On a class of Sasakian 5-manifolds

Adrián Andrada

FaMAF, Universidad Nacional de Córdoba - Argentina

Joint work with A. Fino and L. Vezzoni (Torino)

Workshop on "Dirac operators and special geometries" Schloss Rauischholzhausen, Germany - September 2009

Introduction

Sasakian structures are the analogues in odd dimensions of Kähler structures, and they can be defined in terms of the Riemannian cone.

Given a Riemannian manifold (M, g), its Riemannian cone is the product $M \times \mathbb{R}^+$ equipped with the cone metric $t^2g + dt^2$.

A manifold M^{2n+1} equipped with a 1-form α is *contact* if the 2-form $t^2 d \alpha + 2t d t \wedge \alpha$ is symplectic on the cone. Equivalently, $\alpha \wedge (d \alpha)^n \neq 0$.

If, moreover, this 2-form is Kähler, then (M, g) is called *Sasakian*.

This is the characterization given by Boyer-Galicki ('99) of Sasakian manifolds.

The original definition, given by Sasaki in the '60s, involves a quadruple (Φ, α, ξ, g) , where Φ is a (1, 1)-tensor, α is a 1-form and ξ is a nowhere vanishing vector field on M such that

$$\begin{aligned} \alpha(\xi) &= 1, \qquad \Phi^2 = -\mathbf{I} + \xi \otimes \alpha \\ g(\Phi X, \Phi Y) &= g(X, Y) - \alpha(X)\alpha(Y) , \\ 2g(X, \Phi Y) &= \mathbf{d}\alpha(X, Y) \\ N_\Phi &= -\mathbf{d}\alpha \otimes \xi , \end{aligned}$$

where N_{Φ} , the Nijenhuis tensor associated to Φ , is given by

$$N_{\Phi}(X,Y) = \Phi^{2}[X,Y] + [\Phi X,\Phi Y] - \Phi[\Phi X,Y] - \Phi[X,\Phi Y].$$

In the '90s Boyer, Galicki and their co-authors established relationships between Sasakian structures (or related structures such as Sasaki-Einstein, 3-Sasakian) and string theory and other geometries such as algebraic or quaternionic-Kähler geometry.

Some properties:

- $\Phi(\xi) = 0$, $\alpha \circ \Phi = 0$, $d\alpha(\xi, X) = 0$, $g(\xi, X) = \alpha(X) \quad \forall X$;
- ξ is a Killing vector field of unit length;
- $R(X,Y)\xi = \alpha(Y)X \alpha(X)Y$; therefore $\operatorname{Ric}_g(\xi,\xi) = 2n$.
- The sectional curvature of all plane sections containing ξ are equal to 1.
- Let M^{2n+1} be a compact Sasakian manifold, then the Betti numbers b_p are *even*, for p odd, $p \le n$ or p even, $p \ge n+1$ [Blair-Goldberg '67, Fujitani '66].

Some examples of Sasakian manifolds:

• \mathbb{R}^{2n+1} with the contact form $\alpha = d z - \sum_{i=1}^{n} y_i d x_i$, $\xi = \frac{\partial}{\partial z}$ and

$$2g = \alpha \otimes \alpha + \sum_{i=1}^{n} (\mathrm{d} \, x_i^2 + \mathrm{d} \, y_i^2),$$

$$\Phi\left(\frac{\partial}{\partial x_i}\right) = \frac{\partial}{\partial y_i} + x_i \frac{\partial}{\partial z}, \quad \Phi\left(\frac{\partial}{\partial y_i}\right) = -\frac{\partial}{\partial x_i}, \quad \Phi\left(\frac{\partial}{\partial z}\right) = 0.$$

• S^{2n+1} : considering the Hopf fibration $\pi: S^{2n+1} \to \mathbb{C}P^n$ as a special case of the Boothby-Wang fibration.

In dimension 3 a homogeneous Sasakian manifold is a Lie group endowed with a left-invariant Sasakian structure [Perrone '98].

By [Perrone-Vanhecke '91] a compact, simply connected, 5-dimensional homogeneous contact manifold is diffeomorphic to S^5 or to the product $S^2 \times S^3$. Moreover, both S^5 and $S^2 \times S^3$ carry Sasaki-Einstein structures.

[Conti '07] classified Sasaki-Einstein 5-manifolds of cohomogeneity 1.

[Diatta '08] classified 5-dimensional Lie groups equipped with left-invariant contact structures.

Left-invariant Sasakian structures on Lie groups

We aim to classify 5-dimensional Lie groups endowed with left-invariant Sasakian structures. This is equivalent to determining all 5-dimensional Sasakian Lie algebras.

A Sasakian structure on a Lie algebra \mathfrak{g} is a quadruple (Φ, α, ξ, g) , where $\Phi \in \operatorname{End}(\mathfrak{g})$, $\alpha \in \mathfrak{g}^*$, $\xi \in \mathfrak{g}$ and g is an inner product on \mathfrak{g} such that

$$\alpha(\xi) = 1, \qquad \Phi^2 = -\mathbf{I} + \xi \otimes \alpha, \quad g(\Phi X, \Phi Y) = g(X, Y) - \alpha(X)\alpha(Y),$$

$$2g(X, \Phi Y) = d\alpha(X, Y), \quad N_{\Phi} = -d\alpha \otimes \xi,$$

where N_{Φ} is defined as before. A Lie algebra equipped with a Sasakian structure will be called a *Sasakian Lie algebra*. The vector ξ will be called the *Reeb vector*.

Example

The classical example of a Sasakian Lie algebra is given by the (2n+1)dimensional real Heisenberg Lie algebra \mathfrak{h}_{2n+1} . We recall that

$$\mathfrak{h}_{2n+1} = \operatorname{span}\{X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z\},\$$

$$[X_i, Y_i] = Z, \quad i = 1, \dots, n;$$

in this case, a Sasakian structure is defined by

$$\Phi(X_i) = Y_i, \ \Phi(Y_i) = -X_i, \ \Phi(Z) = 0, \ i = 1, \dots, n,$$

the inner product g is obtained by $||X_i||^2 = ||Y_i||^2 = 1/2$, ||Z|| = 1, $\xi = Z$ and α is the dual 1-form of Z.

Fundamental property

In general for a Lie algebra \mathfrak{g} with a contact structure α we can prove the following property for its center $\mathfrak{z}(\mathfrak{g})$.

 $\alpha \in \mathfrak{g}^*$ is called a *contact form* if $\alpha \wedge (d \alpha)^n \neq 0$; there always exists a unique $\xi \in \mathfrak{g}$ such that $\alpha(\xi) = 1$ and $\alpha([\xi, x]) = 0$ for all $x \in \mathfrak{g}$.

Proposition: Let (\mathfrak{g}, α) be a contact Lie algebra with ξ its Reeb vector and let $\mathfrak{z}(\mathfrak{g})$ be the center of \mathfrak{g} . Then

1. dim $\mathfrak{z}(\mathfrak{g}) \leq 1$;

2. if dim $\mathfrak{z}(\mathfrak{g}) = 1$, then $\mathfrak{z}(\mathfrak{g}) = \mathbb{R}\xi$.

Case with non-trivial center

Proposition: (A.-Fino-Vezzoni) Let $(\mathfrak{g}, \Phi, \alpha, \xi, g)$ be a Sasakian Lie algebra with $\mathfrak{z}(\mathfrak{g}) = \mathbb{R}\xi$. Then the quadruple $(\ker \alpha, \theta, \Phi, g)$ is a Kähler Lie algebra, where θ is the component of the Lie bracket of \mathfrak{g} on ker α .

Corollary: Let $(\mathfrak{g}, \Phi, \alpha, \xi, g)$ be a Sasakian Lie algebra with $\mathfrak{z}(\mathfrak{g}) = \mathbb{R}\xi$. Then $\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ inherits a natural Kähler structure.

Conversely, let $(\mathfrak{h}, [,]_{\mathfrak{h}}, \omega, g)$ be a Kähler Lie algebra and set $\mathfrak{g} = \mathfrak{h} \oplus \mathbb{R} \xi$. Then defining

$$[X,Y] = [X,Y]_{\mathfrak{h}} - \omega(X,Y)\,\xi, \qquad [\xi,\mathfrak{h}] = 0$$

for $X, Y \in \mathfrak{h}$ we obtain a new Lie algebra $(\mathfrak{g}, [,])$ equipped with a natural Sasakian structure.

Particular case: nilpotent Lie algebras

It is known that in dimensions 3 and 5 the only nilpotent Sasakian Lie algebras are the real Heisenberg algebras \mathfrak{h}_3 and \mathfrak{h}_5 , respectively ([Geiges '97] and [Ugarte '07]). We show next that this still holds in any dimension.

Proposition: (A.-Fino-Vezzoni) Let \mathfrak{g} be a (2n + 1)-dimensional nilpotent Lie algebra admitting a Sasakian structure. Then \mathfrak{g} is isomorphic to the (2n + 1)-dimensional Heisenberg Lie algebra.

Proof: Let (Φ, α, ξ, g) be a Sasakian structure on \mathfrak{g} . Since \mathfrak{g} is nilpotent it has non-trivial center $\mathfrak{z}(\mathfrak{g}) = \mathbb{R} \xi$. The quotient $\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ is a Kähler nilpotent Lie algebra and, as a consequence, it is abelian. This implies immediately that \mathfrak{g} is isomorphic to the Heisenberg Lie algebra.

Case with trivial center

Proposition: Let $(\mathfrak{g}, \Phi, \alpha, \xi, g)$ be a Sasakian Lie algebra. Then

- 1. $ad_{\xi} \Phi = \Phi ad_{\xi}$, and therefore $\ker ad_{\xi}$ and $\operatorname{Im} ad_{\xi}$ are Φ -invariant subspaces of \mathfrak{g} ;
- 2. $\operatorname{ad}_{\xi} \Phi$ is symmetric with respect to g;
- 3. ad_{ξ} is skew-symmetric with respect to g, thus $(\operatorname{Im} \operatorname{ad}_{\xi})^{\perp} = \ker \operatorname{ad}_{\xi}$.

Corollary: Let $(\mathfrak{g}, \Phi, \alpha, \xi, g)$ be a Sasakian Lie algebra. Then there is an orthogonal decomposition

 $\mathfrak{g} = \ker \operatorname{ad}_{\xi} \oplus \operatorname{Im} \operatorname{ad}_{\xi}.$

Proposition: Let $(\mathfrak{g}, \Phi, \alpha, \xi, g)$ be a Sasakian Lie algebra with trivial center.

- 1. If dim $\mathfrak{g} \geq 5$, then ker ad_{ξ} is a Sasakian Lie subalgebra of \mathfrak{g} with non-trivial center.
- 2. If $X \in \ker \operatorname{ad}_{\xi}, Y \in \operatorname{Im} \operatorname{ad}_{\xi}$, then $[X, Y] \in \operatorname{Im} \operatorname{ad}_{\xi}$.

With respect to the decomposition $\mathfrak{g} = \ker \operatorname{ad}_{\xi} \oplus \operatorname{Im} \operatorname{ad}_{\xi}$, we have

$$(\operatorname{ad}_{\xi})_{|\ker \alpha} = \begin{pmatrix} 0 & 0 \\ 0 & U \end{pmatrix}, \quad \Phi_{|\ker \alpha} = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix},$$

where $U \colon \operatorname{Im} \operatorname{ad}_{\xi} \to \operatorname{Im} \operatorname{ad}_{\xi}$ is non-singular, and

$$A^2 = D^2 = -\mathbf{I} \qquad DU = UD.$$

In particular, if \mathfrak{g} is solvable, then the Reeb vector ξ cannot belong to the commutator \mathfrak{g}' .

5-dimensional Sasakian Lie algebras with trivial center

In [Ovando '06] a classification of 4-dimensional Kähler Lie algebras was given. Using this with our previous we obtain the following result:

Theorem: (AFV) Any 5-dimensional Sasakian Lie algebra \mathfrak{g} with non-trivial center is isomorphic to one of the following solvable Lie algebras (for $\delta > 0$):

$$\begin{split} \mathfrak{g}_{1} &= \left(0, 0, 0, 0, e^{12} + e^{34}\right) \simeq \mathfrak{h}_{5}; \\ \mathfrak{g}_{2} &= \left(0, -e^{12}, 0, 0, e^{12} + e^{34}\right) \simeq \mathfrak{aff}(\mathbb{R}) \times \mathfrak{h}_{3}; \\ \mathfrak{g}_{3} &= \left(0, -e^{13}, e^{12}, 0, e^{14} + e^{23}\right) \simeq \mathbb{R} \ltimes \left(\mathfrak{h}_{3} \times \mathbb{R}\right); \\ \mathfrak{g}_{4} &= \left(0, -e^{12}, 0, -e^{34}, e^{12} + e^{34}\right) \simeq \mathfrak{aff}(\mathbb{R}) \times \mathfrak{aff}(\mathbb{R}) \times \mathbb{R}; \\ \mathfrak{g}_{5} &= \left(\frac{1}{2}e^{14}, \frac{1}{2}e^{24}, -e^{12} + e^{34}, 0, e^{12} - e^{34}\right) \simeq \mathbb{R} \times \left(\mathbb{R} \ltimes \mathfrak{h}_{3}\right); \\ \mathfrak{g}_{6} &= \left(2e^{14}, -e^{24}, -e^{12} + e^{34}, 0, e^{23}\right) \simeq \mathbb{R} \ltimes \mathfrak{n}_{4}; \\ \mathfrak{g}_{7}^{\delta} &= \left(\frac{\delta}{2}e^{14} + e^{24}, -e^{14} + \frac{\delta}{2}e^{24}, -e^{12} + \delta e^{34}, 0, e^{12} - \delta e^{34}\right) \simeq \mathbb{R} \times \left(\mathbb{R} \ltimes \mathfrak{h}_{3}\right); \\ \mathfrak{g}_{8}^{\delta} &= \left(e^{14}, \delta e^{34}, -\delta e^{24}, 0, e^{14} + e^{23}\right) \simeq \mathbb{R} \ltimes \left(\mathfrak{h}_{3} \times \mathbb{R}\right). \end{split}$$

15

Corollary: A unimodular Sasakian Lie algebra with non-trivial center is isomorphic either to the nilpotent Heisenberg Lie algebra \mathfrak{h}_5 or the solvable Lie algebra \mathfrak{g}_3 . The simply connected Lie group G_3 with Lie algebra \mathfrak{g}_3 admits a co-compact discrete subgroup Γ .

The group G_3 is isomorphic to \mathbb{R}^5 with a certain product, and it can be checked that the subset

$$\Gamma = \left\{ \left(2\pi m_1, m_2, m_3, m_4, \frac{1}{2\pi} m_5 \right) \mid m_i \in \mathbb{Z} \right\}$$

is a discrete subgroup that acts freely and properly discontinuously on G_3 . Moreover, the quotient manifold $\Gamma \backslash G_3$ is compact.

The solvmanifold $\Gamma \setminus G_3$ is by construction the total space of an S^1 bundle over a 4-dimensional non-completely solvable Kähler solvmanifold (this Kähler solvmanifold was found by Hasegawa in 2006).

5-dimensional Sasakian Lie algebras with trivial center

Let $(\mathfrak{g}, \Phi, \alpha, \xi, g)$ be a 5-dimensional Sasakian Lie algebra with trivial center.

First, if $\mathfrak{g}' = \mathfrak{g}$ then the only contact Lie algebra is $\mathfrak{sl}(2,\mathbb{R}) \ltimes \mathbb{R}^2$, according to [Diatta '08]. However, we can prove the following

Proposition: The Lie algebra $\mathfrak{sl}(2,\mathbb{R})\ltimes\mathbb{R}^2$ does not admit any Sasakian structure.

Now we can consider the case of 5-dimensional Sasakian Lie algebras with trivial center and such that $\mathfrak{g}' \neq \mathfrak{g}$. In this case

$$\dim \ker(\mathrm{ad}_{\xi})_{|\ker \alpha} = \dim \operatorname{Im}(\mathrm{ad}_{\xi}) = 2.$$

There exists an orthonormal basis $\{e_1, \ldots, e_4\}$ of ker α with respect to which $\Phi_{|\ker \alpha}$ can be written as

$$\Phi_{|\ker\alpha} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

and ker $ad_{\xi} = span\{\xi, e_1, e_2\}$, Im $ad_{\xi} = span\{e_3, e_4\}$. Moreover in this basis

Note that in terms of $\{e_1, \ldots, e_4\}$ the 2-form $d\alpha$ takes the standard form $d\alpha = 2(e^{12} + e^{34})$.

Set $e_5 = \xi$ and denote by $\{e^1, \ldots, e^5\}$ the dual basis of $\{e_1, \ldots, e_5\}$. Since $b \neq 0$, we may assume $b = \pm 1$.

<u>Case A:</u> b = 1. The Maurer-Cartan equations are given by

$$de^{1} = a_{1} e^{12} + a_{6} e^{34},$$

$$de^{2} = b_{1} e^{12} + b_{6} e^{34},$$

$$de^{3} = -e^{45} + c_{2} e^{13} + c_{3} e^{14} + c_{4} e^{23} + c_{5} e^{24},$$

$$de^{4} = e^{35} + f_{2} e^{13} + f_{3} e^{14} + f_{4} e^{23} + f_{5} e^{24},$$

$$de^{5} = 2(e^{12} + e^{34}).$$

(1)

19

<u>Case B:</u> b = -1. The Maurer-Cartan equations are given by

$$de^{1} = a_{1} e^{12} + a_{6} e^{34},$$

$$de^{2} = b_{1} e^{12} + b_{6} e^{34},$$

$$de^{3} = e^{45} + c_{2} e^{13} + c_{3} e^{14} + c_{4} e^{23} + c_{5} e^{24},$$

$$de^{4} = -e^{35} + f_{2} e^{13} + f_{3} e^{14} + f_{4} e^{23} + f_{5} e^{24},$$

$$de^{5} = 2(e^{12} + e^{34}).$$

(2)

Now, imposing the conditions $d^2 = 0$ and $N_{\Phi} = -de^5 \otimes e_5$, we obtain in each case a system of equations, whose solutions give rise to the Lie algebras with trivial center admitting Sasakian structures. **Theorem:** (AFV) If a 5-dimensional Sasakian Lie algebra \mathfrak{g} has trivial center, then it is isomorphic to one of the following Lie algebras:

- \bullet the direct product $\mathfrak{sl}(2,\mathbb{R})\times\mathfrak{aff}(\mathbb{R})$,
- \bullet the direct product $\mathfrak{su}(2)\times\mathfrak{aff}(\mathbb{R})$,
- the solvable (non-unimodular) Lie algebra \mathfrak{g}_0 , with Lie bracket given by

$$\begin{bmatrix} e_1, e_3 \end{bmatrix} = e_3, \quad \begin{bmatrix} e_1, e_4 \end{bmatrix} = \frac{1}{2}e_4, \quad \begin{bmatrix} e_1, e_5 \end{bmatrix} = \frac{1}{2}e_5, \\ \begin{bmatrix} e_2, e_4 \end{bmatrix} = e_5, \quad \begin{bmatrix} e_2, e_5 \end{bmatrix} = -e_4, \quad \begin{bmatrix} e_4, e_5 \end{bmatrix} = -e_3,$$

5-dimensional Sasaki α -Einstein Lie algebras

In [Diatta '08] it was proved that no left-invariant Sasakian structure on a Lie group can be Sasaki-Einstein. Thus, we will look for left-invariant Sasaki α -Einstein structures.

When the Ricci tensor of a Sasakian manifold $(M, \Phi, \alpha, \xi, g)$ satisfies the equation $\operatorname{Ric}_g = \lambda g + \nu \alpha \otimes \alpha$ for some constants $\lambda, \nu \in \mathbb{R}$, the Sasakian structure is called α -Einstein.

Sasaki α -Einstein metrics are natural analogues of Kähler-Einstein metrics.

Theorem: (Boyer-Galicki-Matzeu '99) Every Sasaki α -Einstein manifold is of constant scalar curvature equal to $s = 2n(\lambda + 1)$, and $\lambda + \nu = 2n$.

A Sasakian Lie algebra $(\mathfrak{g}, \Phi, \alpha, \xi, g)$ is called α -*Einstein* if the Ricci tensor Ric_g of the metric g satisfies $\operatorname{Ric}_g = \lambda g + \nu \alpha \otimes \alpha$ for some $\lambda, \nu \in \mathbb{R}$.

Some known facts in 5 dimensions:

• The canonical Sasakian structure on \mathfrak{h}_5 is α -Einstein [Tomassini-Vezzoni '08].

• The Lie algebra \mathfrak{g}_0 from the previous theorem is the only solvable (non nilpotent) 5-dimensional Lie algebra admitting a Sasaki α -Einstein structure [de Andrés-Fernández-Fino-Ugarte '08].

Thus, we only have to consider the non-solvable Sasakian Lie algebras, which are $\mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{aff}(\mathbb{R})$ and $\mathfrak{su}(2) \times \mathfrak{aff}(\mathbb{R})$.

Proposition: The Lie algebra $\mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{aff}(\mathbb{R})$ admits Sasaki α -Einstein structures, while no Sasakian structure on $\mathfrak{su}(2) \times \mathfrak{aff}(\mathbb{R})$ is α -Einstein.

To sum up, we can now state the following

Theorem: (AFV) The only 5-dimensional Lie algebras admitting a Sasaki α -Einstein structure are \mathfrak{h}_5 , \mathfrak{g}_0 and $\mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{aff}(\mathbb{R})$.

Corollary: The nilmanifolds $\Gamma \setminus H_5$ are the only compact manifolds of the form $\Gamma \setminus G$ (with G a simply connected Lie group and $\Gamma \subset G$ a lattice) which admit invariant Sasaki α -Einstein structures.