Killing spinors...),

Almost contact metric mnfds

 $(M^{2n+1},g,\eta,\xi,\varphi)$ almost contact metric mnfd if

- η : 1-form (dual to vector field ξ)
- $\langle \xi \rangle^{\perp}$ admits an almost complex structure φ compatible with g.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ● ●

Almost contact metric mnfds

 $(M^{2n+1},g,\eta,\xi,\varphi)$ almost contact metric mnfd if

- η : 1-form (dual to vector field ξ)
- $\langle \xi \rangle^{\perp}$ admits an almost complex structure φ compatible with g.

Then,

- the structure group is reducible to $U(n)\times\{1\},$
- the fundamental 2-form is defined by

$$\Phi(X,Y) = g(X,\varphi Y),$$

- it is called normal if $N_{\varphi}:=[\varphi,\varphi]+d\eta\otimes\xi\equiv0,$
- α -Sasakian, $\alpha \in \mathbb{R}^*$, if $d\eta = 2\alpha \Phi, \quad N_{\varphi} \equiv 0 \quad (\Rightarrow \xi \text{ Killing})$
- Sasakian if 1-Sasakian.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ● ●

Special geometries via connections with (skew) torsion

Given a mnfd M^n with G-structure ($G \subset SO(n)$), replace ∇^g by a metric connection ∇ with torsion that preserves the geometric structure!

torsion:
$$T(X,Y,Z) := g(\nabla_X Y - \nabla_Y X - [X,Y],Z)$$

Special case: require $T \in \Lambda^3(M^n)$ (\Leftrightarrow same geodesics as ∇^g)

$$\Rightarrow \quad g(\nabla_X Y, Z) = g(\nabla_X^g Y, Z) + \frac{1}{2}T(X, Y, Z)$$

If existent and unique it is called 'characteristic connection'.

Theorem (Friedrich-Ivanov, 2002)

An almost contact metric manifold (M, ϕ, ξ, η, g) admits a unique metric connection ∇ with skew torsion satisfying $\nabla \eta = \nabla \xi = \nabla \varphi = 0$ iff

- 1. the tensor $N_{\varphi} := [\varphi, \varphi] + d\eta \otimes \xi$ is totally skew-symmetric,
- 2. ξ is a Killing vector field.

In particular, it exists for α -Sasaki mnfds and its torsion $T = \eta \wedge d\eta$ is parallel. [Kowalski-Wegrzynowski, 1987]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Almost 3-contact metric mnfds

 $(M^{4n+3},g,\eta_i,\xi_i,\varphi_i), i=1,2,3$ almost 3-contact metric mnfd if

- each triple $(\eta_i, \xi_i, \varphi_i)$ defines an a.c.m. str. on M^{4n+3}
- $TM = \mathcal{H} \oplus \mathcal{V}$ with $\mathcal{H} := \bigcap_{i=1}^{3} \ker \eta_i,$ $\mathcal{V} := \langle \xi_1, \xi_2, \xi_3 \rangle$
- Compatibility conditions: $\xi_1 \times \xi_2 = \xi_3 \text{ on } \mathcal{V}$ $\varphi_1 \circ \varphi_2 = \varphi_3 \text{ in } \mathcal{H}$ $\varphi_1(\xi_2) = \xi_3 + \text{ cyclic perm.}$
- structure group reducible to $\operatorname{Sp}(n) \times \{1_3\}$

The manifold is said to be hypernormal if $N_{\varphi_i}\equiv 0$, i=1,2,3. Some remarkable classes:

 $\forall i = 1, 2, 3:$

3- $lpha$ -Sasakian	$(arphi_i, \xi_i, \eta_i, g)$ is $lpha$ -Sasakian	
(3-Sasakian)	$(\alpha = 1)$	$\} \Rightarrow Einstein!$
3-cosymplectic	$(\varphi_i, \xi_i, \eta_i, g)$ is cosymplectic	
3-quasi-Sasakian	$(arphi_i, \xi_i, \eta_i, g)$ is quasi Sasakian	

<u>Observe</u>: No new conditions on the relative 'behaviour' of the three single a.c.m. structures, just for each single structure!

Theorem (Kashiwada, 2001)

If $d\eta_i = 2\Phi_i$, i = 1, 2, 3, then the manifold is hypernormal (and thus 3-Sasakian).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The associated sphere of a.c.m. structures Σ_M

Any almost 3-contact metric mnfd $(M^{4n+3}, g, \eta_i, \xi_i, \varphi_i)$ comes with a sphere $\Sigma_M \cong S^2$ of almost contact metric structures:

 $\begin{aligned} \forall a &= (a_1, a_2, a_3) \in S^2 \subset \mathbb{R}^3 \text{ put} \\ \varphi_a &= \sum_{i=1}^3 a_i \varphi_i, \quad \xi_a = \sum_{i=1}^3 a_i \xi_i, \quad \eta_a = \sum_{i=1}^3 a_i \eta_i. \end{aligned}$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Then $(\varphi_a, \xi_a, \eta_a, g)$ defines an almost contact metric structure on M^{4n+3} .

Theorem (Cappelletti Montano - De Nicola - Yudin, 2016) If $N_{\varphi_i} = 0$ for all i = 1, 2, 3, then $N_{\varphi} = 0$ for all $\varphi \in \Sigma_M$.

Theorem

If each N_{φ_i} is skew symmetric on \mathcal{H} (resp. on TM), then for all $\varphi \in \Sigma_M$, N_{φ} is skew symmetric on \mathcal{H} (resp. on TM).

Proposition

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be a almost 3-contact metric manifold. If each $(\varphi_i, \xi_i, \eta_i, g)$, i = 1, 2, 3 admits a characteristic connection, the same holds for every structure in the sphere.

Proposition

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be a almost 3-contact metric manifold. If each $(\varphi_i, \xi_i, \eta_i, g)$, i = 1, 2, 3 admits a characteristic connection, the same holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion parallelizing ALL the structure tensor fields?

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ● ●

Proposition

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be a almost 3-contact metric manifold. If each $(\varphi_i, \xi_i, \eta_i, g)$, i = 1, 2, 3 admits a characteristic connection, the same holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion parallelizing ALL the structure tensor fields?

! For a 3-Sasakian manifold the characteristic connection of the structure $(\varphi_i, \xi_i, \eta_i, g)$ is

$$\nabla^i = \nabla^g + \frac{1}{2}T_i, \qquad T_i = \eta_i \wedge d\eta_i.$$

For $i \neq j$, $T_i \neq T_j$ and thus $\nabla^i \neq \nabla^j$ \Rightarrow No characteristic connection for 3-Sasakian manifolds!

Canonical connection for 7-dimensional 3-Sasaki manifolds (Agricola-Friedrich, 2010)

Let $(M,\varphi_i,\xi_i,\eta_i,g)$ be a 7-dimensional 3-Sasakian manifold. The 3-form

$$\omega := \frac{1}{2} \sum_{i} \eta_i \wedge d\eta_i + 4 \eta_{123} \qquad \eta_{123} := \eta_1 \wedge \eta_2 \wedge \eta_3$$

defines a *cocalibrated* G_2 -*structure* and hence admits a characteristic connection ∇ ; its torsion is

$$T = \sum_{i=1}^{3} \eta_i \wedge d\eta_i$$

 ∇ is called the canonical connection, and verifies the following:

- it preserves \mathcal{H} and \mathcal{V} ,
- $\nabla T = 0$,
- ∇ admits a parallel spinor ψ, called *canonical spinor*, such that the Clifford products ξ_i · ψ are exactly the 3 Riemannian Killing spinors.

Canonical connection for quaternionic Heisenberg groups

 $N_p\cong\mathbb{R}^{4p+3}$ connected, simply connected Lie group, with commutators depending on a parameter $\lambda>0.$

 N_p admits an almost 3-contact metric structure $(\varphi_i, \xi_i, \eta_i, g_\lambda)$ which is hypernormal but not 3-quasi-Sasakian. None of the metrics g_λ is Einstein.

The canonical connection is the metric connection ∇ with skew torsion (Agricola-Ferreira-Storm, 2015)

$$T = \sum_{i=1}^{3} \eta_i \wedge d\eta_i - 4\,\lambda\,\eta_{123}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It satisfies:

- $\nabla T = \nabla R = 0 \rightsquigarrow$ naturally reductive homogeneous space,
- $\mathfrak{hol}(\nabla) \simeq \mathfrak{su}(2)$, acting irreducibly on \mathcal{V} and \mathcal{H} .

Canonical connection for quaternionic Heisenberg groups

 $N_p \cong \mathbb{R}^{4p+3}$ connected, simply connected Lie group, with commutators depending on a parameter $\lambda > 0$.

 N_p admits an almost 3-contact metric structure $(\varphi_i, \xi_i, \eta_i, g_\lambda)$ which is hypernormal but not 3-quasi-Sasakian. None of the metrics g_λ is Einstein.

The canonical connection is the metric connection ∇ with skew torsion (Agricola-Ferreira-Storm, 2015)

$$T = \sum_{i=1}^{3} \eta_i \wedge d\eta_i - 4\,\lambda\,\eta_{123}$$

It satisfies:

- $\nabla T = \nabla R = 0 \rightsquigarrow$ naturally reductive homogeneous space,
- $\mathfrak{hol}(\nabla) \simeq \mathfrak{su}(2)$, acting irreducibly on \mathcal{V} and \mathcal{H} .

In the 7-dim. case, ∇ is the *characteristic connection* of a cocalibrated G_2 structure $\Rightarrow \exists$ parallel spinor field ψ and $\psi_i := \xi_i \cdot \psi$, i = 1, 2, 3, are generalised Killing spinors:

$$\nabla_{\xi_i}^g \psi_i = \frac{\lambda}{2} \,\xi_i \cdot \psi_i, \quad \nabla_{\xi_j}^g \psi_i = -\frac{\lambda}{2} \,\xi_j \cdot \psi_i \ (i \neq j), \quad \nabla_X^g \psi_i = \frac{5\lambda}{4} \, X \cdot \psi_i, X \in \mathcal{H}$$

Well-known:

- the metric cone of a 3-Sasakian manifold is hyper-Kähler
- the metric cone of the quaternionic Heisenberg group is a hyper-Kähler manifold with torsion ('HKT manifold')

Agricola-Höll, 2015: Criterion when the metric cone (for suitable a > 0)

$$(\bar{M},\bar{g}) = (M \times \mathbb{R}^+, a^2 r^2 g + dr^2)$$

of an almost 3-contact metric manifold M admits a hyper-Hermitian structure, and when it is a HKT manifold (but unclear what a 'good' large class of manifolds satisfying the criterion could be)

Well-known:

- the metric cone of a 3-Sasakian manifold is hyper-Kähler
- the metric cone of the quaternionic Heisenberg group is a hyper-Kähler manifold with torsion ('HKT manifold')

Agricola-Höll, 2015: Criterion when the metric cone (for suitable a > 0)

$$(\bar{M}, \bar{g}) = (M \times \mathbb{R}^+, a^2 r^2 g + dr^2)$$

of an almost 3-contact metric manifold M admits a hyper-Hermitian structure, and when it is a HKT manifold (but unclear what a 'good' large class of manifolds satisfying the criterion could be)

Is it possible to find a larger class of almost 3-contact metric manifolds with similar properties?

$3\text{-}(\alpha,\delta)\text{-}\mathsf{Sasaki}$ manifolds

Definition

A 3- (α, δ) -Sasaki manifold is an almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ such that

 $d\eta_i = 2\alpha \Phi_i + 2(\alpha - \delta)\eta_j \wedge \eta_k,$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\alpha \in \mathbb{R}^*, \delta \in \mathbb{R}$, (i,j,k) even permutation of (1,2,3).

$3\text{-}(\alpha,\delta)\text{-}\mathsf{Sasaki}$ manifolds

Definition

A 3- (α, δ) -Sasaki manifold is an almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ such that

 $d\eta_i = 2\alpha \Phi_i + 2(\alpha - \delta)\eta_j \wedge \eta_k,$

 $\alpha \in \mathbb{R}^*, \delta \in \mathbb{R}$, (i, j, k) even permutation of (1, 2, 3).

- 3- α -Sasakian manifolds: $d\eta_i = 2\alpha \Phi_i \rightsquigarrow \alpha = \delta$
- quat. Heisenberg groups: $d\eta_i = \lambda(\Phi_i + \eta_j \wedge \eta_k) \rightsquigarrow 2\alpha = \lambda, \delta = 0$

$3\text{-}(\alpha,\delta)\text{-}\mathsf{Sasaki}$ manifolds

Definition

A 3- (α, δ) -Sasaki manifold is an almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$ such that

 $d\eta_i = 2\alpha \Phi_i + 2(\alpha - \delta)\eta_j \wedge \eta_k,$

 $\alpha \in \mathbb{R}^*, \delta \in \mathbb{R}$, (i, j, k) even permutation of (1, 2, 3).

- 3- α -Sasakian manifolds: $d\eta_i = 2\alpha \Phi_i \rightsquigarrow \alpha = \delta$
- quat. Heisenberg groups: $d\eta_i = \lambda(\Phi_i + \eta_j \wedge \eta_k) \rightsquigarrow 2\alpha = \lambda, \delta = 0$

We call the structure degenerate if $\delta = 0$ and nondegenerate otherwise.

Theorem

For every 3- (α, δ) -Sasaki manifold:

- the structure is hypernormal (generalization of Kashiwada's thm),
- the distribution $\mathcal V$ is integrable with totally geodesic leaves,
- each ξ_i is a Killing vector field, and $[\xi_i, \xi_j] = 2\delta \xi_k$.

Definition

An H-homothetic deformation of an almost 3-contact metric strucure $(\varphi_i, \xi_i, \eta_i, g)$ is given by

$$\eta'_i = c\eta_i, \quad \xi'_i = \frac{1}{c}\xi_i, \qquad \varphi'_i = \varphi_i, \qquad g' = ag + b\sum_{i=1}^3 \eta_i \otimes \eta_i,$$

 $a,b,c\in\mathbb{R}\text{, }a>0\text{, }c^{2}=a+b>0.$

If $(\varphi_i, \xi_i, \eta_i, g)$ is 3- (α, δ) -Sasaki, then $(\varphi'_i, \xi'_i, \eta'_i, g')$ is 3- (α', δ') -Sasaki with $\alpha' = \alpha \frac{c}{a}, \qquad \delta' = \frac{\delta}{c}.$

- $\bullet\,$ the class of degenerate 3-($\alpha,\delta)\text{-}\mathsf{Sasaki}$ structures is preserved
- \bullet in the non-degenerate case, the sign of $\alpha\delta$ is preserved.

Definition

We say that a 3- (α, δ) -Sasaki manifold is positive (resp. negative) if $\alpha\delta > 0$ (resp. $\alpha\delta < 0$).

Proposition

 $\alpha\delta > 0 \iff M$ is \mathcal{H} -homothetic to a 3-Sasakian manifold ($\alpha = \delta = 1$) $\alpha\delta < 0 \iff M$ is \mathcal{H} -homothetic to one with $\alpha = -1$, $\delta = 1$. Do there exist 3- (α, δ) -Sasaki manifolds with $\alpha \delta < 0$?

YES - here is a construction:

Definition

A negative 3-Sasakian manifold is a normal almost 3-contact manifold $(M, \varphi_i, \xi_i, \eta_i)$ endowed with a compatible semi-Riemannian metric \tilde{g} of signature (3, 4n) and s. t. $d\eta_i(X, Y) = 2\tilde{g}(X, \varphi_i Y)$.

Proposition

If $(M, \varphi_i, \xi_i, \eta_i, \tilde{g})$ is a negative 3-Sasakian manifold, take

$$g = -\tilde{g} + 2\sum_{i=1}^{3} \eta_i \otimes \eta_i.$$

Then $(\varphi_i, \xi_i, \eta_i, g)$ is a 3- (α, δ) -Sasaki structure with $\alpha = -1$ and $\delta = 1$.

It is known that quat. Kähler (not hK) mnfds with neg. scalar curvature admit a canonically associated principal SO(3)-bundle which is endowed with a negative 3-Sasakian structure (Konishi, 1975/Tanno, 1996).

Overview: Hierarchy of 'good' connections

$\varphi ext{-compatible connections}$

- \supset
- depend only on $\varphi \in \Sigma_M$
- main defining condition: $(\nabla_X \varphi) Y = 0 \quad \forall X, Y \in \Gamma(\mathcal{H})$
- not unique: depends on a parameter function γ
- exist under very weak assumptions

canonical connection

- depends on the whole a. 3-contact m. str. $(\beta := 2(\delta - 2\alpha))$
 - main defining condition: $\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k) \quad \forall X \in \mathfrak{X}(M)$
 - unique: corresponds to $\gamma = 2(\beta \delta)$
 - exists on all 3-(α, δ)-Sasaki manifolds (and again some weaker assumptions)

φ -compatible connections

Definition

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be an almost 3-contact metric manifold, φ a structure in the associated sphere Σ_M . Let ∇ be a metric connection with skew torsion on M. We say that ∇ is a φ -compatible connection if

- 1) ∇ preserves the splitting $TM = \mathcal{H} \oplus \mathcal{V}$,
- 2) $(\nabla_X \varphi) Y = 0$ $\forall X, Y \in \Gamma(\mathcal{H}).$

φ -compatible connections

Definition

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be an almost 3-contact metric manifold, φ a structure in the associated sphere Σ_M . Let ∇ be a metric connection with skew torsion on M. We say that ∇ is a φ -compatible connection if

- 1) ∇ preserves the splitting $TM = \mathcal{H} \oplus \mathcal{V}$,
- 2) $(\nabla_X \varphi) Y = 0$ $\forall X, Y \in \Gamma(\mathcal{H}).$

Theorem

M admits a $\varphi\text{-compatible connection if}$

- 1) N_{φ} is skew-symmetric on \mathcal{H} ,
- 2) each ξ_i is Killing.

Remark This is a special case of an iff criterion. φ -compatible connections are parametrized by their parameter function

$$\gamma := T(\xi_1, \xi_2, \xi_3) \in C^{\infty}(M).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

φ -compatible connections

Definition

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be an almost 3-contact metric manifold, φ a structure in the associated sphere Σ_M . Let ∇ be a metric connection with skew torsion on M. We say that ∇ is a φ -compatible connection if

- 1) ∇ preserves the splitting $TM = \mathcal{H} \oplus \mathcal{V}$,
- 2) $(\nabla_X \varphi) Y = 0$ $\forall X, Y \in \Gamma(\mathcal{H}).$

Theorem

M admits a $\varphi\text{-compatible connection if}$

- 1) N_{φ} is skew-symmetric on \mathcal{H} ,
- 2) each ξ_i is Killing.

Remark This is a special case of an iff criterion. φ -compatible connections are parametrized by their parameter function

$$\gamma := T(\xi_1, \xi_2, \xi_3) \in C^{\infty}(M).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The canonical connection

 $\nabla \varphi_i \equiv 0$ is too strong \rightsquigarrow suppose ∇ preserves the 3-dim. distribution in $\operatorname{End}(TM)$ spanned by φ_i as do quaternionic connections (qK case):

 $\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k) \quad \forall X \in \mathfrak{X}(M)$

The canonical connection

Theorem

Let $(M, \varphi_i, \xi_i, \eta_i, g)$ be a 3- (α, δ) -Sasakian manifold. Then M admits a metric connection ∇ with skew torsion such that for a smooth function β ,

 $\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k) \quad \forall X \in \mathfrak{X}(M)$

for every even permutation (i, j, k) of (1, 2, 3).

Such a connection ∇ is unique, preserves the splitting $TM = \mathcal{V} \oplus \mathcal{H}$ and the φ_i are parallel along \mathcal{H} .

 ∇ is called the canonical connection of M. The function β is a constant given by

 $\beta = 2(\delta - 2\alpha).$

The canonical connection ∇ satisfies

$$\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k),$$

$$\nabla_X \xi_i = \beta(\eta_k(X)\xi_j - \eta_j(X)\xi_k),$$

$$\nabla_X \eta_i = \beta(\eta_k(X)\eta_j - \eta_j(X)\eta_k),$$

and also

$$\nabla \Psi = 0, \qquad \nabla \eta_{123} = 0,$$

 $\Psi := \Phi_1 \wedge \Phi_1 + \Phi_2 \wedge \Phi_2 + \Phi_3 \wedge \Phi_3$, fundamental 4-form. In particular

$$\mathfrak{hol}(\nabla) \subset (\mathfrak{sp}(n) \oplus \mathfrak{sp}(1)) \oplus \mathfrak{so}(3) \subset \mathfrak{so}(4n) \oplus \mathfrak{so}(3).$$

For parallel canonical manifolds ($\beta = 0$):

$$\nabla \varphi_i = 0, \ \nabla \xi_i = 0, \ \nabla \eta_i = 0, \ \text{and} \ \mathfrak{hol}(\nabla) \subset \mathfrak{sp}(n)$$

 \Rightarrow canonical conn. = characteristic conn. of all 3 a.c.m. str. [first known examples where this happens!] The canonical connection ∇ satisfies

$$\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k),$$

$$\nabla_X \xi_i = \beta(\eta_k(X)\xi_j - \eta_j(X)\xi_k),$$

$$\nabla_X \eta_i = \beta(\eta_k(X)\eta_j - \eta_j(X)\eta_k),$$

and also

$$\nabla \Psi = 0, \qquad \nabla \eta_{123} = 0,$$

 $\Psi := \Phi_1 \wedge \Phi_1 + \Phi_2 \wedge \Phi_2 + \Phi_3 \wedge \Phi_3$, fundamental 4-form. In particular

$$\mathfrak{hol}(\nabla) \subset (\mathfrak{sp}(n) \oplus \mathfrak{sp}(1)) \oplus \mathfrak{so}(3) \subset \mathfrak{so}(4n) \oplus \mathfrak{so}(3).$$

For parallel canonical manifolds ($\beta = 0$):

$$\nabla \varphi_i = 0, \ \nabla \xi_i = 0, \ \nabla \eta_i = 0, \ \text{and} \ \mathfrak{hol}(\nabla) \subset \mathfrak{sp}(n)$$

 \Rightarrow canonical conn. = characteristic conn. of all 3 a.c.m. str. [first known examples where this happens!]

The metric cone

Given an almost 3-contact metric manifold $(M, \varphi_i, \xi_i, \eta_i, g)$, on the metric cone

$$(\bar{M},\bar{g}) = (M \times \mathbb{R}^+, a^2 r^2 g + dr^2), \quad a > 0,$$

one can define an almost hyperHermitian structure (\bar{g}, J_1, J_2, J_3) (Agricola-Höll, 2015).

Theorem

If $(M, \varphi_i, \xi_i, \eta_i, g)$ is 3- (α, δ) -Sasakian, the metric cone is hyper-Kähler with torsion (HKT manifold).

Overview: $3-(\alpha, \delta)$ -Sasakian structures

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

The canonical connection of 3- (α, δ) -Sasaki manifolds

Theorem

The canonical connection of a 3- (α, δ) -Sasaki manifold has torsion

$$T = \sum_{i=1}^{3} \eta_i \wedge d\eta_i + 8(\delta - \alpha) \eta_{123}$$

and satisfies $\nabla T = 0$.

Moreover, every 3- (α, δ) -Sasakian manifold admits an underlying quaternionic contact structure, and the canonical connection turns out to be a quaternionic contact connection. In fact, it is qc-Einstein (Ivanov - Minchev - Vassilev, 2016) and this allows to determine the Riemannian Ricci curvature:

Theorem

The Riemannian Ricci curvature of a 3- (α, δ) -Sasaki manifold is

$$\operatorname{Ric}^{g} = 2\alpha \left(2\delta(n+2) - 3\alpha \right) g + 2(\alpha - \delta) \left((2n+3)\alpha - \delta \right) \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}$$

Theorem

The Riemannian Ricci curvature of a 3- (α, δ) -Sasaki manifold is

 $\operatorname{Ric}^{g} = 2\alpha \left(2\delta(n+2) - 3\alpha \right) g + 2(\alpha - \delta) \left((2n+3)\alpha - \delta \right) \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}$

The ∇ -Ricci curvature is

$$\operatorname{Ric} = 4\alpha \{\delta(n+2) - 3\alpha\} g + 4\alpha \{\delta(2-n) - 5\alpha\} \sum_{i=1}^{3} \eta_i \otimes \eta_i.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

The property of being symmetric follows for Ric from $\nabla T = 0$.

Theorem

The Riemannian Ricci curvature of a 3- (α, δ) -Sasaki manifold is

 $\operatorname{Ric}^{g} = 2\alpha \big(2\delta(n+2) - 3\alpha \big) g + 2(\alpha - \delta) \big((2n+3)\alpha - \delta \big) \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}$

The ∇ -Ricci curvature is

$$\operatorname{Ric} = 4\alpha \{\delta(n+2) - 3\alpha\} g + 4\alpha \{\delta(2-n) - 5\alpha\} \sum_{i=1}^{3} \eta_i \otimes \eta_i.$$

The property of being symmetric follows for Ric from $\nabla T = 0$.

- *M* is Riemannian Einstein iff $\alpha = \delta$ or $\delta = (2n+3)\alpha$.
- The manifold is ∇ -Einstein iff $\delta(2-n) = 5\alpha$.
- The manifold is both Riemannian Einstein and ∇-Einstein if and only if dim M = 7 and δ = 5α (happens for example for 'compatible' nearly parallel G₂-str., see next result).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spinors on 7-dimensional 3- (α, δ) -Sasaki manifolds

Theorem

Any 7-dimensional 3- (α, δ) -Sasaki manifold admits a a cocalibrated G_2 -structure (Fernandez-Gray type $W_1 \oplus W_3$) such that its characteristic connection ∇ coincides with the canonical connection.

Because G_2 is the stabilizer of a generic spinor in dim. 7, this G_2 -structure defines a unique parallel spinor field ψ_0 , called the canonical spinor field.

Theorem

- 1) The canonical spinor field ψ_0 is a generalized Killing spinor, Killing iff $\delta = 5\alpha$ (nearly parallel G_2 -structure).
- The Clifford products ψ_i := ξ_i · ψ₀, i = 1, 2, 3, are generalized Killing spinors; any two of the generalized Killing numbers coincide iff α = δ, i.e. if M⁷ is 3-α-Sasakian.

Homogeneous 3-Sasakian manifolds

Theorem (Boyer, Galicki, Mann, 1994)

Let $(M, g, \eta_i, \xi_i, \varphi_i)$ be a homogeneous 3-Sasakian manifold. Then M is one of the following homogeneous spaces:

$$\frac{\operatorname{Sp}(n+1)}{\operatorname{Sp}(n)}, \quad \frac{\operatorname{Sp}(n+1)}{\operatorname{Sp}(n) \times \mathbb{Z}_2}, \qquad \frac{\operatorname{SU}(m+2)}{S(\operatorname{U}(m) \times \operatorname{U}(1))}, \qquad \frac{\operatorname{SO}(k+4)}{\operatorname{SO}(k) \times \operatorname{Sp}(1)}, \\ \frac{\operatorname{G}_2}{\operatorname{Sp}(1)}, \quad \frac{\operatorname{F}_4}{\operatorname{Sp}(3)}, \qquad \frac{\operatorname{E}_6}{\operatorname{SU}(6)}, \quad \frac{\operatorname{E}_7}{\operatorname{Spin}(12)}, \quad \frac{\operatorname{E}_8}{\operatorname{E}_7}.$$

Here $n \ge 0$, $m \ge 1$ and $k \ge 3$.

• They are all simply connected except for $\mathbb{R}P^{4n+3} \simeq \frac{\operatorname{Sp}(n+1)}{\operatorname{Sp}(n) \times \mathbb{Z}_2}$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• 1-1 correspondence between simply connected 3-Sasakian homogeneous manifolds and compact simple Lie algebras

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(Draper, Ortega, Palomo, 2018)

Definition

- A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that
 - *G* is a compact, simple Lie Group
 - $H \subset G_0 \subset G$ connected Lie subgroups

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- *G* is a compact, simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

and the Lie algebras $\mathfrak{h}\subset\mathfrak{g}_0\subset\mathfrak{g}$ satisfy:

• $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- *G* is a compact, simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

and the Lie algebras $\mathfrak{h}\subset\mathfrak{g}_0\subset\mathfrak{g}$ satisfy:

• $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$,

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- *G* is a compact, simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

and the Lie algebras $\mathfrak{h}\subset\mathfrak{g}_0\subset\mathfrak{g}$ satisfy:

- $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,
- $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$,
- the complexification g^C₁ = C² ⊗_C W for some h^C-module of dim_C W = 2n,

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- *G* is a compact, simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

and the Lie algebras $\mathfrak{h}\subset\mathfrak{g}_0\subset\mathfrak{g}$ satisfy:

- $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,
- $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$,
- the complexification g^ℂ₁ = ℂ² ⊗_ℂ W for some h^ℂ-module of dim_ℂ W = 2n,

• $\mathfrak{h}^{\mathbb{C}}, \mathfrak{sp}(1)^{\mathbb{C}} \subset \mathfrak{g}_0^{\mathbb{C}}$ act on $\mathfrak{g}_1^{\mathbb{C}}$ by their action on W and \mathbb{C}^2 .

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- *G* is a compact, simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

and the Lie algebras $\mathfrak{h}\subset\mathfrak{g}_0\subset\mathfrak{g}$ satisfy:

- $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,
- $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$,
- the complexification g^ℂ₁ = ℂ² ⊗_ℂ W for some h^ℂ-module of dim_ℂ W = 2n,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{sp}(1)^{\mathbb{C}} \subset \mathfrak{g}_0^{\mathbb{C}}$ act on $\mathfrak{g}_1^{\mathbb{C}}$ by their action on W and \mathbb{C}^2 .

Remark In total the Lie algebra decomposes as

(m is a reductive complement for M = G/H)

- The subspaces $\mathfrak{sp}(1)$ and \mathfrak{g}_1 will play the role of the vertical and horizontal subspace \mathcal{V},\mathcal{H} of the 3-($\alpha,\delta)$ -Sasakian structure on M=G/H
- M fibers over the compact quaternion Kähler symmetric space G/G_0

Homogeneous 3-Sasakian model

Theorem (Draper, Ortega, Palomo, 2018)

Let (G, G_0, H) be 3-Sasakian data. On M = G/H consider the *G*-invariant structure defined by the Ad(H)-invariant tensors on \mathfrak{m} :

• the inner product g

$$g|_{\mathfrak{sp}(1)} = \frac{-\kappa}{4(n+2)}, \qquad g|_{\mathfrak{g}_1} = \frac{-\kappa}{8(n+2)}, \qquad g|_{\mathfrak{sp}(1)\times\mathfrak{g}_1} = 0$$

 κ the Killing form on G.

• $\xi_i = \sigma_i$, i = 1, 2, 3, σ_i standard basis of $\mathfrak{sp}(1) = \mathcal{V} \subset \mathfrak{g}_0$, $\eta_i = g(\xi_i, \cdot)$

• the endomorphisms φ_i as

$$\varphi_i|_{\mathfrak{sp}(1)} = \frac{1}{2} \operatorname{ad}(\xi_i), \qquad \varphi_i|_{\mathfrak{g}_1} = \operatorname{ad}(\xi_i).$$

Then $(M, \varphi_i, \xi_i, \eta_i, g)$ defines a homogeneous 3-Sasakian manifold. Conversely every homogeneous 3-Sasakian manifold $M \neq \mathbb{R}P^{4n+3}$ is obtained by this construction.

Homogeneous positive 3- (α, δ) -Sasakian model

ldea: Use $\mathcal H\text{-homothetic}$ deformation to obtain 3-($\alpha,\delta)\text{-Sasakian}$ mnfds for $\alpha\delta>0$

(ロ)、(型)、(E)、(E)、 E) の(の)

Homogeneous positive 3- (α, δ) -Sasakian model

ldea: Use $\mathcal H\text{-homothetic}$ deformation to obtain $3\text{-}(\alpha,\delta)\text{-Sasakian}$ mnfds for $\alpha\delta>0$

Theorem

Let (G, G_0, H) be 3-Sasakian data, $\alpha \delta > 0$. On M = G/H consider the *G*-invariant structure by the Ad(H)-invariant tensors on \mathfrak{m} :

$$g|_{\mathfrak{sp}(1)} = \frac{-\kappa}{4\delta^2(n+2)}, \qquad g|_{\mathfrak{g}_1} = \frac{-\kappa}{8\alpha\delta(n+2)}, \qquad g|_{\mathfrak{sp}(1)\times\mathfrak{g}_1} = 0$$
$$\xi_i = \delta\sigma_i, \qquad \eta_i = g(\xi_i, \cdot)$$
$$\varphi_i|_{\mathfrak{sp}(1)} = \frac{1}{2\delta}\operatorname{ad}(\xi_i), \qquad \varphi_i|_{\mathfrak{g}_1} = \frac{1}{\delta}\operatorname{ad}(\xi_i).$$

Then $(M, \varphi_i, \xi_i, \eta_i, g)$ defines a homogeneous 3- (α, δ) -Sasakian mnfd. Conversely every homogeneous 3- (α, δ) -Sasakian manifold $M \neq \mathbb{R}P^{4n+3}$ with $\alpha \delta > 0$ is obtained by this construction.

Remark: (G/H, g) is naturally reductive $\Leftrightarrow \delta = 2\alpha \Leftrightarrow$ parallel 3- (α, δ) .

Generalized setup

Definition

A generalized 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- G is a real simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_0 \subset \mathfrak{g}$ satisfy:

- $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,
- $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$,
- the complexification g^C₁ = C² ⊗_C W for some h^C-module of dim_C W = 2n,

• $\mathfrak{h}^{\mathbb{C}}, \mathfrak{sp}(1)^{\mathbb{C}} \subset \mathfrak{g}_0^{\mathbb{C}}$ act on $\mathfrak{g}_1^{\mathbb{C}}$ by their action on W and \mathbb{C}^2 .

Generalized setup

Definition

A generalized 3-Sasakian data is a triple (G, G_0, H) of Lie groups such that

- G is a real simple Lie Group
- $H \subset G_0 \subset G$ connected Lie subgroups

and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_0 \subset \mathfrak{g}$ satisfy:

- $\mathfrak{g}_0 = \mathfrak{h} \oplus \mathfrak{sp}(1)$ with $\mathfrak{sp}(1)$ and \mathfrak{h} commuting subalgebras,
- $(\mathfrak{g},\mathfrak{g}_0)$ form a symmetric pair, $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$,
- the complexification g^C₁ = C² ⊗_C W for some h^C-module of dim_C W = 2n,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{sp}(1)^{\mathbb{C}} \subset \mathfrak{g}_0^{\mathbb{C}}$ act on $\mathfrak{g}_1^{\mathbb{C}}$ by their action on W and \mathbb{C}^2 .

If $(\mathfrak{g},\mathfrak{g}_0)$ is a compact symmetric pair such that (G,G_0,H) is 3-Sasakian data, then (G^*,G_0,H) is generalized 3-Sasakian data, where $(\mathfrak{g}^*,\mathfrak{g}_0)$ is the dual non-compact symmetric pair.

Negative homogeneous 3- (α, δ) -Sasakian manifolds

Theorem

Let (G^*, G_0, H) be non-compact generalized 3-Sasakian data, $\alpha \delta < 0$. On $M = G^*/H$ consider the G^* -invariant structure defined by the Ad(H)-invariant tensors on \mathfrak{m}

$$g\big|_{\mathfrak{sp}(1)} = \frac{-\kappa}{4\delta^2(n+2)}, \qquad g\big|_{\mathfrak{g}_1} = \frac{-\kappa}{8\alpha\delta(n+2)}, \qquad g\big|_{\mathfrak{sp}(1)\times\mathfrak{g}_1} = 0,$$
$$\xi_i = \delta\sigma_i, \qquad \eta_i = g(\xi_i, \cdot),$$
$$\varphi_i\big|_{\mathfrak{sp}(1)} = \frac{1}{2\delta}\operatorname{ad}(\xi_i), \qquad \varphi_i\big|_{\mathfrak{g}_1} = \frac{1}{\delta}\operatorname{ad}(\xi_i),$$

 κ the Killing form on G^* , σ_i standard basis $\mathfrak{sp}(1) = \mathcal{V} \subset \mathfrak{g}_0$. Then $(M, g, \xi_i, \eta_i, \varphi_i)$ defines a homogeneous 3- (α, δ) -Sasakian manifold.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ● ●

In total we obtain homogeneous 3- (α, δ) -Sasakian structures on the following list of homogeneous spaces (G/H compact, G^*/H non-compact):

G	G^*	H	G_0	dim
$\operatorname{Sp}(n+1)$	$\operatorname{Sp}(n,1)$	$\operatorname{Sp}(n)$	$\operatorname{Sp}(n)\operatorname{Sp}(1)$	4n + 3
SU(n+2)	$\mathrm{SU}(n,2)$	$S(\mathbf{U}(n) \times \mathbf{U}(1))$	$S(\mathbf{U}(n)\mathbf{U}(2))$	4n + 3
SO(n+4)	SO(n,4)	$SO(n) \times Sp(1)$	SO(n)SO(4)	4n + 3
G_2	G_2^2	$\operatorname{Sp}(1)$	SO(4)	11 .
${ m F}_4$	F_{4}^{-20}	$\operatorname{Sp}(3)$	$\operatorname{Sp}(3)\operatorname{Sp}(1)$	31
E_6	E_6^2	SU(6)	SU(6)Sp(1)	43
E_7	E_{7}^{-5}	$\operatorname{Spin}(12)$	$\operatorname{Spin}(12)\operatorname{Sp}(1)$	67
E_8	E_{8}^{-24}	E_7	$E_7Sp(1)$	115

Remark: $\mathbb{R}P^{4n+3} = \frac{\operatorname{Sp}(n+1)}{\operatorname{Sp}(n) \times \mathbb{Z}_2}$ and non compact dual $\frac{\operatorname{Sp}(n,1)}{\operatorname{Sp}(n) \times \mathbb{Z}_2}$ also admit 3- (α, δ) -Sasaki structures, as the quotient of $S^{4n+3} = \frac{\operatorname{Sp}(n+1)}{\operatorname{Sp}(n)}$, resp. $\frac{\operatorname{Sp}(n,1)}{\operatorname{Sp}(n)}$ by \mathbb{Z}_2 inside the fiber.

・ロト・西・・田・・田・・日・

NO!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へぐ

NO!

Idea: Start with V. Cortes, A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures, Mem. AMS 147 (2000) and previous work of \subset {Alekseevsky, Cortes}

NO!

Idea: Start with V. Cortes, A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures, Mem. AMS 147 (2000) and previous work of \subset {Alekseevsky, Cortes}

The construction is highly algebraic!

- Obtain examples over bases not included in previous construction (for example, Alekseevsky spaces of negative scalar curvature)
- $\bullet\,$ First such example not covered by previous theorem: dimension $n=19=4\cdot 4+3$

Difficulty: Pick the positive definite examples, discard redundancies, give a more geometric description...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definiteness of curvature operators

Consider the Riemannian curvature as a symmetric operator

 $\mathcal{R}^g: \Lambda^2 M \to \Lambda^2 M \qquad \langle \mathcal{R}^g(X \wedge Y), Z \wedge V \rangle = -g(R^g(X,Y)Z,V).$

Definition

A Riemannian manifold (M,g) is said to have strongly positive curvature if there exists a 4-form ω such that $\mathcal{R}^g + \omega$ is positive-definite at every point $x \in M$ (Thorpe, 1971).

For every 2-plane $\sigma,$ being $\langle \omega(\sigma),\sigma\rangle=0,$ one has

$$\operatorname{sec}(\sigma) = \langle \mathcal{R}^g(\sigma), \sigma \rangle = \langle (\mathcal{R}^g + \omega)(\sigma), \sigma \rangle.$$

Then,

 $\mathcal{R}^g > 0 \Longrightarrow$ strongly positive curvature \Longrightarrow positive sectional curvature

 $\mathcal{R}^g \geq 0 \Longrightarrow$ strongly non-negative curvature \Longrightarrow non-negative sec. curv.

On a 3- (α, δ) -Sasakian manifold the symmetric operators defined by the Riemannian curvature and the curvature of the canonical connection:

$$\mathcal{R}^g: \Lambda^2 M \to \Lambda^2 M \qquad \mathcal{R}: \Lambda^2 M \to \Lambda^2 M$$

are related by

$$\mathcal{R}^g - rac{1}{4}\sigma_T = \mathcal{R} + rac{1}{4}\mathcal{G}_T$$

with

$$\langle \mathcal{G}_T(X \wedge Y), Z \wedge V \rangle := g(T(X,Y), T(Z,V)),$$

$$\langle \sigma_T(X \wedge Y), Z \wedge V \rangle := \frac{1}{2} dT(X,Y,Z,V).$$

(M,g) is strongly non-negative with 4-form $-\frac{1}{4}\sigma_T$ if and only if

$$\mathcal{R} + \frac{1}{4}\mathcal{G}_T \ge 0.$$

Being $\mathcal{G}_T \geq 0$, if $\mathcal{R} \geq 0$ we directly have strong non-negativity.

Theorem

Let M be a homogeneous 3- (α, δ) -Sasakian manifold obtained from a generalized 3-Sasakian data.

- If $\alpha\delta < 0$ then $\mathcal{R} \leq 0$.
- If $\alpha\delta > 0$ then

 $\mathcal{R} \geq 0$ if and only if $\alpha \beta \geq 0$

Then, on a positive homogeneous 3- (α, δ) -Sasaki manifold with $\alpha\beta \ge 0$:

$$\mathcal{R}^g - \frac{1}{4}\sigma_T = \mathcal{R} + \frac{1}{4}\mathcal{G}_T \ge 0.$$

The converse also holds, i.e.

Theorem

A positive homogeneous 3-(α , δ)-Sasaki manifold is strongly non-negative with 4-form $-\frac{1}{4}\sigma_T$ if and only if $\alpha\beta \ge 0$.

Strong positivity is much more restrictive than strong non-negativity. Strong positivity implies strict positive sectional curvature.

Homogeneous manifolds with strictly positive sectional curvature have been classified (Wallach 1972, Bérard Bergery 1976).

Only the 7-dimensional Aloff-Wallach-space $W^{1,1}$, the spheres S^{4n+3} and real projective spaces $\mathbb{R}P^{4n+3}$ admit homogeneous 3- (α,δ) -Sasaki structures.

Theorem

The 3- (α, δ) -Sasakian spaces • $W^{1,1} = SU(3)/S^1$ with 4-form $-(\frac{1}{4} + \varepsilon)\sigma_T$ for small $\varepsilon > 0$, • S^{4n+3} , $\mathbb{R}P^{4n+3}$, $n \ge 1$, with 4-form $\frac{\delta}{8\alpha}\sigma_T|_{\Lambda^4\mathcal{H}} - (\frac{1}{4} + \varepsilon)\sigma_T$ for small $\varepsilon > 0$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

are strongly positive if and only if $\alpha\beta > 0$.

Some open questions

- \bullet Investigate the geometry of the new homogeneous negative $3\text{-}(\alpha,\delta)\text{-}\mathsf{Sasakian}$ manifolds
- 3-Sasakian manifolds admit Riemannian Killing spinors. They correspond to pseudo-Riemannian Killing spinors on the non-compact duals when equipped with an indefinite metric. How does this translate to the negative 3-Sasakian case? Are there special spinors?
- 3-(α, δ)-Sasakian manifolds are ∇-Einstein if (2 − n)δ = 5α. How do these geometries look like for n > 2?

Further reading

I. Agricola, *The Srní lectures on non-integrable geometries with torsion*, Arch. Math.(Brno) **42** (2006), suppl., 5–84.

I. Agricola, G. Dileo, *Generalizations of 3-Sasakian manifolds and skew torsion*, Adv. Geom. 2020. Online since 4/2019.

I. Agricola, T. Friedrich, 3-Sasakian manifolds in dimension seven, their spinors and G₂-structures, J. Geom. Phys. **60** (2010), 326–332.

R. Bettiol, R. Mendes, *Strongly positive curvature*, Ann. Global Anal. Geom. **53** (2018), 287–309.

B. Cappelletti-Montano, A. De Nicola, I. Yudin, *Hard Lefschetz theorem for Sasakian manifolds*, J. Differ. Geom. **101** (2015), 47–66.

D. Conti, Th. B. Madsen, *The odd side of torsion geometry*, Ann. Mat. Pura Appl. **193** (2014), 1041-1067.

T. Houri, H. Takeuchi, Y. Yasui, A Deformation of Sasakian Structure in the Presence of Torsion and Supergravity Solutions, Class.Quant.Grav. **30** (2013), 135008.

S. Ivanov, I. Minchev, D. Vassilev, *Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem*, Mem. AMS **231** (2014)

'This page intentionally left blank'

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q ()

'This page intentionally left blank'

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q ()