Generalizations of 3-Sasakian manifolds and skew torsion

Ilka Agricola

Joint work with Giulia Dileo (Bari) and Leander Stecker (Marburg)

A few classical facts

- 1960: Sasaki introduces Sasakian manifolds
- 1970: 3-Sasakian manifolds defined (Kuo, Udriste)
- Quick definition: $\left(M^{4 n+3}, g\right)$ is 3 -Sasakian if its metric cone ($\mathbb{R}^{+} \times M, d r^{2}+r^{2} g$) has holonomy inside $\operatorname{Sp}(n+1)$, i. e. it is hyperkähler.
- odd Betti numbers up to middle dimension are divisible by 4 , structure group is $\operatorname{Sp}(n) \times \mathrm{Id}_{3}$, it's spin (Kuo)
- they are Einstein (Kashiwada, 1971)
- relation to quaternionic Hopf fibration $S^{3} \rightarrow S^{7} \rightarrow S^{4}$ (Tanno, 1971) and quaternionic Kähler manifolds (Ishihara, 1974; Salamon, 1982)
- \Leftrightarrow there exist three Killing spinors (Friedrich-Kath, 1990)
- Many examples, classification of homogeneous case (Boyer-Galicki, \geq 1993)
- Berger's holonomy Theorem: Does not cover any contact manifolds, meaning that the Levi-Civita connection is not adapted for investigating such geometries

Context: Geometry of almost 3-contact metric manifolds

Goals

Define and investigate new classes of such manifolds:

- what geometric quantities are best suited for capturing their key geometric properties - in particular, the relative behaviour of the 3 almost contact structures?
- should admit 'good' metric connections with skew torsion

In particular,

- introduce 'Reeb commutator function' and 'Reeb Killing function',
- define the new class of 3 - (α, δ)-Sasaki manifolds,
- introduce notion of φ-compatible connections,
- make them unique by a certain extra condition \rightarrow canonical connection,
- compute torsion, holonomy, curvature of this connection,
- provide lots of examples, classify the homogeneous ones, further applications (metric cone, generalized Killing spinors...),

Almost contact metric mnfds

$\left(M^{2 n+1}, g, \eta, \xi, \varphi\right)$ almost contact metric mnfd if

- η : 1-form (dual to vector field ξ)
- $\langle\xi\rangle^{\perp}$ admits an almost complex structure φ compatible with g.

Almost contact metric mnfds

$\left(M^{2 n+1}, g, \eta, \xi, \varphi\right)$ almost contact metric mnfd if

- η : 1-form (dual to vector field ξ)
- $\langle\xi\rangle^{\perp}$ admits an almost complex structure φ compatible with g.

Then,

- the structure group is reducible to $U(n) \times\{1\}$,
- the fundamental 2 -form is defined by

$$
\Phi(X, Y)=g(X, \varphi Y)
$$

- it is called normal if

$$
N_{\varphi}:=[\varphi, \varphi]+d \eta \otimes \xi \equiv 0,
$$

- α-Sasakian, $\alpha \in \mathbb{R}^{*}$, if $\mathrm{d} \eta=2 \alpha \Phi, \quad N_{\varphi} \equiv 0 \quad(\Rightarrow \xi$ Killing $)$
- Sasakian if 1-Sasakian.

Special geometries via connections with (skew) torsion

Given a mnfd M^{n} with G-structure $(G \subset \mathrm{SO}(n))$, replace ∇^{g} by a metric connection ∇ with torsion that preserves the geometric structure!

$$
\text { torsion: } T(X, Y, Z):=g\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right)
$$

Special case: require $T \in \Lambda^{3}\left(M^{n}\right)\left(\Leftrightarrow\right.$ same geodesics as $\left.\nabla^{g}\right)$

$$
\Rightarrow \quad g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)+\frac{1}{2} T(X, Y, Z)
$$

If existent and unique it is called 'characteristic connection'.
Theorem (Friedrich-Ivanov, 2002)
An almost contact metric manifold (M, ϕ, ξ, η, g) admits a unique metric connection ∇ with skew torsion satisfying $\nabla \eta=\nabla \xi=\nabla \varphi=0$ iff

1. the tensor $N_{\varphi}:=[\varphi, \varphi]+d \eta \otimes \xi$ is totally skew-symmetric,
2. ξ is a Killing vector field.

In particular, it exists for α-Sasaki mnfds and its torsion $T=\eta \wedge d \eta$ is parallel.

Almost 3-contact metric mnfds

$\left(M^{4 n+3}, g, \eta_{i}, \xi_{i}, \varphi_{i}\right), i=1,2,3$ almost 3 -contact metric mnfd if

- each triple $\left(\eta_{i}, \xi_{i}, \varphi_{i}\right)$ defines an a.c.m. str. on $M^{4 n+3}$
- $T M=\mathcal{H} \oplus \mathcal{V}$ with $\mathcal{H}:=\bigcap_{i=1}^{3} \operatorname{ker} \eta_{i}$, $\mathcal{V}:=\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$
- Compatibility conditions:
$\xi_{1} \times \xi_{2}=\xi_{3}$ on \mathcal{V}
$\varphi_{1} \circ \varphi_{2}=\varphi_{3}$ in \mathcal{H}
$\varphi_{1}\left(\xi_{2}\right)=\xi_{3}+$ cyclic perm.

- structure group reducible to
$\mathrm{Sp}(n) \times\left\{1_{3}\right\}$

The manifold is said to be hypernormal if $N_{\varphi_{i}} \equiv 0, i=1,2,3$.
Some remarkable classes:

$$
\forall i=1,2,3:
$$

$3-\alpha$-Sasakian $(3$-Sasakian $)$	$\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is α-Sasakian $(\alpha=1)$
3-cosymplectic	$\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is cosymplectic
3-quasi-Sasakian	$\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is quasi Sasakian

Observe: No new conditions on the relative 'behaviour' of the three single a.c.m. structures, just for each single structure!

Theorem (Kashiwada, 2001)
If $d \eta_{i}=2 \Phi_{i}, i=1,2,3$, then the manifold is hypernormal (and thus 3 -Sasakian).

The associated sphere of a.c.m. structures Σ_{M}

Any almost 3 -contact metric $\operatorname{mnfd}\left(M^{4 n+3}, g, \eta_{i}, \xi_{i}, \varphi_{i}\right)$ comes with a sphere $\Sigma_{M} \cong S^{2}$ of almost contact metric structures:
$\forall a=\left(a_{1}, a_{2}, a_{3}\right) \in S^{2} \subset \mathbb{R}^{3}$ put

$$
\varphi_{a}=\sum_{i=1}^{3} a_{i} \varphi_{i}, \quad \xi_{a}=\sum_{i=1}^{3} a_{i} \xi_{i}, \quad \eta_{a}=\sum_{i=1}^{3} a_{i} \eta_{i} .
$$

Then $\left(\varphi_{a}, \xi_{a}, \eta_{a}, g\right)$ defines an almost contact metric structure on $M^{4 n+3}$.

Theorem (Cappelletti Montano - De Nicola - Yudin, 2016)
If $N_{\varphi_{i}}=0$ for all $i=1,2,3$, then $N_{\varphi}=0$ for all $\varphi \in \Sigma_{M}$.
Theorem
If each $N_{\varphi_{i}}$ is skew symmetric on \mathcal{H} (resp. on TM), then for all $\varphi \in \Sigma_{M}$, N_{φ} is skew symmetric on \mathcal{H} (resp. on TM).

Proposition

Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a almost 3 -contact metric manifold. If each ($\varphi_{i}, \xi_{i}, \eta_{i}, g$), $i=1,2,3$ admits a characteristic connection, the same holds for every structure in the sphere.

Proposition

Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a almost 3 -contact metric manifold. If each $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right), i=1,2,3$ admits a characteristic connection, the same holds for every structure in the sphere.

Do these connections coincide?
Is it possible to find a metric connection with skew torsion parallelizing ALL the structure tensor fields?

Proposition

Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a almost 3 -contact metric manifold. If each $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right), i=1,2,3$ admits a characteristic connection, the same holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion parallelizing ALL the structure tensor fields?
! For a 3-Sasakian manifold the characteristic connection of the structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is

$$
\nabla^{i}=\nabla^{g}+\frac{1}{2} T_{i}, \quad T_{i}=\eta_{i} \wedge d \eta_{i} .
$$

For $i \neq j, T_{i} \neq T_{j}$ and thus $\nabla^{i} \neq \nabla^{j}$
\Rightarrow No characteristic connection for 3-Sasakian manifolds!

Canonical connection for 7-dimensional 3-Sasaki manifolds (Agricola-Friedrich, 2010)

Let ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$) be a 7-dimensional 3-Sasakian manifold.
The 3 -form

$$
\omega:=\frac{1}{2} \sum_{i} \eta_{i} \wedge d \eta_{i}+4 \eta_{123} \quad \eta_{123}:=\eta_{1} \wedge \eta_{2} \wedge \eta_{3}
$$

defines a cocalibrated G_{2}-structure and hence admits a characteristic connection ∇; its torsion is

$$
T=\sum_{i=1}^{3} \eta_{i} \wedge d \eta_{i}
$$

∇ is called the canonical connection, and verifies the following:

- it preserves \mathcal{H} and \mathcal{V},
- $\nabla T=0$,
- ∇ admits a parallel spinor ψ, called canonical spinor, such that the Clifford products $\xi_{i} \cdot \psi$ are exactly the 3 Riemannian Killing spinors.

Canonical connection for quaternionic Heisenberg groups

$N_{p} \cong \mathbb{R}^{4 p+3}$ connected, simply connected Lie group, with commutators depending on a parameter $\lambda>0$.
N_{p} admits an almost 3-contact metric structure ($\varphi_{i}, \xi_{i}, \eta_{i}, g_{\lambda}$) which is hypernormal but not 3-quasi-Sasakian. None of the metrics g_{λ} is Einstein.
The canonical connection is the metric connection ∇ with skew torsion (Agricola-Ferreira-Storm, 2015)

$$
T=\sum_{i=1}^{3} \eta_{i} \wedge d \eta_{i}-4 \lambda \eta_{123}
$$

It satisfies:

- $\nabla T=\nabla R=0 \rightsquigarrow$ naturally reductive homogeneous space,
- $\mathfrak{h o l}(\nabla) \simeq \mathfrak{s u}(2)$, acting irreducibly on \mathcal{V} and \mathcal{H}.

Canonical connection for quaternionic Heisenberg groups

$N_{p} \cong \mathbb{R}^{4 p+3}$ connected, simply connected Lie group, with commutators depending on a parameter $\lambda>0$.
N_{p} admits an almost 3-contact metric structure ($\varphi_{i}, \xi_{i}, \eta_{i}, g_{\lambda}$) which is hypernormal but not 3 -quasi-Sasakian. None of the metrics g_{λ} is Einstein.

The canonical connection is the metric connection ∇ with skew torsion (Agricola-Ferreira-Storm, 2015)

$$
T=\sum_{i=1}^{3} \eta_{i} \wedge d \eta_{i}-4 \lambda \eta_{123}
$$

It satisfies:

- $\nabla T=\nabla R=0 \rightsquigarrow$ naturally reductive homogeneous space,
- $\mathfrak{h o l}(\nabla) \simeq \mathfrak{s u}(2)$, acting irreducibly on \mathcal{V} and \mathcal{H}.

In the 7-dim. case, ∇ is the characteristic connection of a cocalibrated G_{2} structure $\Rightarrow \exists$ parallel spinor field ψ and $\psi_{i}:=\xi_{i} \cdot \psi, i=1,2,3$, are generalised Killing spinors:
$\nabla_{\xi_{i}}^{g} \psi_{i}=\frac{\lambda}{2} \xi_{i} \cdot \psi_{i}, \quad \nabla_{\xi_{j}}^{g} \psi_{i}=-\frac{\lambda}{2} \xi_{j} \cdot \psi_{i}(i \neq j), \quad \nabla_{X}^{g} \psi_{i}=\frac{5 \lambda}{4} X \cdot \psi_{i}, X \in \mathcal{H}$

Well-known:

- the metric cone of a 3-Sasakian manifold is hyper-Kähler
- the metric cone of the quaternionic Heisenberg group is a hyper-Kähler manifold with torsion ('HKT manifold')

Agricola-Höll, 2015: Criterion when the metric cone (for suitable $a>0$)

$$
(\bar{M}, \bar{g})=\left(M \times \mathbb{R}^{+}, a^{2} r^{2} g+d r^{2}\right)
$$

of an almost 3-contact metric manifold M admits a hyper-Hermitian structure, and when it is a HKT manifold (but unclear what a 'good' large class of manifolds satisfying the criterion could be)

Well-known:

- the metric cone of a 3-Sasakian manifold is hyper-Kähler
- the metric cone of the quaternionic Heisenberg group is a hyper-Kähler manifold with torsion ('HKT manifold')

Agricola-Höll, 2015: Criterion when the metric cone (for suitable $a>0$)

$$
(\bar{M}, \bar{g})=\left(M \times \mathbb{R}^{+}, a^{2} r^{2} g+d r^{2}\right)
$$

of an almost 3-contact metric manifold M admits a hyper-Hermitian structure, and when it is a HKT manifold (but unclear what a 'good' large class of manifolds satisfying the criterion could be)

Is it possible to find a larger class of
almost 3-contact metric manifolds with similar properties?

3- (α, δ)-Sasaki manifolds

Definition

A 3-($\alpha, \delta)$-Sasaki manifold is an almost 3-contact metric manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ such that

$$
d \eta_{i}=2 \alpha \Phi_{i}+2(\alpha-\delta) \eta_{j} \wedge \eta_{k},
$$

$\alpha \in \mathbb{R}^{*}, \delta \in \mathbb{R},(i, j, k)$ even permutation of $(1,2,3)$.

3- (α, δ)-Sasaki manifolds

Definition

A 3-($\alpha, \delta)$-Sasaki manifold is an almost 3-contact metric manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ such that

$$
d \eta_{i}=2 \alpha \Phi_{i}+2(\alpha-\delta) \eta_{j} \wedge \eta_{k},
$$

$\alpha \in \mathbb{R}^{*}, \delta \in \mathbb{R},(i, j, k)$ even permutation of $(1,2,3)$.

- 3- α-Sasakian manifolds: $d \eta_{i}=2 \alpha \Phi_{i} \rightsquigarrow \alpha=\delta$
- quat. Heisenberg groups: $d \eta_{i}=\lambda\left(\Phi_{i}+\eta_{j} \wedge \eta_{k}\right) \rightsquigarrow 2 \alpha=\lambda, \delta=0$

3- (α, δ)-Sasaki manifolds

Definition

A 3-($\alpha, \delta)$-Sasaki manifold is an almost 3-contact metric manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ such that

$$
d \eta_{i}=2 \alpha \Phi_{i}+2(\alpha-\delta) \eta_{j} \wedge \eta_{k},
$$

$\alpha \in \mathbb{R}^{*}, \delta \in \mathbb{R},(i, j, k)$ even permutation of $(1,2,3)$.

- 3- α-Sasakian manifolds: $d \eta_{i}=2 \alpha \Phi_{i} \rightsquigarrow \alpha=\delta$
- quat. Heisenberg groups: $d \eta_{i}=\lambda\left(\Phi_{i}+\eta_{j} \wedge \eta_{k}\right) \rightsquigarrow 2 \alpha=\lambda, \delta=0$

We call the structure degenerate if $\delta=0$ and nondegenerate otherwise.
Theorem
For every 3-($\alpha, \delta)$-Sasaki manifold:

- the structure is hypernormal (generalization of Kashiwada's thm),
- the distribution \mathcal{V} is integrable with totally geodesic leaves,
- each ξ_{i} is a Killing vector field, and $\left[\xi_{i}, \xi_{j}\right]=2 \delta \xi_{k}$.

Definition

An \mathcal{H}-homothetic deformation of an almost 3-contact metric strucure ($\varphi_{i}, \xi_{i}, \eta_{i}, g$) is given by

$$
\eta_{i}^{\prime}=c \eta_{i}, \quad \xi_{i}^{\prime}=\frac{1}{c} \xi_{i}, \quad \varphi_{i}^{\prime}=\varphi_{i}, \quad g^{\prime}=a g+b \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i},
$$

$a, b, c \in \mathbb{R}, a>0, c^{2}=a+b>0$.
If $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is $3-(\alpha, \delta)$-Sasaki, then $\left(\varphi_{i}^{\prime}, \xi_{i}^{\prime}, \eta_{i}^{\prime}, g^{\prime}\right)$ is $3-\left(\alpha^{\prime}, \delta^{\prime}\right)$-Sasaki with

$$
\alpha^{\prime}=\alpha \frac{c}{a}, \quad \delta^{\prime}=\frac{\delta}{c} .
$$

- the class of degenerate 3- (α, δ)-Sasaki structures is preserved
- in the non-degenerate case, the sign of $\alpha \delta$ is preserved.

Definition

We say that a 3- (α, δ)-Sasaki manifold is positive (resp. negative) if $\alpha \delta>0$ (resp. $\alpha \delta<0$).

Proposition

$\alpha \delta>0 \Longleftrightarrow M$ is \mathcal{H}-homothetic to a 3-Sasakian manifold ($\alpha=\delta=1$)
$\alpha \delta<0 \Longleftrightarrow M$ is \mathcal{H}-homothetic to one with $\alpha=-1, \delta=1$.

Do there exist 3- (α, δ)-Sasaki manifolds with $\alpha \delta<0$?

YES - here is a construction:

Definition

A negative 3-Sasakian manifold is a normal almost 3-contact manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}$) endowed with a compatible semi-Riemannian metric \tilde{g} of signature $(3,4 n)$ and s.t. $d \eta_{i}(X, Y)=2 \tilde{g}\left(X, \varphi_{i} Y\right)$.

Proposition

If $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, \tilde{g}\right)$ is a negative 3 -Sasakian manifold, take

$$
g=-\tilde{g}+2 \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i} .
$$

Then $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is a $3-(\alpha, \delta)$-Sasaki structure with $\alpha=-1$ and $\delta=1$.
It is known that quat. Kähler (not hK) mnfds with neg. scalar curvature admit a canonically associated principal $\mathrm{SO}(3)$-bundle which is endowed with a negative 3 -Sasakian structure (Konishi, 1975/Tanno, 1996).

Overview: Hierarchy of 'good' connections

canonical connection

φ-compatible connections

- depend only on $\varphi \in \Sigma_{M}$
- main defining condition:

$$
\left(\nabla_{X} \varphi\right) Y=0 \quad \forall X, Y \in \Gamma(\mathcal{H})
$$

- not unique: depends on a parameter function γ
- exist under very weak assumptions
- depends on the whole a. 3-contact m. str. $(\beta:=2(\delta-2 \alpha))$
- main defining condition:
$\nabla_{X} \varphi_{i}=\beta\left(\eta_{k}(X) \varphi_{j}-\right.$
$\left.\eta_{j}(X) \varphi_{k}\right) \quad \forall X \in \mathfrak{X}(M)$
- unique: corresponds to $\gamma=2(\beta-\delta)$
- exists on all 3- (α, δ)-Sasaki manifolds (and again some weaker assumptions)

φ-compatible connections

Definition

Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be an almost 3-contact metric manifold, φ a structure in the associated sphere Σ_{M}. Let ∇ be a metric connection with skew torsion on M. We say that ∇ is a φ-compatible connection if

1) ∇ preserves the splitting $T M=\mathcal{H} \oplus \mathcal{V}$,
2) $\left(\nabla_{X} \varphi\right) Y=0 \quad \forall X, Y \in \Gamma(\mathcal{H})$.

φ-compatible connections

Definition

Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be an almost 3 -contact metric manifold, φ a structure in the associated sphere Σ_{M}. Let ∇ be a metric connection with skew torsion on M. We say that ∇ is a φ-compatible connection if

1) ∇ preserves the splitting $T M=\mathcal{H} \oplus \mathcal{V}$,
2) $\left(\nabla_{X} \varphi\right) Y=0 \quad \forall X, Y \in \Gamma(\mathcal{H})$.

Theorem

M admits a φ-compatible connection if

1) N_{φ} is skew-symmetric on \mathcal{H},
2) each ξ_{i} is Killing.

Remark This is a special case of an iff criterion. φ-compatible connections are parametrized by their parameter function

$$
\gamma:=T\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in C^{\infty}(M) .
$$

φ-compatible connections

Definition

Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be an almost 3 -contact metric manifold, φ a structure in the associated sphere Σ_{M}. Let ∇ be a metric connection with skew torsion on M. We say that ∇ is a φ-compatible connection if

1) ∇ preserves the splitting $T M=\mathcal{H} \oplus \mathcal{V}$,
2) $\left(\nabla_{X} \varphi\right) Y=0 \quad \forall X, Y \in \Gamma(\mathcal{H})$.

Theorem

M admits a φ-compatible connection if

1) N_{φ} is skew-symmetric on \mathcal{H},
2) each ξ_{i} is Killing.

Remark This is a special case of an iff criterion. φ-compatible connections are parametrized by their parameter function

$$
\gamma:=T\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in C^{\infty}(M) .
$$

The canonical connection

$\nabla \varphi_{i} \equiv 0$ is too strong \rightsquigarrow suppose ∇ preserves the 3 -dim. distribution in $\operatorname{End}(T M)$ spanned by φ_{i} as do quaternionic connections (qK case):

$$
\nabla_{X} \varphi_{i}=\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right) \quad \forall X \in \mathfrak{X}(M)
$$

The canonical connection

Theorem
Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a $3-(\alpha, \delta)$-Sasakian manifold. Then M admits a metric connection ∇ with skew torsion such that for a smooth function β,

$$
\nabla_{X} \varphi_{i}=\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right) \quad \forall X \in \mathfrak{X}(M)
$$

for every even permutation (i, j, k) of $(1,2,3)$.
Such a connection ∇ is unique, preserves the splitting $T M=\mathcal{V} \oplus \mathcal{H}$ and the φ_{i} are parallel along \mathcal{H}.
∇ is called the canonical connection of M. The function β is a constant given by

$$
\beta=2(\delta-2 \alpha) .
$$

The canonical connection ∇ satisfies

$$
\begin{aligned}
\nabla_{X} \varphi_{i} & =\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right), \\
\nabla_{X} \xi_{i} & =\beta\left(\eta_{k}(X) \xi_{j}-\eta_{j}(X) \xi_{k}\right), \\
\nabla_{X} \eta_{i} & =\beta\left(\eta_{k}(X) \eta_{j}-\eta_{j}(X) \eta_{k}\right),
\end{aligned}
$$

and also

$$
\nabla \Psi=0, \quad \nabla \eta_{123}=0
$$

$\Psi:=\Phi_{1} \wedge \Phi_{1}+\Phi_{2} \wedge \Phi_{2}+\Phi_{3} \wedge \Phi_{3}$, fundamental 4-form. In particular

$$
\mathfrak{h o l}(\nabla) \subset(\mathfrak{s p}(n) \oplus \mathfrak{s p}(1)) \oplus \mathfrak{s o}(3) \subset \mathfrak{s o}(4 n) \oplus \mathfrak{s o}(3)
$$

For parallel canonical manifolds ($\beta=0$):

$$
\nabla \varphi_{i}=0, \nabla \xi_{i}=0, \nabla \eta_{i}=0, \text { and } \mathfrak{h o l}(\nabla) \subset \mathfrak{s p}(n)
$$

\Rightarrow canonical conn. $=$ characteristic conn. of all 3 a.c.m. str.
[first known examples where this happens!]

The canonical connection ∇ satisfies

$$
\begin{aligned}
\nabla_{X} \varphi_{i} & =\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right), \\
\nabla_{X} \xi_{i} & =\beta\left(\eta_{k}(X) \xi_{j}-\eta_{j}(X) \xi_{k}\right), \\
\nabla_{X} \eta_{i} & =\beta\left(\eta_{k}(X) \eta_{j}-\eta_{j}(X) \eta_{k}\right),
\end{aligned}
$$

and also

$$
\nabla \Psi=0, \quad \nabla \eta_{123}=0
$$

$\Psi:=\Phi_{1} \wedge \Phi_{1}+\Phi_{2} \wedge \Phi_{2}+\Phi_{3} \wedge \Phi_{3}$, fundamental 4-form. In particular

$$
\mathfrak{h o l}(\nabla) \subset(\mathfrak{s p}(n) \oplus \mathfrak{s p}(1)) \oplus \mathfrak{s o}(3) \subset \mathfrak{s o}(4 n) \oplus \mathfrak{s o}(3)
$$

For parallel canonical manifolds ($\beta=0$):

$$
\nabla \varphi_{i}=0, \nabla \xi_{i}=0, \nabla \eta_{i}=0, \text { and } \mathfrak{h o l}(\nabla) \subset \mathfrak{s p}(n)
$$

\Rightarrow canonical conn. $=$ characteristic conn. of all 3 a.c.m. str.
[first known examples where this happens!]

The metric cone

Given an almost 3-contact metric manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$), on the metric cone

$$
(\bar{M}, \bar{g})=\left(M \times \mathbb{R}^{+}, a^{2} r^{2} g+d r^{2}\right), \quad a>0
$$

one can define an almost hyperHermitian structure ($\bar{g}, J_{1}, J_{2}, J_{3}$) (Agricola-Höll, 2015).

Theorem
If $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is 3-($\left.\alpha, \delta\right)$-Sasakian, the metric cone is hyper-Kähler with torsion (HKT manifold).

Overview: 3- (α, δ)-Sasakian structures

The canonical connection of 3-($\alpha, \delta)$-Sasaki manifolds

Theorem
The canonical connection of a 3-($\alpha, \delta)$-Sasaki manifold has torsion

$$
T=\sum_{i=1}^{3} \eta_{i} \wedge d \eta_{i}+8(\delta-\alpha) \eta_{123}
$$

and satisfies $\nabla T=0$.
Moreover, every $3-(\alpha, \delta)$-Sasakian manifold admits an underlying quaternionic contact structure, and the canonical connection turns out to be a quaternionic contact connection. In fact, it is qc-Einstein (Ivanov Minchev - Vassilev, 2016) and this allows to determine the Riemannian Ricci curvature:

Theorem

The Riemannian Ricci curvature of a 3-($\alpha, \delta)$-Sasaki manifold is

$$
\operatorname{Ric}^{g}=2 \alpha(2 \delta(n+2)-3 \alpha) g+2(\alpha-\delta)((2 n+3) \alpha-\delta) \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}
$$

Theorem

The Riemannian Ricci curvature of a 3-($\alpha, \delta)$-Sasaki manifold is

$$
\operatorname{Ric}^{g}=2 \alpha(2 \delta(n+2)-3 \alpha) g+2(\alpha-\delta)((2 n+3) \alpha-\delta) \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}
$$

The ∇-Ricci curvature is

$$
\operatorname{Ric}=4 \alpha\{\delta(n+2)-3 \alpha\} g+4 \alpha\{\delta(2-n)-5 \alpha\} \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i} .
$$

The property of being symmetric follows for Ric from $\nabla T=0$.

Theorem

The Riemannian Ricci curvature of a 3-($\alpha, \delta)$-Sasaki manifold is

$$
\operatorname{Ric}^{g}=2 \alpha(2 \delta(n+2)-3 \alpha) g+2(\alpha-\delta)((2 n+3) \alpha-\delta) \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}
$$

The ∇-Ricci curvature is

$$
\text { Ric }=4 \alpha\{\delta(n+2)-3 \alpha\} g+4 \alpha\{\delta(2-n)-5 \alpha\} \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i} .
$$

The property of being symmetric follows for Ric from $\nabla T=0$.

- M is Riemannian Einstein iff $\alpha=\delta$ or $\delta=(2 n+3) \alpha$.
- The manifold is ∇-Einstein iff $\delta(2-n)=5 \alpha$.
- The manifold is both Riemannian Einstein and ∇-Einstein if and only if $\operatorname{dim} M=7$ and $\delta=5 \alpha$ (happens for example for 'compatible' nearly parallel G_{2}-str., see next result).

Spinors on 7-dimensional 3-($\alpha, \delta)$-Sasaki manifolds

Theorem

Any 7-dimensional 3-($\alpha, \delta)$-Sasaki manifold admits a a cocalibrated G_{2}-structure (Fernandez-Gray type $W_{1} \oplus W_{3}$) such that its characteristic connection ∇ coincides with the canonical connection.

Because G_{2} is the stabilizer of a generic spinor in dim. 7, this G_{2}-structure defines a unique parallel spinor field ψ_{0}, called the canonical spinor field.

Theorem

1) The canonical spinor field ψ_{0} is a generalized Killing spinor, Killing iff $\delta=5 \alpha$ (nearly parallel G_{2}-structure).
2) The Clifford products $\psi_{i}:=\xi_{i} \cdot \psi_{0}, i=1,2,3$, are generalized Killing spinors; any two of the generalized Killing numbers coincide iff $\alpha=\delta$, i. e. if M^{7} is $3-\alpha$-Sasakian.

Homogeneous 3-Sasakian manifolds

Theorem (Boyer, Galicki, Mann, 1994)
Let $\left(M, g, \eta_{i}, \xi_{i}, \varphi_{i}\right)$ be a homogeneous 3-Sasakian manifold. Then M is one of the following homogeneous spaces:

$$
\begin{array}{rlll}
\frac{\mathrm{Sp}(n+1)}{\mathrm{Sp}(n)}, & \frac{\mathrm{Sp}(n+1)}{\mathrm{Sp}(n) \times \mathbb{Z}_{2}}, & \frac{\mathrm{SU}(m+2)}{S(\mathrm{U}(m) \times \mathrm{U}(1))}, & \frac{\mathrm{SO}(k+4)}{\mathrm{SO}(k) \times \operatorname{Sp}(1)}, \\
\frac{\mathrm{G}_{2}}{\operatorname{Sp}(1)}, & \frac{\mathrm{F}_{4}}{\operatorname{Sp}(3)}, & \frac{\mathrm{E}_{6}}{\mathrm{SU}(6)}, & \frac{\mathrm{E}_{7}}{\operatorname{Spin}(12)},
\end{array}, \frac{\mathrm{E}_{8}}{\mathrm{E}_{7}} .
$$

Here $n \geq 0, m \geq 1$ and $k \geq 3$.

- They are all simply connected except for $\mathbb{R} P^{4 n+3} \simeq \frac{\mathrm{Sp}(n+1)}{\mathrm{Sp}(n) \times \mathbb{Z}_{2}}$
- 1-1 correspondence between simply connected 3-Sasakian homogeneous manifolds and compact simple Lie algebras

Uniform description of homogeneous 3-Sasakian manifolds

(Draper, Ortega, Palomo, 2018)
Definition
A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups

Uniform description of homogeneous 3-Sasakian manifolds

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,

Uniform description of homogeneous 3-Sasakian manifolds

(Draper, Ortega, Palomo, 2018)
Definition
A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,

Uniform description of homogeneous 3-Sasakian manifolds

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,
- the complexification $\mathfrak{g}_{1}^{\mathbb{C}}=\mathbb{C}^{2} \otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$-module of $\operatorname{dim}_{\mathbb{C}} W=2 n$,

Uniform description of homogeneous 3-Sasakian manifolds

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- ($\mathfrak{g}, \mathfrak{g}_{0}$) form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,
- the complexification $\mathfrak{g}_{1}^{\mathbb{C}}=\mathbb{C}^{2} \otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$-module of $\operatorname{dim}_{\mathbb{C}} W=2 n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{s p}(1)^{\mathbb{C}} \subset \mathfrak{g}_{0}^{\mathbb{C}}$ act on $\mathfrak{g}_{1}^{\mathbb{C}}$ by their action on W and \mathbb{C}^{2}.

Uniform description of homogeneous 3-Sasakian manifolds

(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a compact, simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- ($\mathfrak{g}, \mathfrak{g}_{0}$) form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,
- the complexification $\mathfrak{g}_{1}^{\mathbb{C}}=\mathbb{C}^{2} \otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$-module of $\operatorname{dim}_{\mathbb{C}} W=2 n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{s p}(1)^{\mathbb{C}} \subset \mathfrak{g}_{0}^{\mathbb{C}}$ act on $\mathfrak{g}_{1}^{\mathbb{C}}$ by their action on W and \mathbb{C}^{2}.

Remark In total the Lie algebra decomposes as

(\mathfrak{m} is a reductive complement for $M=G / H$)

$$
\mathfrak{g}=\overbrace{\mathfrak{h} \oplus \mathfrak{s p}(1)}^{\mathfrak{g}_{0}} \oplus \mathfrak{g}_{1}
$$

- The subspaces $\mathfrak{s p}(1)$ and \mathfrak{g}_{1} will play the role of the vertical and horizontal subspace \mathcal{V}, \mathcal{H} of the 3 - (α, δ)-Sasakian structure on $M=G / H$
- M fibers over the compact quaternion Kähler symmetric space G / G_{0}

Homogeneous 3-Sasakian model

Theorem (Draper, Ortega, Palomo, 2018)
Let $\left(G, G_{0}, H\right)$ be 3 -Sasakian data. On $M=G / H$ consider the G-invariant structure defined by the $\operatorname{Ad}(H)$-invariant tensors on \mathfrak{m} :

- the inner product g

$$
\left.g\right|_{\mathfrak{s p}(1)}=\frac{-\kappa}{4(n+2)},\left.\quad g\right|_{\mathfrak{g}_{1}}=\frac{-\kappa}{8(n+2)},\left.\quad g\right|_{\mathfrak{s p}(1) \times \mathfrak{g}_{1}}=0
$$

κ the Killing form on G.

- $\xi_{i}=\sigma_{i}, i=1,2,3, \sigma_{i}$ standard basis of $\mathfrak{s p}(1)=\mathcal{V} \subset \mathfrak{g}_{0}, \eta_{i}=g\left(\xi_{i}, \cdot\right)$
- the endomorphisms φ_{i} as

$$
\left.\varphi_{i}\right|_{\mathfrak{s p}(1)}=\frac{1}{2} \operatorname{ad}\left(\xi_{i}\right),\left.\quad \varphi_{i}\right|_{\mathfrak{g}_{1}}=\operatorname{ad}\left(\xi_{i}\right) .
$$

Then $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ defines a homogeneous 3-Sasakian manifold.
Conversely every homogeneous 3-Sasakian manifold $M \neq \mathbb{R} P^{4 n+3}$ is obtained by this construction.

Homogeneous positive 3- (α, δ)-Sasakian model

Idea: Use \mathcal{H}-homothetic deformation to obtain 3-($\alpha, \delta)$-Sasakian mnfds for $\alpha \delta>0$

Homogeneous positive 3- (α, δ)-Sasakian model

Idea: Use \mathcal{H}-homothetic deformation to obtain 3- (α, δ)-Sasakian mnfds for $\alpha \delta>0$

Theorem

Let $\left(G, G_{0}, H\right)$ be 3-Sasakian data, $\alpha \delta>0$. On $M=G / H$ consider the G-invariant structure by the $\operatorname{Ad}(H)$-invariant tensors on \mathfrak{m} :

$$
\begin{gathered}
\left.g\right|_{\mathfrak{s p}(1)}=\frac{-\kappa}{4 \delta^{2}(n+2)},\left.\quad g\right|_{\mathfrak{g}_{1}}=\frac{-\kappa}{8 \alpha \delta(n+2)},\left.\quad g\right|_{\mathfrak{s p}(1) \times \mathfrak{g}_{1}}=0 \\
\xi_{i}=\delta \sigma_{i}, \quad \eta_{i}=g\left(\xi_{i}, \cdot\right) \\
\left.\varphi_{i}\right|_{\mathfrak{s p}(1)}=\frac{1}{2 \delta} \operatorname{ad}\left(\xi_{i}\right),\left.\quad \varphi_{i}\right|_{\mathfrak{g}_{1}}=\frac{1}{\delta} \operatorname{ad}\left(\xi_{i}\right) .
\end{gathered}
$$

Then $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ defines a homogeneous 3-($\left.\alpha, \delta\right)$-Sasakian mnfd.
Conversely every homogeneous 3 - (α, δ)-Sasakian manifold $M \neq \mathbb{R} P^{4 n+3}$ with $\alpha \delta>0$ is obtained by this construction.

Remark: $(G / H, g)$ is naturally reductive $\Leftrightarrow \delta=2 \alpha \Leftrightarrow$ parallel $3-(\alpha, \delta)$.

Generalized setup

Definition

A generalized 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a real simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups
and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- ($\mathfrak{g}, \mathfrak{g}_{0}$) form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,
- the complexification $\mathfrak{g}_{1}^{\mathbb{C}}=\mathbb{C}^{2} \otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$-module of $\operatorname{dim}_{\mathbb{C}} W=2 n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{s p}(1)^{\mathbb{C}} \subset \mathfrak{g}_{0}^{\mathbb{C}}$ act on $\mathfrak{g}_{1}^{\mathbb{C}}$ by their action on W and \mathbb{C}^{2}.

Generalized setup

Definition

A generalized 3-Sasakian data is a triple $\left(G, G_{0}, H\right)$ of Lie groups such that

- G is a real simple Lie Group
- $H \subset G_{0} \subset G$ connected Lie subgroups
and the Lie algebras $\mathfrak{h} \subset \mathfrak{g}_{0} \subset \mathfrak{g}$ satisfy:
- $\mathfrak{g}_{0}=\mathfrak{h} \oplus \mathfrak{s p}(1)$ with $\mathfrak{s p}(1)$ and \mathfrak{h} commuting subalgebras,
- ($\mathfrak{g}, \mathfrak{g}_{0}$) form a symmetric pair, $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$,
- the complexification $\mathfrak{g}_{1}^{\mathbb{C}}=\mathbb{C}^{2} \otimes_{\mathbb{C}} W$ for some $\mathfrak{h}^{\mathbb{C}}$-module of $\operatorname{dim}_{\mathbb{C}} W=2 n$,
- $\mathfrak{h}^{\mathbb{C}}, \mathfrak{s p}(1)^{\mathbb{C}} \subset \mathfrak{g}_{0}^{\mathbb{C}}$ act on $\mathfrak{g}_{1}^{\mathbb{C}}$ by their action on W and \mathbb{C}^{2}.

If $\left(\mathfrak{g}, \mathfrak{g}_{0}\right)$ is a compact symmetric pair such that $\left(G, G_{0}, H\right)$ is 3-Sasakian data, then $\left(G^{*}, G_{0}, H\right)$ is generalized 3 -Sasakian data, where $\left(\mathfrak{g}^{*}, \mathfrak{g}_{0}\right)$ is the dual non-compact symmetric pair.

Negative homogeneous 3-($\alpha, \delta)$-Sasakian manifolds

Theorem
Let $\left(G^{*}, G_{0}, H\right)$ be non-compact generalized 3-Sasakian data, $\alpha \delta<0$.
On $M=G^{*} / H$ consider the G^{*}-invariant structure defined by the $\operatorname{Ad}(H)$-invariant tensors on \mathfrak{m}

$$
\begin{gathered}
\left.g\right|_{\mathfrak{s p}(1)}=\frac{-\kappa}{4 \delta^{2}(n+2)},\left.\quad g\right|_{\mathfrak{g}_{1}}=\frac{-\kappa}{8 \alpha \delta(n+2)},\left.\quad g\right|_{\mathfrak{s p}(1) \times \mathfrak{g}_{1}}=0, \\
\xi_{i}=\delta \sigma_{i}, \quad \eta_{i}=g\left(\xi_{i}, \cdot\right), \\
\left.\varphi_{i}\right|_{\mathfrak{s p}(1)}=\frac{1}{2 \delta} \operatorname{ad}\left(\xi_{i}\right),\left.\quad \varphi_{i}\right|_{\mathfrak{g}_{1}}=\frac{1}{\delta} \operatorname{ad}\left(\xi_{i}\right),
\end{gathered}
$$

κ the Killing form on G^{*}, σ_{i} standard basis $\mathfrak{s p}(1)=\mathcal{V} \subset \mathfrak{g}_{0}$.
Then ($M, g, \xi_{i}, \eta_{i}, \varphi_{i}$) defines a homogeneous 3-($\left.\alpha, \delta\right)$-Sasakian manifold.

In total we obtain homogeneous 3- (α, δ)-Sasakian structures on the following list of homogeneous spaces (G / H compact, G^{*} / H non-compact):

G	G^{*}	H	G_{0}	dim
$\operatorname{Sp}(n+1)$	$\operatorname{Sp}(n, 1)$	$\operatorname{Sp}(n)$	$\operatorname{Sp}(n) \operatorname{Sp}(1)$	$4 n+3$
$\mathrm{SU}(n+2)$	$\mathrm{SU}(n, 2)$	$S(\mathrm{U}(n) \times \mathrm{U}(1))$	$S(\mathrm{U}(n) \mathrm{U}(2))$	$4 n+3$
$\mathrm{SO}(n+4)$	$\mathrm{SO}(n, 4)$	$\mathrm{SO}(n) \times \operatorname{Sp}(1)$	$\operatorname{SO}(n) \operatorname{SO}(4)$	$4 n+3$
G_{2}	G_{2}^{2}	$\mathrm{Sp}(1)$	$\mathrm{SO}(4)$	11
$\mathrm{~F}_{4}$	$\mathrm{~F}_{4}^{-20}$	$\mathrm{Sp}(3)$	$\mathrm{Sp}(3) \operatorname{Sp}(1)$	31
E_{6}	E_{6}^{2}	$\mathrm{SU}(6)$	$\mathrm{SU}(6) \operatorname{Sp}(1)$	43
E_{7}	E_{7}^{-5}	$\operatorname{Spin}(12)$	$\operatorname{Spin}(12) \operatorname{Sp}(1)$	67
E_{8}	E_{8}^{-24}	E_{7}	$\mathrm{E}_{7} \operatorname{Sp}(1)$	115

Remark: $\mathbb{R} P^{4 n+3}=\frac{\mathrm{Sp}(n+1)}{\operatorname{Sp}(n) \times \mathbb{Z}_{2}}$ and non compact dual $\frac{\mathrm{Sp}(n, 1)}{\mathrm{Sp}(n) \times \mathbb{Z}_{2}}$ also admit 3 - (α, δ)-Sasaki structures, as the quotient of $S^{4 n+3}=\frac{\mathrm{Sp}(n+1)}{\mathrm{Sp}(n)}$, resp. $\frac{\mathrm{Sp}(n, 1)}{\mathrm{Sp}(n)}$ by \mathbb{Z}_{2} inside the fiber.

Question: Are these all homogenous negative 3- (α, δ)-Sasaki manifolds?

Question: Are these all homogenous negative $3-(\alpha, \delta)$-Sasaki manifolds?

NO!

Question: Are these all homogenous negative 3- (α, δ)-Sasaki manifolds?

NO!

Idea: Start with V. Cortes, A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures, Mem. AMS 147 (2000) and previous work of \subset \{Alekseevsky, Cortes\}

Question: Are these all homogenous negative 3- (α, δ)-Sasaki manifolds?

NO!

Idea: Start with V. Cortes, A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures, Mem. AMS 147 (2000) and previous work of \subset \{Alekseevsky, Cortes\}

The construction is highly algebraic!

- Obtain examples over bases not included in previous construction (for example, Alekseevsky spaces of negative scalar curvature)
- First such example not covered by previous theorem: dimension $n=19=4 \cdot 4+3$

Difficulty: Pick the positive definite examples, discard redundancies, give a more geometric description...

Definiteness of curvature operators

Consider the Riemannian curvature as a symmetric operator

$$
\mathcal{R}^{g}: \Lambda^{2} M \rightarrow \Lambda^{2} M \quad\left\langle\mathcal{R}^{g}(X \wedge Y), Z \wedge V\right\rangle=-g\left(R^{g}(X, Y) Z, V\right)
$$

Definition

A Riemannian manifold (M, g) is said to have strongly positive curvature if there exists a 4 -form ω such that $\mathcal{R}^{g}+\omega$ is positive-definite at every point $x \in M$ (Thorpe, 1971).

For every 2 -plane σ, being $\langle\omega(\sigma), \sigma\rangle=0$, one has

$$
\sec (\sigma)=\left\langle\mathcal{R}^{g}(\sigma), \sigma\right\rangle=\left\langle\left(\mathcal{R}^{g}+\omega\right)(\sigma), \sigma\right\rangle .
$$

Then,
$\mathcal{R}^{g}>0 \Longrightarrow$ strongly positive curvature \Longrightarrow positive sectional curvature
$\mathcal{R}^{g} \geq 0 \Longrightarrow$ strongly non-negative curvature \Longrightarrow non-negative sec. curv.

On a $3-(\alpha, \delta)$-Sasakian manifold the symmetric operators defined by the Riemannian curvature and the curvature of the canonical connection:

$$
\mathcal{R}^{g}: \Lambda^{2} M \rightarrow \Lambda^{2} M \quad \mathcal{R}: \Lambda^{2} M \rightarrow \Lambda^{2} M
$$

are related by

$$
\mathcal{R}^{g}-\frac{1}{4} \sigma_{T}=\mathcal{R}+\frac{1}{4} \mathcal{G}_{T}
$$

with

$$
\begin{aligned}
& \left\langle\mathcal{G}_{T}(X \wedge Y), Z \wedge V\right\rangle:=g(T(X, Y), T(Z, V)) \\
& \left\langle\sigma_{T}(X \wedge Y), Z \wedge V\right\rangle:=\frac{1}{2} d T(X, Y, Z, V)
\end{aligned}
$$

(M, g) is strongly non-negative with 4-form $-\frac{1}{4} \sigma_{T}$ if and only if

$$
\mathcal{R}+\frac{1}{4} \mathcal{G}_{T} \geq 0
$$

Being $\mathcal{G}_{T} \geq 0$, if $\mathcal{R} \geq 0$ we directly have strong non-negativity.

Theorem

Let M be a homogeneous 3-($\alpha, \delta)$-Sasakian manifold obtained from a generalized 3-Sasakian data.

- If $\alpha \delta<0$ then $\mathcal{R} \leq 0$.
- If $\alpha \delta>0$ then

$$
\mathcal{R} \geq 0 \text { if and only if } \alpha \beta \geq 0
$$

Then, on a positive homogeneous 3-($\alpha, \delta)$-Sasaki manifold with $\alpha \beta \geq 0$:

$$
\mathcal{R}^{g}-\frac{1}{4} \sigma_{T}=\mathcal{R}+\frac{1}{4} \mathcal{G}_{T} \geq 0 .
$$

The converse also holds, i.e.
Theorem
A positive homogeneous 3-($\alpha, \delta)$-Sasaki manifold is strongly non-negative with 4 -form $-\frac{1}{4} \sigma_{T}$ if and only if $\alpha \beta \geq 0$.

Strong positivity is much more restrictive than strong non-negativity.
Strong positivity implies strict positive sectional curvature.
Homogeneous manifolds with strictly positive sectional curvature have been classified (Wallach 1972, Bérard Bergery 1976).
Only the 7-dimensional Aloff-Wallach-space $W^{1,1}$, the spheres $S^{4 n+3}$ and real projective spaces $\mathbb{R} P^{4 n+3}$ admit homogeneous 3 - (α, δ)-Sasaki structures.

Theorem

The 3-($\alpha, \delta)$-Sasakian spaces

- $W^{1,1}=\mathrm{SU}(3) / S^{1}$ with 4-form $-\left(\frac{1}{4}+\varepsilon\right) \sigma_{T}$ for small $\varepsilon>0$,
- $S^{4 n+3}, \mathbb{R} P^{4 n+3}, n \geq 1$, with 4-form $\left.\frac{\delta}{8 \alpha} \sigma_{T}\right|_{\Lambda^{4} \mathcal{H}}-\left(\frac{1}{4}+\varepsilon\right) \sigma_{T}$ for small $\varepsilon>0$
are strongly positive if and only if $\alpha \beta>0$.

Some open questions

- Investigate the geometry of the new homogeneous negative 3 - (α, δ)-Sasakian manifolds
- 3-Sasakian manifolds admit Riemannian Killing spinors. They correspond to pseudo-Riemannian Killing spinors on the non-compact duals when equipped with an indefinite metric. How does this translate to the negative 3-Sasakian case? Are there special spinors?
- 3- (α, δ)-Sasakian manifolds are ∇-Einstein if $(2-n) \delta=5 \alpha$. How do these geometries look like for $n>2$?

Further reading

I. Agricola, The Srní lectures on non-integrable geometries with torsion, Arch. Math.(Brno) 42 (2006), suppl., 5-84.
I. Agricola, G. Dileo, Generalizations of 3-Sasakian manifolds and skew torsion, Adv. Geom. 2020. Online since 4/2019.
I. Agricola, T. Friedrich, 3-Sasakian manifolds in dimension seven, their spinors and G_{2}-structures, J. Geom. Phys. 60 (2010), 326-332.
R. Bettiol, R. Mendes, Strongly positive curvature, Ann. Global Anal. Geom.

53 (2018), 287-309.
B. Cappelletti-Montano, A. De Nicola, I. Yudin, Hard Lefschetz theorem for Sasakian manifolds, J. Differ. Geom. 101 (2015), 47-66.
D. Conti, Th. B. Madsen, The odd side of torsion geometry, Ann. Mat. Pura Appl. 193 (2014), 1041-1067.
T. Houri, H. Takeuchi, Y. Yasui, A Deformation of Sasakian Structure in the Presence of Torsion and Supergravity Solutions, Class.Quant.Grav. 30 (2013), 135008.
S. Ivanov, I. Minchev, D. Vassilev, Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem, Mem. AMS 231 (2014)

'This page intentionally left blank'

'This page intentionally left blank'

