WORKSHOP ON "DIRAC OPERATORS AND SPECIAL GEOMETRIES" CASTLE RAUISCHHOLZHAUSEN, 24-27 SEPTEMBER 2009

Beniamino Cappelletti Montano

University of Bari, Italy

Almost contact metric 3-structures with torsion

Some preliminaries on almost contact manifolds.

An **almost contact manifold** is a (2n+1)-dimensional manifold *M* endowed with

- \blacktriangleright a field φ of endomorphisms of the tangent spaces
- a global 1-form η
- ► a global vector field ξ , called *Reeb vector field*

such that

$$\varphi^2 = -I + \eta \otimes \xi$$
 and $\eta(\xi) = 1$.

Given an almost contact manifold $(M^{2n+1}, \varphi, \xi, \eta)$, one can define on $M^{2n+1} \times \mathbb{R}$ an almost complex structure J by setting

 $J(X, f d/dt) = (\varphi X - f\xi, \eta(X)d/dt)$

for all $X \in \Gamma(TM^{2n+1})$ and $f \in C^{\infty}(M^{2n+1} \times \mathbb{R})$.

Given an almost contact manifold $(M^{2n+1}, \varphi, \xi, \eta)$, one can define on $M^{2n+1} \times \mathbb{R}$ an almost complex structure J by setting

 $J(X, f d/dt) = (\varphi X - f\xi, \eta(X)d/dt)$

for all $X \in \Gamma(TM^{2n+1})$ and $f \in C^{\infty}(M^{2n+1} \times \mathbb{R})$.

Then (φ, ξ, η) is said to be **normal** if the almost complex structure *J* is integrable, that is $[J, J] \equiv 0$. This happens if and only if

 $N := [\varphi, \varphi] + 2\eta \otimes \xi \equiv 0.$

 $g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$

for all $X, Y \in \Gamma(TM)$.

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for all $X, Y \in \Gamma(TM)$.

If we fix such a metric, (M,φ,ξ,η,g) is called an **almost contact metric manifold** and we can define the *fundamental 2-form* Φ by

 $\Phi(X,Y)=g(X,\varphi Y).$

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for all $X, Y \in \Gamma(TM)$.

If we fix such a metric, (M,φ,ξ,η,g) is called an **almost contact metric manifold** and we can define the *fundamental 2-form* Φ by

 $\Phi(X,Y) = g(X,\varphi Y).$

• An almost contact metric manifold such that $N \equiv 0$ and $d\eta = \Phi$ is said to be a **Sasakian manifold** (α -Sasakian if $d\eta = \alpha \Phi$).

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for all $X, Y \in \Gamma(TM)$.

If we fix such a metric, (M,φ,ξ,η,g) is called an **almost contact metric manifold** and we can define the *fundamental 2-form* Φ by

 $\Phi(X,Y) = g(X,\varphi Y).$

- An almost contact metric manifold such that $N \equiv 0$ and $d\eta = \Phi$ is said to be a **Sasakian manifold** (α -Sasakian if $d\eta = \alpha \Phi$).
- An almost contact metric manifold such that $N \equiv 0$ and $d\Phi = 0$, $d\eta = 0$ is said to be a **cosymplectic manifold**.

An almost contact manifold $(M^{2n+1}, \varphi, \xi, \eta)$ is said to be of

▶ rank 2*p* if $(d\eta)^p \neq 0$ and $\eta \land (d\eta)^p = 0$ on M^{2n+1} , for some $p \leq n$

▶ rank 2p+1 if $\eta \land (d\eta)^p \neq 0$ and $(d\eta)^{p+1}=0$ on M^{2n+1} , for some $p \leq n$.

An almost contact manifold $(M^{2n+1}, \varphi, \xi, \eta)$ is said to be of

▶ rank 2*p* if $(d\eta)^p \neq 0$ and $\eta \land (d\eta)^p = 0$ on M^{2n+1} , for some $p \leq n$

▶ rank 2p+1 if $\eta \land (d\eta)^p \neq 0$ and $(d\eta)^{p+1}=0$ on M^{2n+1} , for some $p \leq n$.

Theorem (Blair, Tanno) No quasi-Sasakian manifold has even rank.

An almost contact manifold $(M^{2n+1}, \varphi, \xi, \eta)$ is said to be of

▶ rank 2*p* if $(d\eta)^p \neq 0$ and $\eta \land (d\eta)^p = 0$ on M^{2n+1} , for some $p \leq n$

▶ rank 2p+1 if $\eta \land (d\eta)^p \neq 0$ and $(d\eta)^{p+1}=0$ on M^{2n+1} , for some $p \leq n$.

Theorem (Blair, Tanno) No quasi-Sasakian manifold has even rank.

Remarkable subclasses of quasi-Sasakian manifolds are given by

- **Sasakian manifolds** $(d\eta = \Phi, maximal rank 2n+1)$
- **cosymplectic manifolds** $(d\eta=0, d\Phi=0, minimal rank 1)$.

3-structures

An **almost contact 3-structure** on a manifold *M* is given by three distinct almost contact structures $(\varphi_1, \xi_1, \eta_1)$, $(\varphi_2, \xi_2, \eta_2)$, $(\varphi_3, \xi_3, \eta_3)$ on *M* satisfying the following relations, for an even permutation (i, j, k) of $\{1, 2, 3\}$,

$$\varphi_{k} = \varphi_{i}\varphi_{j} - \eta_{j}\otimes\xi_{i} = -\varphi_{j}\varphi_{i} + \eta_{i}\otimes\xi_{j},$$

$$\xi_{k} = \varphi_{i}\xi_{j} = -\varphi_{j}\xi_{i}, \quad \eta_{k} = \eta_{i}\circ\varphi_{j} = -\eta_{j}\circ\varphi_{i},$$

3-structures

An **almost contact 3-structure** on a manifold *M* is given by three distinct almost contact structures $(\varphi_1, \xi_1, \eta_1)$, $(\varphi_2, \xi_2, \eta_2)$, $(\varphi_3, \xi_3, \eta_3)$ on *M* satisfying the following relations, for an even permutation (i, j, k) of $\{1, 2, 3\}$,

$$arphi_k = arphi_i arphi_j - \eta_j \otimes \xi_i = -arphi_j arphi_i + \eta_i \otimes \xi_j,$$

 $\xi_k = arphi_i \xi_j = -arphi_j \xi_i, \quad \eta_k = \eta_i^\circ arphi_j = -\eta_j^\circ arphi_i.$

One can prove that (Kuo, Udriste)

- dim(M) = 4n+3 for some $n \ge 1$,
- the structural group of *TM* is reducible to $Sp(n) \times I_3$.

3-structures

An **almost contact 3-structure** on a manifold *M* is given by three distinct almost contact structures $(\varphi_1, \xi_1, \eta_1)$, $(\varphi_2, \xi_2, \eta_2)$, $(\varphi_3, \xi_3, \eta_3)$ on *M* satisfying the following relations, for an even permutation (i, j, k) of $\{1, 2, 3\}$,

$$\varphi_{k} = \varphi_{i}\varphi_{j} - \eta_{j}\otimes\xi_{i} = -\varphi_{j}\varphi_{i} + \eta_{i}\otimes\xi_{j},$$

$$\xi_{k} = \varphi_{i}\xi_{j} = -\varphi_{j}\xi_{i}, \quad \eta_{k} = \eta_{i}\circ\varphi_{j} = -\eta_{j}\circ\varphi_{i},$$

One can prove that (Kuo, Udriste)

- dim(M) = 4n+3 for some $n \ge 1$,
- the structural group of *TM* is reducible to $Sp(n) \times I_3$.

If each almost contact structure is *normal*, then the 3-structure is said to be **hyper-normal**.

Moreover, there exists a Riemannian metric g compatible with each almost contact structure (φ_i, ξ_i, η_i), i.e. satisfying

$$g(\varphi_i X, \varphi_i Y) = g(X, Y) - \eta_i(X)\eta_i(Y)$$

for each $i \in \{1, 2, 3\}$.

Then we say that $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ is an **almost 3-contact metric manifold**.

Moreover, there exists a Riemannian metric g compatible with each almost contact structure (φ_i, ξ_i, η_i), i.e. satisfying

$$g(\varphi_i X, \varphi_i Y) = g(X, Y) - \eta_i(X)\eta_i(Y)$$

for each $i \in \{1, 2, 3\}$.

Then we say that $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ is an **almost 3-contact metric manifold**.

Remarkable examples of (hyper-normal) almost 3-contact metric manifolds are given by

- **3-Sasakian manifolds** (each structure $(\varphi_i, \xi_i, \eta_i)$ is Sasakian)
- **3-cosymplectic manifolds** (each structure $(\varphi_i, \xi_i, \eta_i)$ is cosymplectic)
- **3-quasi-Sasakian manifolds** (each structure $(\varphi_i, \xi_i, \eta_i)$ is quasi-Sasakian).

"Foliated" 3-structures

Let $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ be an almost 3-contact (metric) manifold. Putting

 $\mathcal{V} := \operatorname{span}\{\xi_1, \xi_2, \xi_3\}$ and $\mathcal{H} := \operatorname{ker}(\eta_1) \cap \operatorname{ker}(\eta_2) \cap \operatorname{ker}(\eta_3)$,

we have the (orthogonal) decomposition

 $T_pM = \mathcal{V}_p \oplus \mathcal{H}_p.$

 \mathcal{V} is called *Reeb distribution* (or *vertical distribution*), whereas \mathcal{H} *horizontal distribution*.

"Foliated" 3-structures

Let $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ be an almost 3-contact (metric) manifold. Putting

 $\mathcal{V} := \operatorname{span}\{\xi_1, \xi_2, \xi_3\}$ and $\mathcal{H} := \operatorname{ker}(\eta_1) \cap \operatorname{ker}(\eta_2) \cap \operatorname{ker}(\eta_3)$,

we have the (orthogonal) decomposition

 $T_pM = \mathcal{V}_p \oplus \mathcal{H}_p.$

 \mathcal{V} is called *Reeb distribution* (or *vertical distribution*), whereas \mathcal{H} *horizontal distribution*.

Question (Kuo-Tachibana, 1970) Is the distribution \mathcal{V} integrable?

"Foliated" 3-structures

Let $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ be an almost 3-contact (metric) manifold. Putting

 $\mathcal{V} := \operatorname{span}\{\xi_1, \xi_2, \xi_3\}$ and $\mathcal{H} := \operatorname{ker}(\eta_1) \cap \operatorname{ker}(\eta_2) \cap \operatorname{ker}(\eta_3)$,

we have the (orthogonal) decomposition

 $T_pM = \mathcal{V}_p \oplus \mathcal{H}_p.$

 \mathcal{V} is called *Reeb distribution* (or *vertical distribution*), whereas \mathcal{H} *horizontal distribution*.

Question (Kuo-Tachibana, 1970) Is the distribution \mathcal{V} integrable?

The answer is negative, in general.

 $[X_h, X_k] = [X_h, \xi_i] = 0, \quad [\xi_1, \xi_2] = [\xi_2, \xi_3] = [\xi_3, \xi_1] = X_1.$

Let *G* be a Lie group whose Lie algebra is g and let us define three tensor fields φ_1 , φ_2 , φ_3 on *G*, and three 1-forms η_1 , η_2 , η_3 , by putting, for all $i, j, k \in \{1, 2, 3\}$, $\varphi_i \xi_j = \varepsilon_{ijk} \xi_k$ and

$$\varphi_1 X_1 = X_2, \quad \varphi_1 X_2 = -X_1, \quad \varphi_1 X_3 = X_4, \quad \varphi_1 X_4 = -X_3, \\ \varphi_2 X_1 = X_3, \quad \varphi_2 X_2 = -X_4, \quad \varphi_2 X_3 = -X_1, \quad \varphi_2 X_4 = X_2, \\ \varphi_3 X_1 = X_4, \quad \varphi_3 X_2 = X_3, \quad \varphi_3 X_3 = -X_2, \quad \varphi_3 X_4 = -X_1,$$

and setting $\eta_i(X_h)=0$ and $\eta_i(\xi_j)=\delta_{ij}$.

 $[X_h, X_k] = [X_h, \xi_i] = 0, \quad [\xi_1, \xi_2] = [\xi_2, \xi_3] = [\xi_3, \xi_1] = X_1.$

Let *G* be a Lie group whose Lie algebra is g and let us define three tensor fields φ_1 , φ_2 , φ_3 on *G*, and three 1-forms η_1 , η_2 , η_3 , by putting, for all $i, j, k \in \{1, 2, 3\}$, $\varphi_i \xi_j = \varepsilon_{ijk} \xi_k$ and

$$\varphi_1 X_1 = X_2, \quad \varphi_1 X_2 = -X_1, \quad \varphi_1 X_3 = X_4, \quad \varphi_1 X_4 = -X_3, \\ \varphi_2 X_1 = X_3, \quad \varphi_2 X_2 = -X_4, \quad \varphi_2 X_3 = -X_1, \quad \varphi_2 X_4 = X_2, \\ \varphi_3 X_1 = X_4, \quad \varphi_3 X_2 = X_3, \quad \varphi_3 X_3 = -X_2, \quad \varphi_3 X_4 = -X_1,$$

and setting $\eta_i(X_h)=0$ and $\eta_i(\xi_j)=\delta_{ij}$.

(ϕ_i, ξ_i, η_i) is an almost contact 3-structure on G

 $[X_h, X_k] = [X_h, \xi_i] = 0, \quad [\xi_1, \xi_2] = [\xi_2, \xi_3] = [\xi_3, \xi_1] = X_1.$

Let *G* be a Lie group whose Lie algebra is g and let us define three tensor fields φ_1 , φ_2 , φ_3 on *G*, and three 1-forms η_1 , η_2 , η_3 , by putting, for all $i, j, k \in \{1, 2, 3\}$, $\varphi_i \xi_j = \varepsilon_{ijk} \xi_k$ and

$$\varphi_1 X_1 = X_2, \quad \varphi_1 X_2 = -X_1, \quad \varphi_1 X_3 = X_4, \quad \varphi_1 X_4 = -X_3, \\ \varphi_2 X_1 = X_3, \quad \varphi_2 X_2 = -X_4, \quad \varphi_2 X_3 = -X_1, \quad \varphi_2 X_4 = X_2, \\ \varphi_3 X_1 = X_4, \quad \varphi_3 X_2 = X_3, \quad \varphi_3 X_3 = -X_2, \quad \varphi_3 X_4 = -X_1,$$

and setting $\eta_i(X_h)=0$ and $\eta_i(\xi_j)=\delta_{ij}$.

(φ_i, ξ_i, η_i) is an almost contact 3-structure on G

by construction the Reeb distribution is not integrable.

 $[X_h, X_k] = [X_h, \xi_i] = 0, \quad [\xi_1, \xi_2] = [\xi_2, \xi_3] = [\xi_3, \xi_1] = X_1.$

Let *G* be a Lie group whose Lie algebra is *g* and let us define three tensor fields φ_1 , φ_2 , φ_3 on *G*, and three 1-forms η_1 , η_2 , η_3 , by putting, for all $i, j, k \in \{1, 2, 3\}$, $\varphi_i \xi_j = \varepsilon_{ijk} \xi_k$ and

$$\varphi_1 X_1 = X_2, \quad \varphi_1 X_2 = -X_1, \quad \varphi_1 X_3 = X_4, \quad \varphi_1 X_4 = -X_3, \\ \varphi_2 X_1 = X_3, \quad \varphi_2 X_2 = -X_4, \quad \varphi_2 X_3 = -X_1, \quad \varphi_2 X_4 = X_2, \\ \varphi_3 X_1 = X_4, \quad \varphi_3 X_2 = X_3, \quad \varphi_3 X_3 = -X_2, \quad \varphi_3 X_4 = -X_1,$$

and setting $\eta_i(X_h)=0$ and $\eta_i(\xi_j)=\delta_{ij}$.

(ϕ_i, ξ_i, η_i) is an almost contact 3-structure on G

by construction the Reeb distribution is not integrable.

Remark

 $(G, \varphi_i, \xi_i, \eta_i)$ is not hyper-normal since $N_1(\xi_1, \xi_2) = -X_1 + X_2 \neq 0$.

It is known that the Reeb distribution $\mathcal{V} := \text{span}\{\xi_1, \xi_2, \xi_3\}$ is integrable in 3-Sasakian manifolds and in 3-cosymplectic manifolds.

manifold	space of leaves	
3-Sasakian	Quaternionic- Kähler	Ishihara (<i>Kodai Math. Sem. Rep. 1973</i>) Boyer-Galicki-Mann (<i>J. Reine Angew. Math. 1994</i>)
3-cosymplectic	Hyper-Kähler	C. M De Nicola (<i>J. Geom. Phys. 2007</i>)

Both 3-Sasakian manifolds and 3-cosymplectic manifolds are hyper-normal.

It is known that the Reeb distribution $\mathcal{V} := \text{span}\{\xi_1, \xi_2, \xi_3\}$ is integrable in 3-Sasakian manifolds and in 3-cosymplectic manifolds.

manifold	space of leaves	
3-Sasakian	Quaternionic- Kähler	Ishihara (<i>Kodai Math. Sem. Rep. 1973</i>) Boyer-Galicki-Mann (<i>J. Reine Angew. Math. 1994</i>)
3-cosymplectic	Hyper-Kähler	C. M De Nicola (<i>J. Geom. Phys. 2007</i>)

Both 3-Sasakian manifolds and 3-cosymplectic manifolds are hyper-normal.

Question Does the hyper-normality of the almost contact 3-structure imply the integrability of \mathcal{V} ?

It is known that the Reeb distribution $\mathcal{V} := \text{span}\{\xi_1, \xi_2, \xi_3\}$ is integrable in 3-Sasakian manifolds and in 3-cosymplectic manifolds.

manifold	space of leaves	
3-Sasakian	Quaternionic- Kähler	Ishihara (<i>Kodai Math. Sem. Rep. 1973</i>) Boyer-Galicki-Mann (<i>J. Reine Angew. Math. 1994</i>)
3-cosymplectic	Hyper-Kähler	C. M De Nicola (<i>J. Geom. Phys. 2007</i>)

Both 3-Sasakian manifolds and 3-cosymplectic manifolds are hyper-normal.

Question Does the hyper-normality of the almost contact 3-structure imply the integrability of \mathcal{V} ?

Rather surprisingly, the answer is NO.

Example (C. M., *Differential Geom. Appl. 2009*)

Let g be the (4n+3)-dimensional Lie algebra with basis $\{E_1, \dots, E_{4n}, \xi_1, \xi_2, \xi_3\}$ and Lie brackets defined by

 $[\xi_1,\xi_2] = E_1, \ [\xi_2,\xi_3] = E_{n+1}, \ [\xi_2,\xi_3] = E_{2n+1}, \ [E_h,E_k] = [\xi_i,X_k] = 0.$

Let *G* be a Lie group whose Lie algebra is *g*. We define on *G* a leftinvariant almost contact 3-structure (φ_i, ξ_i, η_i) by putting $\varphi_i \xi_j = \varepsilon_{ijk} \xi_k$ and

$$\varphi_{1}E_{h} = E_{n+h}, \quad \varphi_{1}E_{n+h} = -E_{h}, \quad \varphi_{1}E_{2n+h} = E_{3n+h}, \quad \varphi_{1}E_{3n+h} = -E_{2n+h}, \\ \varphi_{2}E_{h} = E_{2n+h}, \quad \varphi_{2}E_{n+h} = -E_{3n+h}, \quad \varphi_{2}E_{2n+h} = -E_{h}, \quad \varphi_{2}E_{3n+h} = E_{n+h}, \\ \varphi_{3}E_{h} = E_{3n+h}, \quad \varphi_{3}E_{n+h} = E_{2n+h}, \quad \varphi_{3}E_{2n+h} = -E_{n+h}, \quad \varphi_{3}E_{3n+h} = -E_{h},$$

and setting $\eta_i(E_k) = 0$ and $\eta_i(\xi_j) = \delta_{ij}$. Then $(\varphi_i, \xi_i, \eta_i)$ is a hypernormal almost contact 3-structure on *G* though the Reeb distribution is not integrable.

Example (C. M., *Differential Geom. Appl. 2009*)

Let g be the (4n+3)-dimensional Lie algebra with basis $\{E_1, \dots, E_{4n}, \xi_1, \xi_2, \xi_3\}$ and Lie brackets defined by

 $[\xi_1,\xi_2] = E_1, \ [\xi_2,\xi_3] = E_{n+1}, \ [\xi_2,\xi_3] = E_{2n+1}, \ [E_h,E_k] = [\xi_i,X_k] = 0.$

Let *G* be a Lie group whose Lie algebra is *g*. We define on *G* a leftinvariant almost contact 3-structure (φ_i, ξ_i, η_i) by putting $\varphi_i \xi_j = \varepsilon_{ijk} \xi_k$ and

$$\varphi_{1}E_{h} = E_{n+h}, \quad \varphi_{1}E_{n+h} = -E_{h}, \quad \varphi_{1}E_{2n+h} = E_{3n+h}, \quad \varphi_{1}E_{3n+h} = -E_{2n+h}, \\ \varphi_{2}E_{h} = E_{2n+h}, \quad \varphi_{2}E_{n+h} = -E_{3n+h}, \quad \varphi_{2}E_{2n+h} = -E_{h}, \quad \varphi_{2}E_{3n+h} = E_{n+h}, \\ \varphi_{3}E_{h} = E_{3n+h}, \quad \varphi_{3}E_{n+h} = E_{2n+h}, \quad \varphi_{3}E_{2n+h} = -E_{n+h}, \quad \varphi_{3}E_{3n+h} = -E_{h},$$

and setting $\eta_i(E_k) = 0$ and $\eta_i(\xi_j) = \delta_{ij}$. Then $(\varphi_i, \xi_i, \eta_i)$ is a hypernormal almost contact 3-structure on *G* though the Reeb distribution is not integrable.

Therefore

hyper-normality of the 3-structure \Rightarrow integrability of \mathcal{V} .

Conversely,

hyper-normality of the 3-structure \Leftrightarrow integrability of \mathcal{V} .

Example

Let *g* be the 7-dimensional Lie algebra with basis $\{X_1, X_2, X_3, X_4, \xi_1, \xi_2, \xi_3\}$ and Lie brackets defined by

$$[X_h, X_k] = 0, \quad [\xi_i, \xi_j] = 0, \quad [\xi_i, X_k] = \xi_i.$$

Let *G* be a Lie group whose Lie algebra is *g*. We define on *G* a leftinvariant almost contact 3-structure (φ_i, ξ_i, η_i) by putting $\varphi_i \xi_j = \varepsilon_{ijk} \xi_k$ and

$$\varphi_1 X_1 = X_2, \quad \varphi_1 X_2 = -X_1, \quad \varphi_1 X_3 = X_4, \quad \varphi_1 X_4 = -X_3, \\ \varphi_2 X_1 = X_3, \quad \varphi_2 X_2 = -X_4, \quad \varphi_2 X_3 = -X_1, \quad \varphi_2 X_4 = X_2, \\ \varphi_3 X_1 = X_4, \quad \varphi_3 X_2 = X_3, \quad \varphi_3 X_3 = -X_2, \quad \varphi_3 X_4 = -X_1,$$

and setting $\eta_i(X_h) = 0$ and $\eta_i(\xi_j) = \delta_{ij}$. Then $(G, \varphi_i, \xi_i, \eta_i)$ is an almost 3-contact manifold which is **not hyper-normal**. Nevertheless, \mathcal{V} is **integrable**.

Definition

An almost 3-contact manifold such that the Reeb distribution is involutive is said to be a **foliated almost 3-contact manifold**.

Definition

An almost 3-contact manifold such that the Reeb distribution is involutive is said to be a **foliated almost 3-contact manifold**.

Theorem (C. M., *Different. Geom. Appl. 2009*) Let $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ be an almost 3-contact metric manifold. Then any two of the following conditions imply the other one:

- (i) $\mathcal{V}:=$ span $\{\xi_1,\xi_2,\xi_3\}$ is integrable;
- (ii) each Reeb vector field is an infinitesimal automorphism with respect to the horizontal distribution \mathcal{H} ;

(iii)
$$(\mathcal{L}_{\xi_i}g)|_{H\times V} = 0$$
 for all $i \in \{1, 2, 3\}$.

Moreover, if any two, and hence all, of the above conditions hold, then \mathcal{V} defines a totally geodesic foliation of M^{4n+3} .

The most famous example of foliated almost 3-contact manifolds is given by 3-Sasakian manifolds. Indeed, in any 3-Sasakian manifold

 $[\xi_i,\xi_j]=2\xi_k.$

Another important class is given by 3-cosymplectic manifolds, where

 $[\xi_i,\xi_j]=0.$

A more general class is given by *3-quasi-Sasakian manifolds*.

3-quasi-Sasakian manifolds

A **3-quasi-Sasakian manifold** is an almost 3-contact metric manifold ($M^{4n+3}, \varphi_i, \xi_i, \eta_i, g$) such that each structure is quasi-Sasakian, that is for each $i \in \{1, 2, 3\}$ $N_i \equiv 0$ and $d\Phi_i = 0$, where

 $N_i := [\varphi_i, \varphi_i] + 2\eta_i \otimes \xi_i$

and

 $\Phi_i(X,Y) := g(X,\varphi_iY).$

Some recent results on 3-quasi-Sasaki manifolds are obtained in

- C. M., De Nicola, Dileo, 3-quasi-Sasakian manifolds, Ann. Glob. Anal. Geom. (2008)
- C. M., De Nicola, Dileo, The geometry of 3-quasi-Sasakian manifolds, Internat. J. Math. (2009)

Theorem 1

Let $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ be a 3-quasi-Sasakian manifold. Then the Reeb distribution \mathcal{V} := span{ ξ_1, ξ_2, ξ_3 } defines a Riemannian foliation with totally geodesic leaves, and the Reeb vector fields obey to the rule

$$[\xi_i,\xi_j] = c\xi_k,$$

for some $c \in \mathbb{R}$. Moreover, M^{4n+3} is 3-cosymplectic if and only if c=0.

Theorem 1

Let $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ be a 3-quasi-Sasakian manifold. Then the Reeb distribution \mathcal{V} := span{ ξ_1, ξ_2, ξ_3 } defines a Riemannian foliation with totally geodesic leaves, and the Reeb vector fields obey to the rule

$$[\xi_i,\xi_j] = c\xi_k,$$

for some $c \in \mathbb{R}$. Moreover, M^{4n+3} is 3-cosymplectic if and only if c=0.

Sub-classes of the 3-quasi-Sasakian manifolds are given by the 3-Sasakian manifolds (c=2) e by the 3-cosymplectic manifolds (c=0).

Nevertheless there are also examples of 3-quasi-Sasakian manifolds which are neither 3-Sasakian nor 3-cosymplectic.

The rank of a 3-quasi-Sasakian manifold

In a 3-quasi-Sasakian manifold one has, in principle, the three odd ranks r_1 , r_2 , r_3 associated to the 1-forms η_1 , η_2 , η_3 , since we have three distinct, although related, quasi-Sasakian structures.

The rank of a 3-quasi-Sasakian manifold

In a 3-quasi-Sasakian manifold one has, in principle, the three odd ranks r_1 , r_2 , r_3 associated to the 1-forms η_1 , η_2 , η_3 , since we have three distinct, although related, quasi-Sasakian structures.

We have proved that $r_1 = r_2 = r_3$.

Theorem 2

Let $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ be 3-quasi-Sasakian manifold. Then the almost contact structures $(\varphi_1, \xi_1, \eta_1)$, $(\varphi_2, \xi_2, \eta_2)$, $(\varphi_3, \xi_3, \eta_3)$ have the same rank, which we call *the rank* of the 3-quasi-Sasakian manifold M^{4n+3} , and

rank(M) = 1if M is 3-cosymplectic (c=0)rank(M) = 4/+3, $l \le n$,in the other cases ($c \ne 0$)

Furthermore, *M* is of maximal rank if and only if it is $3-\alpha$ -Sasakian (i.e. $d\eta_i = \alpha \Phi_i$ for each i = 1, 2, 3).

Let $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ be a 3-quasi-Sasakian manifold of rank 4/+3 with $[\xi_i, \xi_j] = 2\xi_k$. Then M^{4n+3} is locally a Riemannian product of a 3-Sasakian manifold $S^{4/+3}$ and a hyper-Kähler manifold \mathcal{K}^{4m} , where m = n - l.

Let $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ be a 3-quasi-Sasakian manifold of rank 4/+3 with $[\xi_i, \xi_j] = 2\xi_k$. Then M^{4n+3} is locally a Riemannian product of a 3-Sasakian manifold $S^{4/+3}$ and a hyper-Kähler manifold \mathcal{K}^{4m} , where m = n - l.

Theorem 4

Every 3-quasi-Sasakian manifold has non-negative scalar curvature

 $\frac{1}{2}c^{2}(2n+1)(4/+3),$

where dim(*M*) = 4*n*+3, rank(*M*) = 4*l*+3 and $[\xi_i, \xi_j] = c\xi_k$.

Furthermore, any 3-quasi-Sasakian manifold is Einstein if and only if it is $3-\alpha$ -Sasakian (strictly positive scalar curvature) or 3-cosymplectic (Ricci-flat).

Let $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ be a 3-quasi-Sasakian manifold of rank 4/+3 with $[\xi_i, \xi_j] = 2\xi_k$. Then M^{4n+3} is locally a Riemannian product of a 3-Sasakian manifold $S^{4/+3}$ and a hyper-Kähler manifold \mathcal{K}^{4m} , where m = n-l.

Theorem 4

Every 3-quasi-Sasakian manifold has non-negative scalar curvature

 $\frac{1}{2}c^{2}(2n+1)(4/+3),$

where dim(*M*) = 4*n*+3, rank(*M*) = 4*l*+3 and $[\xi_i, \xi_j] = c\xi_k$.

Furthermore, any 3-quasi-Sasakian manifold is Einstein if and only if it is $3-\alpha$ -Sasakian (strictly positive scalar curvature) or 3-cosymplectic (Ricci-flat).

Such results are peculiar to the 3-quasi-Sasakian setting, since they do not hold in general for a single quasi-Sasakian structure on a manifold M^{2n+1} .

3-structures with torsion

Another class of foliated almost 3-contact manifolds is given by the "almost 3-contact metric manifolds with torsion".

Definition

A linear connection ∇ on a Riemannian manifold (*M*,*g*) is said to be a **metric connection with torsion** if $\nabla g = 0$ and the torsion tensor *T*, defined as

$$T(X,Y,Z) = g(T^{\nabla}(X,Y),Z),$$

is a 3-form.

Riemannian manifolds admitting a metric connection with totally skew-symmetric torsion recently become of interest in Theoretical and Mathematical Physics, especially in

- supersymmetry theories
- supergravity
- string theory

Of particular interest are **hyper-Kähler manifolds with torsion** (HKT) and **quaternionic-Kähler manifolds with torsion** (QKT)

- A **HKT** manifold is a hyper-Hermitian manifold $(M^{4n}, J_1, J_2, J_3, g)$ which admits a metric connection with torsion ∇ such that $\nabla J_1 =$ $\nabla J_2 = \nabla J_3 = 0$.
- ▶ Likewise, a **QKT** manifold is an almost quaternionic-Hermitian manifold (M^{4n} , Q, g) admitting a metric connection with torsion ∇ such that $\nabla Q \subset Q$ and

 $T(X,Y,Z) = T(J_iX,J_iY,Z) + T(J_iX,Y,J_iZ) + T(X,J_iY,J_iZ),$

for all $X, Y, Z \in \Gamma(TM^{4n})$ and $i \in \{1, 2, 3\}$, where $\{J_1, J_2, J_3\}$ is an admissible basis which locally spans the almost quaternionic structure Q.

I. Agricola, The Srní lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), 5-84.

Question

What is a possible generalization in odd dimension of the notion of hyper-Kähler structure with torsion?

Theorem (Friedrich - Ivanov, Asian J. Math. 2002)

An almost contact metric manifold $(M^{2n+1}, \varphi, \xi, \eta, g)$ admits a metric connection ∇ with totally skew-symmetric torsion T such that $\nabla \xi = \nabla \eta = \nabla \varphi = 0$ if and only if ξ is a Killing vector field and the tensor N' given by

 $N'(X,Y,Z) := g(N(X,Y),Z) = g([\varphi,\varphi](X,Y) + d\eta(X,Y)\xi,Z)$

is skew-symmetric. The connection ∇ is explicitly given by

$$g(\nabla_X Y, Z) = g(\nabla^g_X Y, Z) + \frac{1}{2}T(X, Y, Z)$$

with

$$T = \eta \wedge d\eta + d^{\varphi} \Phi + N' - \eta \wedge (i_{\xi} N'),$$

where $d^{\phi}\Phi$ denotes the " ϕ -twisted" derivative defined by $d^{\phi}\Phi(X,Y,Z)$:= $-d\Phi(\phi X,\phi Y,\phi Z)$.

Theorem (Friedrich - Ivanov, Asian J. Math. 2002)

An almost contact metric manifold $(M^{2n+1}, \varphi, \xi, \eta, g)$ admits a metric connection ∇ with totally skew-symmetric torsion T such that $\nabla \xi = \nabla \eta = \nabla \varphi = 0$ if and only if ξ is a Killing vector field and the tensor N' given by

 $N'(X,Y,Z) := g(N(X,Y),Z) = g([\varphi,\varphi](X,Y) + d\eta(X,Y)\xi,Z)$

is skew-symmetric. The connection ∇ is explicitly given by

$$g(\nabla_X Y, Z) = g(\nabla^g_X Y, Z) + \frac{1}{2}T(X, Y, Z)$$

with

$$T = \eta \wedge d\eta + d^{\varphi} \Phi + N' - \eta \wedge (i_{\xi}N'),$$

where $d^{\phi}\Phi$ denotes the " ϕ -twisted" derivative defined by $d^{\phi}\Phi(X,Y,Z)$:= $-d\Phi(\phi X,\phi Y,\phi Z)$.

• In particular, if $(M^{2n+1}, \varphi, \xi, \eta, g)$ is Sasakian then $N \equiv 0$ and $d\eta = \Phi$ (hence $d^{\varphi}\Phi = 0$), and so

 $T = \eta \wedge \mathrm{d}\eta.$

Using that result, Agricola pointed out that a 3-Sasakian manifold $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ can not admit any metric connection ∇ with totally skew-symmetric torsion such that $\nabla \xi_i = \nabla \eta_i = \nabla \varphi_i = 0$, for each $i \in \{1, 2, 3\}$.

Indeed by the previous theorem we have that M^{4n+3} admits three connections ∇^1 , ∇^2 , ∇^3 , one for each Sasakian structure ($\varphi_i, \xi_i, \eta_i, g$), such that

$$\nabla^i \xi_i = \nabla^i \eta_i = \nabla^i \varphi_i = 0$$
 and $T^i = \eta_i \wedge d\eta_i$

for each $i \in \{1, 2, 3\}$.

But the problem is that <u>these three connections do not coincide</u> and so the 3-Sasakian structure in question is not preserved by any metric connection with skew-symmetric torsion.

Definition

An **almost 3-contact metric manifold with torsion** is a hypernormal almost 3-contact metric manifold $(M,\varphi_i,\xi_i,\eta_i,g)$ admitting a linear connection ∇ such that

$$\nabla g = 0, \quad \nabla \eta_1 = \nabla \eta_2 = \nabla \eta_3 = 0, \quad \nabla \xi_1 = \nabla \xi_2 = \nabla \xi_3 = 0,$$

$$(\nabla_X \varphi_1) Y = -c\eta_2(X)\varphi_3 Y^h + c\eta_3(X)\varphi_2 Y^h,$$

$$(\nabla_X \varphi_2) Y = -c\eta_3(X)\varphi_1 Y^h + c\eta_1(X)\varphi_3 Y^h,$$

$$(\nabla_X \varphi_3) Y = -c\eta_1(X)\varphi_2 Y^h + c\eta_2(X)\varphi_1 Y^h,$$

for some $c \in \mathbb{R}$, and whose torsion tensor *T* satisfies the following conditions:

(i) *T* is horizontally skew-symmetric,

(ii) $T(X,Y,\xi_i) = T(X,\xi_i,Y) = T(X,\xi_j,\xi_i) = T(\xi_i,\xi_j,X) = 0$ for all $X,Y \in \Gamma(\mathcal{H})$, (iii) $T(\xi_i,\xi_j,\xi_k) = -c\varepsilon_{ijk}$ for all $i,j,k \in \{1,2,3\}$.

Remark The conditions

 $(\nabla_X \varphi_1)Y = - c\eta_2(X)\varphi_3Y^h + c\eta_3(X)\varphi_2Y^h$ $(\nabla_X \varphi_2)Y = - c\eta_3(X)\varphi_1Y^h + c\eta_1(X)\varphi_3Y^h$ $(\nabla_X \varphi_3)Y = - c\eta_1(X)\varphi_2Y^h + c\eta_2(X)\varphi_1Y^h$

are equivalent to

 $\nabla \varphi_1 = -c(\eta_2 \otimes \varphi_3 - \eta_3 \otimes \varphi_2 + (\eta_2 \otimes \eta_2 + \eta_3 \otimes \eta_3) \otimes \xi_1 - \eta_1 \otimes \eta_2 \otimes \xi_2 - \eta_1 \otimes \eta_3 \otimes \xi_3)$ $\nabla \varphi_2 = -c(\eta_3 \otimes \varphi_1 - \eta_1 \otimes \varphi_3 - \eta_1 \otimes \eta_2 \otimes \xi_1 + (\eta_1 \otimes \eta_1 + \eta_3 \otimes \eta_3) \otimes \xi_2 - \eta_3 \otimes \eta_2 \otimes \xi_3)$ $\nabla \varphi_3 = -c(\eta_2 \otimes \varphi_3 - \eta_3 \otimes \varphi_2 + (\eta_2 \otimes \eta_2 + \eta_3 \otimes \eta_3) \otimes \xi_1 - \eta_1 \otimes \eta_2 \otimes \xi_2 - \eta_1 \otimes \eta_3 \otimes \xi_3)$

C. M., 3-structures with torsion, Different. Geom. Appl. 27 (2009), 496–506

C. M., 3-structures with torsion, Different. Geom. Appl. 27 (2009), 496–506

Theorem 1

Let $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ be a hyper-normal almost 3-contact metric manifold. Then M^{4n+3} is an "almost 3-contact metric manifold with torsion" if and only if

1.
$$d^{\varphi_1} \Phi_1 = d^{\varphi_2} \Phi_2 = d^{\varphi_3} \Phi_3$$
 on $\mathcal{H}_{\boldsymbol{\ell}}$

- 2. ξ_1, ξ_2, ξ_3 are Killing,
- 3. the Reeb distribution $\mathcal{V} = \text{span}\{\xi_1, \xi_2, \xi_3\}$ is integrable,
- 4. the tensor fields φ_1 , φ_2 , φ_3 satisfy the relations

$$\pounds_{\xi_i}\varphi_j=c\varphi_k.$$

If an "almost 3-contact metric connection with torsion" exists, then it is unique.

Any almost 3-contact metric manifold with torsion is a *foliated* almost 3-contact manifold. Moreover, the Reeb vector fields obey to the rule

$$[\xi_i,\xi_j] = c\xi_k.$$

The space of leaves (with respect to \mathcal{V}) is HKT or QKT according to c=0 or $c\neq 0$, respectively.

Any almost 3-contact metric manifold with torsion is a foliated almost 3-contact manifold. Moreover, the Reeb vector fields obey to the rule

$$[\xi_i,\xi_j] = c\xi_k.$$

The space of leaves (with respect to \mathcal{V}) is HKT or QKT according to c=0 or $c\neq 0$, respectively.

Thus we may divide almost 3-contact metric manifolds with torsion in two classes according to the behavior of the leaves of \mathcal{V} : those for which each leaf of \mathcal{V} is locally SO(3) (which corresponds to the case $c \neq 0$) and those for which each leaf of \mathcal{V} is locally an abelian group (c=0).

Any almost 3-contact metric manifold with torsion is a foliated almost 3-contact manifold. Moreover, the Reeb vector fields obey to the rule

$$[\xi_i,\xi_j] = c\xi_k.$$

The space of leaves (with respect to \mathcal{V}) is HKT or QKT according to c=0 or $c\neq 0$, respectively.

Thus we may divide almost 3-contact metric manifolds with torsion in two classes according to the behavior of the leaves of \mathcal{V} : those for which each leaf of \mathcal{V} is locally SO(3) (which corresponds to the case $c\neq 0$) and those for which each leaf of \mathcal{V} is locally an abelian group (c=0).

- Almost 3-contact metric manifolds with torsion such that c=2 are called 3-Sasakian manifolds with torsion.
- Almost 3-contact metric manifolds with torsion such that c=0 are called 3-cosymplectic manifolds with torsion.

Corollary 1 The torsion *T* is <u>totally</u> skew-symmetric if and only if the horizontal distribution \mathcal{H} is integrable.

The torsion T is <u>totally</u> skew-symmetric if and only if the horizontal distribution \mathcal{H} is integrable.

Corollary 2

An almost contact metric 3-structure with torsion $(\varphi_i, \xi_i, \eta_i, g, \nabla)$ on *M* is 3-quasi-Sasakian if and only if the torsion is given by

$$T(X,Y,Z) = c\sum_i \eta_i(X)\Phi_i(Y,Z).$$

The torsion T is <u>totally</u> skew-symmetric if and only if the horizontal distribution \mathcal{H} is integrable.

Corollary 2

An almost contact metric 3-structure with torsion $(\varphi_i, \xi_i, \eta_i, g, \nabla)$ on *M* is 3-quasi-Sasakian if and only if the torsion is given by

$$T(X,Y,Z) = c\sum_i \eta_i(X)\Phi_i(Y,Z).$$

In this case,

– if c=0 then M^{4n+3} is 3-cosymplectic and ∇ coincides with the Levi Civita connection

The torsion T is <u>totally</u> skew-symmetric if and only if the horizontal distribution \mathcal{H} is integrable.

Corollary 2

An almost contact metric 3-structure with torsion $(\varphi_i, \xi_i, \eta_i, g, \nabla)$ on *M* is 3-quasi-Sasakian if and only if the torsion is given by

$$T(X,Y,Z) = c\sum_i \eta_i(X)\Phi_i(Y,Z).$$

In this case,

- if c=0 then M^{4n+3} is 3-cosymplectic and ∇ coincides with the Levi Civita connection
- if c=2 then M^{4n+3} is 3-Sasakian and ∇ coincides with the Biquard connection.

Some open problems

- Classification of foliated almost contact 3-structures
- The class of (foliated) almost 3-contact metric manifolds which are Einstein.
 - Conjecture: the only foliated almost 3-contact metric manifolds which are Einstein are the 3-Sasakian and the 3cosymplectic manifolds.
 - Example with negative curvature?
- Curvature properties of 3-Sasakian and 3-cosymplectic manifolds with torsion (ongoing paper)

References

- 1. B. Cappelletti Montano, *3-structures with torsion*, Different. Geom. Appl. **27** (2009), 496–506.
- 2. B. Cappelletti Montano, A. De Nicola, G. Dileo, *The geometry of a 3-quasi-Sasakian manifold*, Internat. J. Math. (in press).
- 3. B. Cappelletti Montano, A. De Nicola, G. Dileo, *3-quasi-Sasakian manifolds*, Ann. Glob. Anal. Geom. **33** (2008), 397-409.
- 4. B. Cappelletti Montano, A. De Nicola, *3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem*, J. Geom. Phys. 57 (2007), 2509-20
- 5. B. Cappelletti Montano, *Curvature of 3-Sasakian manifolds with torsion*, in preparation.

References

- 1. B. Cappelletti Montano, *3-structures with torsion*, Different. Geom. Appl. **27** (2009), 496–506.
- 2. B. Cappelletti Montano, A. De Nicola, G. Dileo, *The geometry of a 3-quasi-Sasakian manifold*, Internat. J. Math. (in press).
- 3. B. Cappelletti Montano, A. De Nicola, G. Dileo, *3-quasi-Sasakian manifolds*, Ann. Glob. Anal. Geom. **33** (2008), 397-409.
- 4. B. Cappelletti Montano, A. De Nicola, *3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem*, J. Geom. Phys. 57 (2007), 2509-20
- 5. B. Cappelletti Montano, *Curvature of 3-Sasakian manifolds with torsion*, in preparation.

THANK YOU!

Example

Consider \mathbb{R}^{4n+3} with its global coordinates $x_1, \dots, x_n, y_1, \dots, y_n, u_1, \dots, u_n$, $v_1, \dots, v_n, z_1, z_2, z_3$. Let M be the open submanifold of \mathbb{R}^{4n+3} obtained by removing the points where $\sin(z_2) = 0$ and define three vector fields on M

$$\xi_1 := c\partial_1$$

- $\xi_2 := c(\cos(z_1)\cot(z_2)\partial_1 + \sin(z_1)\partial_2 \cos(z_1)/\sin(z_2)\partial_3)$
- $\xi_3 := c(-\sin(z_1)\cot(z_2)\partial_1 + \cos(z_1)\partial_2 + \sin(z_1)/\sin(z_2)\partial_3)$

(where $\partial_i = \partial/\partial z_i$) for some $c \neq 0$, and three 1-forms

$$\eta_1 := c^{-1}(dz_1 + \cos(z_2)dz_3)$$

$$\eta_2 := c^{-1}(\sin(z_1)dz_2 - \cos(z_1)\sin(z_2)dz_3)$$

$$\eta_3 := c^{-1}(\cos(z_1)dz_2 + \sin(z_1)\sin(z_2)dz_3).$$

One has $[\xi_i,\xi_j] = c\xi_k$ and $\eta_i(\xi_j) = \delta_{ij}$.

Define a Riemannian metric g by declaring that the set $\{X_i = \partial/\partial x_i, Y_i = \partial/\partial y_i, U_i = \partial/\partial u_i, V_i = \partial/\partial v_i, \xi_1, \xi_2, \xi_3\}$ (i = 1, ..., n) is a global orthonormal frame.

Moreover, define three tensor fields φ_1 , φ_2 , φ_3 on *M* by setting

$$\varphi_{i}\xi_{j} = \varepsilon_{ijk}\xi_{k}$$

$$\varphi_{1}X_{i} = Y_{i}, \quad \varphi_{1}Y_{i} = -X_{i}, \quad \varphi_{1}U_{i} = V_{i}, \quad \varphi_{1}V_{i} = -U_{i},$$

$$\varphi_{2}X_{i} = U_{i}, \quad \varphi_{2}Y_{i} = -V_{i}, \quad \varphi_{2}X_{3} = -X_{1}, \quad \varphi_{2}V_{i} = Y_{i},$$

$$\varphi_{3}X_{i} = V_{i}, \quad \varphi_{3}Y_{i} = U_{i}, \quad \varphi_{3}U_{i} = -Y_{i}, \quad \varphi_{3}V_{i} = -X_{i}.$$

One can prove that $(M, \varphi_i, \xi_i, \eta_i, g)$ is a 3-quasi-Sasakian manifold, which is

- neither 3-cosymplectic, since the Reeb vector fields do not commute,
- nor 3-Sasakian, since it admits Darboux-like coordinates

Theorem (C. M. - De Nicola, *J. Geom. Phys. 2007*) A 3-Sasakian manifold can not admit a Darboux-like coordinate system.

For "Darboux-like coordinate system" we mean local coordinates $x_1,...,x_{4n}$, z_1,z_2,z_3 with respect to which, for each $i \in \{1,2,3\}$, $\Phi_i = d\eta_i$ has constant components and $\xi_i = a^1_i \partial/\partial z_1 + a^2_i \partial/\partial z_2 + a^3_i \partial/\partial z_3$, where a^j_i are functions depending only on the coordinates z_1,z_2,z_3 .

Furthermore, $(M, \varphi_i, \xi_i, \eta_i, g)$ is η -Einstein, i.e. the Ricci tensor is of the form

$$\operatorname{Ric} = ag + b_1\eta_1 \otimes \eta_1 + b_2\eta_2 \otimes \eta_2 + b_3\eta_3 \otimes \eta_3.$$

Indeed one has

$$\operatorname{Ric} = c^2/4 \ (\eta_1 \otimes \eta_1 + \eta_2 \otimes \eta_2 + \eta_3 \otimes \eta_3).$$

Thus, differently from 3-Sasakian and 3-cosymplectic geometry, there are 3-quasi-Sasakian manifolds which are not Einstein.

Let us write the explicit expression of the "connection with torsion" stated in the previous theorem.

Since \mathcal{V} is involutive, we can consider the corresponding Bott connection ∇^{B} . Then we put

 $\nabla_{X}Y := \begin{cases} (\nabla^{1}_{X}Y)^{h} = (\nabla^{2}_{X}Y)^{h} = (\nabla^{3}_{X}Y)^{h} & \text{if } X, Y \in \Gamma(\mathcal{H}) \\ \nabla^{B}_{V}Y & \text{if } V \in \Gamma(\mathcal{V}), Y \in \Gamma(\mathcal{H}) \\ X(\eta_{1}(Y))\xi_{1} + X(\eta_{2}(Y))\xi_{2} + X(\eta_{3}(Y))\xi_{3} & \text{if } Y \in \Gamma(\mathcal{V}). \end{cases}$

The complete expression of the torsion is the following:

 $T(X,Y,Z) = d\Phi_i(\varphi_i X, \varphi_i Y, \varphi_i Z), \quad T(\xi_i, X, Y) = d\eta_i(X,Y),$ $T(\xi_i, \xi_j, \xi_k) = -c\varepsilon_{ijk}$

for all $X, Y, Z \in \Gamma(\mathcal{H})$, the remaining terms being zero.

Example of 3-structure with torsion

Let g be the 11-dimensional Lie algebra with basis $\{E_1, \dots, E_8, \xi_1, \xi_2, \xi_3\}$ and Lie brackets defined by

 $[E_1, E_2] = -[E_3, E_4] = E_5, \ [E_1, E_3] = [E_2, E_4] = E_6, \ [E_1, E_4] = -[E_2, E_3] = E_7,$

with the remaining brackets zero. Let *G* be a Lie group whose Lie algebra is *g*. Define on *G* an almost contact metric 3-structure ($\varphi_i, \xi_i, \eta_i, g$) by putting $\eta_i(E_h)=0$, $\eta_i(\xi_j)=\delta_{ij}$ for all $i,j \in \{1,2,3\}$, $h \in \{1,...,8\}$, and

$\varphi_1 E_1 = E_2$	$\varphi_1 E_2 = -E_1$	$\phi_1 E_3 = E_4$	$\varphi_1 E_4 = -E_3$	$\varphi_1 E_5 = E_6$	$\varphi_1 E_6 = -E_5$
$\phi_1 E_7 = E_8$	$\phi_1 E_8 = -E_7$	$\phi_1 \xi_1 = 0$	$\varphi_1\xi_2=\xi_3$	$\varphi_1\xi_3=-\xi_2$	
$\phi_2 E_1 = E_3$	$\varphi_2 E_2 = -E_4$	$\phi_2 E_3 = -E_1$	$\varphi_2 E_4 = E_2$	$\varphi_2 E_5 = E_7$	$\varphi_2 E_6 = -E_8$
$\varphi_2 E_7 = -E_5$	$\varphi_2 E_8 = E_6$	$\varphi_2\xi_1=-\xi_3$	$\phi_2 \xi_2 = 0$	$\varphi_2\xi_3=\xi_1$	
$\phi_{3}E_{1}=E_{4}$	$\varphi_3 E_2 = E_3$	$\phi_{3}E_{3}=-E_{2}$	$\varphi_3 E_4 = -E_1$	$\varphi_3 E_5 = E_8$	$\varphi_3 E_6 = E_7$
$\phi_{3}E_{7}=-E_{6}$	$\phi_{3}E_{8}=-E_{5}$	$\varphi_3\xi_1=\xi_2$	$\varphi_3\xi_2=-\xi_1$	$\phi_{3}\xi_{3}=0.$	

The Riemannian metric g is defined by requiring that $\{E_1, \dots, E_8, \xi_1, \xi_2, \xi_3\}$ is g-orthonormal.

Definition

Let M^{4n+3} be a smooth manifold of dimension 4n+3. A **quaternionic-contact structure** (*QC*-structure) is given by:

- a distribution *H* of codimension 3 on M^{4n+3} , locally defined by the kernel of a \mathbb{R}^3 -valued 1-form $\eta = (\eta_1, \eta_2, \eta_3)$, $H = \ker(\eta)$,
- a metric tensor g on H and a local hyper-complex structure $Q=(I_1, I_2, I_3)$ on $H(I_s: H \to H, s=1,2,3)$, compatible with g, i.e. such that $g(X, I_s Y) = d\eta_s(X, Y)$, s = 1,2,3, $X, Y \in \Gamma(H)$.

O. Biquard, *Métriques d'Einstein asymptotiquement symétriques*, Astérisque **265** (2000).

Theorem (Biquard)

Let *H* be a quaternionic-contact structure on M^{4n+3} and let us assume n>1. Then there exists a unique distribution *V* supplementary to *H* and a unique linear connection ∇ on M^{4n+3} such that

- 1. *V* and *H* are ∇ -parallel,
- 2. $\nabla g = 0$,
- 3. $\nabla Q \subset Q$,

4. the torsion tensor field T of ∇ satisfies the conditions

a. for any $X,Y \in \Gamma(H)$, $T(X,Y) = -[X,Y]|_V$

b. for any $\xi \in \Gamma(V)$, the endomorphism $T_{\xi} := (X \mapsto (T(X,\xi))|_H) \in (sp(n) \oplus sp(1))^{\perp} \subset so(4n)$.

The unique connection stated in the theorem is called **Biquard connection**. In dimension 7 its existence was proved, under a further assumption, by Duchemin.

Let $(\varphi_i, \xi_i, \eta_i, g)$, $i \in \{1, 2, 3\}$, be an almost contact metric 3-structure of M^{4n+3} such that each Reeb vector field ξ_i is Killing and is an infinitesimal automorphism with respect to \mathcal{H} . Then $(M^{4n+3}, \varphi_i, \xi_i, \eta_i, g)$ is a foliated almost 3-contact manifold. More precisely, \mathcal{V} defines a Riemannian foliation of M^{4n+3} with totally geodesic leaves and the Reeb vector fields satisfy

$$[\xi_i,\xi_j] = C\xi_k$$

for any even permutation (i,j,k) of $\{1,2,3\}$ and for some $c \in \mathbb{R}$.

The peculiarity of 3-quasi-Sasakian manifolds is that they are foliated by <u>four</u> canonical Riemannian foliations, namely

	aimension
$\blacktriangleright \mathcal{V}:=\operatorname{span}\{\xi_1,\xi_2,\xi_3\}$	3
► $\mathcal{H}_1 := \{X \in \mathcal{H} \mid i_X(d\eta_j) = 0 \text{ for each } j=1,2,3\}$	4 <i>m</i>
$\blacktriangleright \ \mathcal{H}_1 \oplus \mathcal{V}$	4 <i>m</i> +3
▶ $\mathcal{H}_2 \oplus \mathcal{V}_1$, with $\mathcal{H}_2 := \mathcal{H}_1^{\perp} \cap \mathcal{H}$	4/+3

where: $4n+3 = \dim(M)$, $4l+3 = \operatorname{rank}(M)$, m = n - l.

The distributions \mathcal{H}_1 , \mathcal{H}_2 and \mathcal{V} are mutually orthogonal and one has the following orthogonal decomposition

 $T_pM = \mathcal{H}_{1p} \oplus \mathcal{H}_{2p} \oplus \mathcal{V}_p = \mathcal{H}_p \oplus \mathcal{V}_p.$

• $\varphi_i(\mathcal{H}_1) \subset \mathcal{H}_1, \ \varphi_i(\mathcal{H}_2) \subset \mathcal{H}_2 \text{ and } \varphi_i(\mathcal{V}) \subset \mathcal{V}, \text{ for each } i \in \{1,2,3\}.$ • $[\xi_i, \mathcal{H}_1] \subset \mathcal{H}_1, \ [\xi_i, \mathcal{H}_2] \subset \mathcal{H}_2, \text{ for each } i \in \{1,2,3\}.$ The results of our study on the "transverse geometry" with respect to those foliations is summarized in the following table:

foliation	leaves	space of leaves	
γ	3-dimensional Lie groups ℝ ³ or <i>SO</i> (3)	Almost quaternionic- Hermitian	
\mathcal{H}_1	Hyper-Kähler	3-α-Sasakian	
$\mathcal{H}_1 \oplus \mathcal{V}$	3-cosymplectic	Quaternionic-Kähler	
$\mathcal{H}_2 \oplus \mathcal{V}$	3-α-Sasakian	Hyper-Kähler	