WORKSHOP ON "DIRAC OPERATORS AND SPECIAL GEOMETRIES"

Beniamino Cappelletti Montano

University of Bari, Italy

Almost contact metric 3-structures with torsion

Some preliminaries on almost contact manifolds.

An almost contact manifold is a (2n+1)-dimensional manifold M endowed with

- a field φ of endomorphisms of the tangent spaces
- a global 1-form η
- a global vector field ξ, called Reeb vector field
such that

$$
\varphi^{2}=-\mathrm{I}+\eta \otimes \xi \quad \text { and } \quad \eta(\xi)=1
$$

Given an almost contact manifold ($M^{2 n+1}, \varphi, \xi, \eta$), one can define on $M^{2 n+1} \times \mathbb{R}$ an almost complex structure J by setting

$$
J(X, f d / d t)=(\varphi X-f \xi, \eta(X) d / d t)
$$

for all $X \in \Gamma\left(T M^{2 n+1}\right)$ and $f \in C^{\infty}\left(M^{2 n+1} \times \mathbb{R}\right)$.

Given an almost contact manifold ($M^{2 n+1}, \varphi, \xi, \eta$), one can define on $M^{2 n+1} \times \mathbb{R}$ an almost complex structure J by setting

$$
J(X, f d / d t)=(\varphi X-f \xi, \eta(X) d / d t)
$$

for all $X \in \Gamma\left(T M^{2 n+1}\right)$ and $f \in C^{\infty}\left(M^{2 n+1} \times \mathbb{R}\right)$.

Then (φ, ξ, η) is said to be normal if the almost complex structure J is integrable, that is $[J, J] \equiv 0$. This happens if and only if

$$
N:=[\varphi, \varphi]+2 \eta \otimes \xi \equiv 0 .
$$

Given an almost contact structure (φ, ξ, η) on M, there exists a Riemannian metric g such that

$$
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for all $X, Y \in \Gamma(T M)$.

Given an almost contact structure (φ, ξ, η) on M, there exists a Riemannian metric g such that

$$
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for all $X, Y \in \Gamma(T M)$.
If we fix such a metric, $(M, \varphi, \xi, \eta, g)$ is called an almost contact metric manifold and we can define the fundamental 2-form Φ by

$$
\Phi(X, Y)=g(X, \varphi Y)
$$

Given an almost contact structure (φ, ξ, η) on M, there exists a Riemannian metric g such that

$$
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for all $X, Y \in \Gamma(T M)$.
If we fix such a metric, $(M, \varphi, \xi, \eta, g)$ is called an almost contact metric manifold and we can define the fundamental 2-form Φ by

$$
\Phi(X, Y)=g(X, \varphi Y)
$$

- An almost contact metric manifold such that $N \equiv 0$ and $d \eta=\Phi$ is said to be a Sasakian manifold (α-Sasakian if $\mathrm{d} \eta=\alpha \Phi$).

Given an almost contact structure (φ, ξ, η) on M, there exists a Riemannian metric g such that

$$
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for all $X, Y \in \Gamma(T M)$.
If we fix such a metric, $(M, \varphi, \xi, \eta, g)$ is called an almost contact metric manifold and we can define the fundamental 2-form Φ by

$$
\Phi(X, Y)=g(X, \varphi Y)
$$

- An almost contact metric manifold such that $N \equiv 0$ and $d \eta=\Phi$ is said to be a Sasakian manifold (α-Sasakian if $\mathrm{d} \eta=\alpha \Phi$).
- An almost contact metric manifold such that $N \equiv 0$ and $\mathrm{d} \Phi=0$, $\mathrm{d} \eta=0$ is said to be a cosymplectic manifold.

Definition (Blair, J. Differential Geom. 1967).
If d $\Phi=0$ and $N \equiv 0$ then ($M^{2 n+1}, \varphi, \xi, \eta, g$) is said to be a quasiSasakian manifold.

Definition (Blair, J. Differential Geom. 1967).
If d $\Phi=0$ and $N \equiv 0$ then ($M^{2 n+1}, \varphi, \xi, \eta, g$) is said to be a quasiSasakian manifold.

An almost contact manifold ($M^{2 n+1}, \varphi, \xi, \eta$) is said to be of

- rank $2 p$ if $(\mathrm{d} \eta)^{p} \neq 0$ and $\eta \wedge(\mathrm{d} \eta)^{p}=0$ on $M^{2 n+1}$, for some $p \leq n$
- rank $2 p+1$ if $\eta \wedge(\mathrm{d} \eta)^{p} \neq 0$ and $(\mathrm{d} \eta)^{p+1}=0$ on $M^{2 n+1}$, for some $p \leq n$.

Definition (Blair, J. Differential Geom. 1967).
If d $\Phi=0$ and $N \equiv 0$ then ($M^{2 n+1}, \varphi, \xi, \eta, g$) is said to be a quasiSasakian manifold.

An almost contact manifold ($M^{2 n+1}, \varphi, \xi, \eta$) is said to be of

- rank $2 p$ if $(\mathrm{d} \eta)^{p} \neq 0$ and $\eta \wedge(\mathrm{d} \eta)^{p}=0$ on $M^{2 n+1}$, for some $p \leq n$ - rank $2 p+1$ if $\eta \wedge(\mathrm{d} \eta)^{p} \neq 0$ and $(\mathrm{d} \eta)^{p+1}=0$ on $M^{2 n+1}$, for some $p \leq n$.

Theorem (Blair, Tanno)
No quasi-Sasakian manifold has even rank.

Definition (Blair, J. Differential Geom. 1967).
If d $\Phi=0$ and $N \equiv 0$ then ($M^{2 n+1}, \varphi, \xi, \eta, g$) is said to be a quasiSasakian manifold.

An almost contact manifold ($M^{2 n+1}, \varphi, \xi, \eta$) is said to be of

- rank $2 p$ if $(\mathrm{d} \eta)^{p} \neq 0$ and $\eta \wedge(\mathrm{d} \eta)^{p}=0$ on $M^{2 n+1}$, for some $p \leq n$
- rank $2 p+1$ if $\eta \wedge(\mathrm{d} \eta)^{p} \neq 0$ and $(\mathrm{d} \eta)^{p+1}=0$ on $M^{2 n+1}$, for some $p \leq n$.

Theorem (Blair, Tanno)
No quasi-Sasakian manifold has even rank.

Remarkable subclasses of quasi-Sasakian manifolds are given by

- Sasakian manifolds (d $\eta=\Phi$, maximal rank $2 n+1$)
- cosymplectic manifolds ($\mathrm{d} \eta=0, \mathrm{~d} \Phi=0$, minimal rank 1).

3-structures

An almost contact 3-structure on a manifold M is given by three distinct almost contact structures $\left(\varphi_{1}, \xi_{1}, \eta_{1}\right),\left(\varphi_{2}, \xi_{2}, \eta_{2}\right),\left(\varphi_{3}, \xi_{3}, \eta_{3}\right)$ on M satisfying the following relations, for an even permutation (i,j,k) of $\{1,2,3\}$,

$$
\begin{gathered}
\varphi_{k}=\varphi_{i} \varphi_{j}-\eta_{j} \otimes \xi_{i}=-\varphi_{j} \varphi_{i}+\eta_{i} \otimes \xi_{j}, \\
\xi_{k}=\varphi_{i} \xi_{j}=-\varphi_{j} \xi_{i} \quad \eta_{k}=\eta_{i}{ }^{\circ} \varphi_{j}=-\eta_{j}{ }^{\circ} \varphi_{i} .
\end{gathered}
$$

3-structures

An almost contact 3-structure on a manifold M is given by three distinct almost contact structures $\left(\varphi_{1}, \xi_{1}, \eta_{1}\right),\left(\varphi_{2}, \xi_{2}, \eta_{2}\right),\left(\varphi_{3}, \xi_{3}, \eta_{3}\right)$ on M satisfying the following relations, for an even permutation (i, j, k) of $\{1,2,3\}$,

$$
\begin{gathered}
\varphi_{k}=\varphi_{i} \varphi_{j}-\eta_{j} \otimes \xi_{i}=-\varphi_{j} \varphi_{i}+\eta_{i} \otimes \xi_{j}, \\
\xi_{k}=\varphi_{i} \xi_{j}=-\varphi_{j} \xi_{i} \quad \eta_{k}=\eta_{i} \varphi_{j}=-\eta_{j}{ }^{\circ} \varphi_{i} .
\end{gathered}
$$

One can prove that (Kuo, Udriste)

- $\operatorname{dim}(M)=4 n+3$ for some $n \geq 1$,
- the structural group of $T M$ is reducible to $S p(n) \times I_{3}$.

3-structures

An almost contact 3-structure on a manifold M is given by three distinct almost contact structures $\left(\varphi_{1}, \xi_{1}, \eta_{1}\right),\left(\varphi_{2}, \xi_{2}, \eta_{2}\right),\left(\varphi_{3}, \xi_{3}, \eta_{3}\right)$ on M satisfying the following relations, for an even permutation (i, j, k) of $\{1,2,3\}$,

$$
\begin{gathered}
\varphi_{k}=\varphi_{i} \varphi_{j}-\eta_{j} \otimes \xi_{i}=-\varphi_{j} \varphi_{i}+\eta_{i} \otimes \xi_{j}, \\
\xi_{k}=\varphi_{i} \xi_{j}=-\varphi_{j} \xi_{i} \quad \eta_{k}=\eta_{i}{ }^{\circ} \varphi_{j}=-\eta_{j}{ }^{\circ} \varphi_{i} .
\end{gathered}
$$

One can prove that (Kuo, Udriste)

- $\operatorname{dim}(M)=4 n+3$ for some $n \geq 1$,
- the structural group of $T M$ is reducible to $\mathrm{Sp}(n) \times I_{3}$.

If each almost contact structure is normal, then the 3-structure is said to be hyper-normal.

Moreover, there exists a Riemannian metric g compatible with each almost contact structure ($\varphi_{i}, \xi_{i}, \eta_{i}$), i.e. satisfying

$$
g\left(\varphi_{i} X, \varphi_{i} Y\right)=g(X, Y)-\eta_{i}(X) \eta_{i}(Y)
$$

for each $i \in\{1,2,3\}$.
Then we say that ($M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g$) is an almost 3-contact metric manifold.

Moreover, there exists a Riemannian metric g compatible with each almost contact structure ($\varphi_{i}, \xi_{i,} \eta_{i}$), i.e. satisfying

$$
g\left(\varphi_{i} X, \varphi_{i} Y\right)=g(X, Y)-\eta_{i}(X) \eta_{i}(Y)
$$

for each $i \in\{1,2,3\}$.
Then we say that ($M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g$) is an almost 3-contact metric manifold.

Remarkable examples of (hyper-normal) almost 3-contact metric manifolds are given by

- 3-Sasakian manifolds (each structure ($\varphi_{i}, \xi_{i}, \eta_{i}$) is Sasakian)
- 3-cosymplectic manifolds (each structure ($\varphi_{i}, \xi_{i}, \eta_{i}$) is cosymplectic)
- 3-quasi-Sasakian manifolds (each structure ($\varphi_{i,}, \xi_{i,} \eta_{i}$) is quasiSasakian).

"Foliated" 3-structures

Let $\left(M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be an almost 3-contact (metric) manifold. Putting

$$
\mathcal{V}:=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\} \quad \text { and } \quad \mathcal{H}:=\operatorname{ker}\left(\eta_{1}\right) \cap \operatorname{ker}\left(\eta_{2}\right) \cap \operatorname{ker}\left(\eta_{3}\right),
$$

we have the (orthogonal) decomposition

$$
T_{p} M=\mathcal{V}_{p} \oplus \mathcal{H}_{p}
$$

\mathcal{V} is called Reeb distribution (or vertical distribution), whereas \mathcal{H} horizontal distribution.

"Foliated" 3-structures

Let $\left(M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be an almost 3-contact (metric) manifold. Putting

$$
\mathcal{V}:=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\} \quad \text { and } \quad \mathcal{H}:=\operatorname{ker}\left(\eta_{1}\right) \cap \operatorname{ker}\left(\eta_{2}\right) \cap \operatorname{ker}\left(\eta_{3}\right),
$$

we have the (orthogonal) decomposition

$$
T_{p} M=\mathcal{V}_{p} \oplus \mathcal{H}_{p}
$$

\mathcal{V} is called Reeb distribution (or vertical distribution), whereas \mathcal{H} horizontal distribution.

Question (Kuo-Tachibana, 1970) Is the distribution \mathcal{V} integrable?

"Foliated" 3-structures

Let $\left(M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be an almost 3-contact (metric) manifold. Putting

$$
\mathcal{V}:=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\} \quad \text { and } \quad \mathcal{H}:=\operatorname{ker}\left(\eta_{1}\right) \cap \operatorname{ker}\left(\eta_{2}\right) \cap \operatorname{ker}\left(\eta_{3}\right)
$$

we have the (orthogonal) decomposition

$$
T_{p} M=\mathcal{V}_{p} \oplus \mathcal{H}_{p}
$$

\mathcal{V} is called Reeb distribution (or vertical distribution), whereas \mathcal{H} horizontal distribution.

Question (Kuo-Tachibana, 1970) Is the distribution \mathcal{V} integrable?

The answer is negative, in general.

Example (C. M. - De Nicola - Dileo, Ann. Glob. Anal. Geom. 2008) Let g be the 7-dimensional Lie algebra with basis $\left\{X_{1}, X_{2}, X_{3}, X_{4}, \xi_{1}\right.$, $\left.\xi_{2}, \xi_{3}\right\}$ and Lie brackets given by

$$
\left[X_{h}, X_{k}\right]=\left[X_{h}, \xi_{1}\right]=0, \quad\left[\xi_{1}, \xi_{2}\right]=\left[\xi_{2}, \xi_{3}\right]=\left[\xi_{3}, \xi_{1}\right]=X_{1} .
$$

Let G be a Lie group whose Lie algebra is g and let us define three tensor fields $\varphi_{1}, \varphi_{2}, \varphi_{3}$ on G, and three 1 -forms $\eta_{1}, \eta_{2}, \eta_{3}$, by putting, for all $i, j, k \in\{1,2,3\}, \varphi_{i} \xi_{j}=\varepsilon_{i j k} \xi_{k}$ and

$$
\begin{array}{ll}
\varphi_{1} X_{1}=X_{2}, & \varphi_{1} X_{2}=-X_{1},
\end{array} \varphi_{1} X_{3}=X_{4}, \quad \varphi_{1} X_{4}=-X_{3}, ~\left(\begin{array}{lll}
\\
\varphi_{2} X_{1}=X_{3}, & \varphi_{2} X_{2}=-X_{4}, & \varphi_{2} X_{3}=-X_{1}, \\
\varphi_{2} X_{4}=X_{2}, \\
\varphi_{3} X_{1}=X_{4}, & \varphi_{3} X_{2}=X_{3}, & \varphi_{3} X_{3}=-X_{2},
\end{array} \varphi_{3} X_{4}=-X_{1},\right.
$$

and setting $\eta_{i}\left(X_{h}\right)=0$ and $\eta_{i}\left(\xi_{j}\right)=\delta_{i j}$.

Example (C. M. - De Nicola - Dileo, Ann. Glob. Anal. Geom. 2008) Let g be the 7-dimensional Lie algebra with basis $\left\{X_{1}, X_{2}, X_{3}, X_{4}, \xi_{1}\right.$, $\left.\xi_{2}, \xi_{3}\right\}$ and Lie brackets given by

$$
\left[X_{h}, X_{k}\right]=\left[X_{h}, \xi_{1}\right]=0, \quad\left[\xi_{1}, \xi_{2}\right]=\left[\xi_{2}, \xi_{3}\right]=\left[\xi_{3}, \xi_{1}\right]=X_{1} .
$$

Let G be a Lie group whose Lie algebra is g and let us define three tensor fields $\varphi_{1}, \varphi_{2}, \varphi_{3}$ on G, and three 1 -forms $\eta_{1}, \eta_{2}, \eta_{3}$, by putting, for all $i, j, k \in\{1,2,3\}, \varphi_{i} \xi_{j}=\varepsilon_{i j k} \xi_{k}$ and

$$
\begin{array}{ll}
\varphi_{1} X_{1}=X_{2}, & \varphi_{1} X_{2}=-X_{1}, \\
\varphi_{1} X_{3}=X_{4}, & \varphi_{1} X_{4}=-X_{3}, \\
\varphi_{2} X_{1}=X_{3}, & \varphi_{2} X_{2}=-X_{4}, \\
\varphi_{2} X_{3}=-X_{1}, & \varphi_{2} X_{4}=X_{2}, \\
\varphi_{3} X_{1}=X_{4}, & \varphi_{3} X_{2}=X_{3},
\end{array} \varphi_{3} X_{3}=-X_{2}, \varphi_{3} X_{4}=-X_{1}, ~ \$
$$

and setting $\eta_{i}\left(X_{h}\right)=0$ and $\eta_{i}\left(\xi_{j}\right)=\delta_{i j}$.

- $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)$ is an almost contact 3-structure on G

Example (C. M. - De Nicola - Dileo, Ann. Glob. Anal. Geom. 2008)
Let g be the 7-dimensional Lie algebra with basis $\left\{X_{1}, X_{2}, X_{3}, X_{4}, \xi_{1}\right.$, $\left.\xi_{2}, \xi_{3}\right\}$ and Lie brackets given by

$$
\left[X_{h}, X_{k}\right]=\left[X_{h}, \xi_{1}\right]=0, \quad\left[\xi_{1}, \xi_{2}\right]=\left[\xi_{2}, \xi_{3}\right]=\left[\xi_{3}, \xi_{1}\right]=X_{1} .
$$

Let G be a Lie group whose Lie algebra is g and let us define three tensor fields $\varphi_{1}, \varphi_{2}, \varphi_{3}$ on G, and three 1 -forms $\eta_{1}, \eta_{2}, \eta_{3}$, by putting, for all $i, j, k \in\{1,2,3\}, \varphi_{i} \xi_{j}=\varepsilon_{i j k} \xi_{k}$ and

$$
\begin{array}{ll}
\varphi_{1} X_{1}=X_{2}, & \varphi_{1} X_{2}=-X_{1}, \\
\varphi_{1} X_{3}=X_{4}, & \varphi_{1} X_{4}=-X_{3}, \\
\varphi_{2} X_{1}=X_{3}, & \varphi_{2} X_{2}=-X_{4}, \\
\varphi_{2} X_{3}=-X_{1}, & \varphi_{2} X_{4}=X_{2}, \\
\varphi_{3} X_{1}=X_{4}, & \varphi_{3} X_{2}=X_{3},
\end{array} \varphi_{3} X_{3}=-X_{2}, \varphi_{3} X_{4}=-X_{1}, ~ \$
$$

and setting $\eta_{i}\left(X_{h}\right)=0$ and $\eta_{i}\left(\xi_{j}\right)=\delta_{i j}$.

- $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)$ is an almost contact 3-structure on G
- by construction the Reeb distribution is not integrable.

Example (C. M. - De Nicola - Dileo, Ann. Glob. Anal. Geom. 2008)
Let g be the 7-dimensional Lie algebra with basis $\left\{X_{1}, X_{2}, X_{3}, X_{4}, \xi_{1}\right.$, $\left.\xi_{2}, \xi_{3}\right\}$ and Lie brackets given by

$$
\left[X_{h}, X_{k}\right]=\left[X_{h}, \xi_{1}\right]=0, \quad\left[\xi_{1}, \xi_{2}\right]=\left[\xi_{2}, \xi_{3}\right]=\left[\xi_{3}, \xi_{1}\right]=X_{1} .
$$

Let G be a Lie group whose Lie algebra is g and let us define three tensor fields $\varphi_{1}, \varphi_{2}, \varphi_{3}$ on G, and three 1 -forms $\eta_{1}, \eta_{2}, \eta_{3}$, by putting, for all $i, j, k \in\{1,2,3\}, \varphi_{i} \xi_{j}=\varepsilon_{i j k} \xi_{k}$ and

$$
\begin{array}{lll}
\varphi_{1} X_{1}=X_{2}, & \varphi_{1} X_{2}=-X_{1}, & \varphi_{1} X_{3}=X_{4},
\end{array} \varphi_{1} X_{4}=-X_{3}, ~\left(\begin{array}{lll}
\\
\varphi_{2} X_{1}=X_{3}, & \varphi_{2} X_{2}=-X_{4}, & \varphi_{2} X_{3}=-X_{1}, \\
\varphi_{2} X_{4}=X_{2}, \\
\varphi_{3} X_{1}=X_{4}, & \varphi_{3} X_{2}=X_{3}, & \varphi_{3} X_{3}=-X_{2},
\end{array} \varphi_{3} X_{4}=-X_{1},\right.
$$

and setting $\eta_{i}\left(X_{h}\right)=0$ and $\eta_{i}\left(\xi_{j}\right)=\delta_{i j}$.

- $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)$ is an almost contact 3-structure on G
- by construction the Reeb distribution is not integrable.

Remark

$\left(G, \varphi_{i}, \xi_{i}, \eta_{i}\right)$ is not hyper-normal since $N_{1}\left(\xi_{1}, \xi_{2}\right)=-X_{1}+X_{2} \neq 0$.

It is known that the Reeb distribution $\mathcal{V}:=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ is integrable in 3-Sasakian manifolds and in 3-cosymplectic manifolds.

manifold	space of leaves	
3-Sasakian	Quaternionic- Kähler	Ishihara (Kodai Math. Sem. Rep. 1973) Boyer-Galicki-Mann (J. Reine Angew. Math. 1994)
3-cosymplectic	Hyper-Kähler	C. M. - De Nicola (J. Geom. Phys. 2007)

Both 3-Sasakian manifolds and 3-cosymplectic manifolds are hyper-normal.

It is known that the Reeb distribution $\mathcal{V}:=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ is integrable in 3-Sasakian manifolds and in 3-cosymplectic manifolds.

manifold	space of leaves	
3-Sasakian	Quaternionic- Kähler	Ishihara (Kodai Math. Sem. Rep. 1973) Boyer-Galicki-Mann (J. Reine Angew. Math. 1994)
3-cosymplectic	Hyper-Kähler	C. M. - De Nicola (J. Geom. Phys. 2007)

Both 3-Sasakian manifolds and 3-cosymplectic manifolds are hyper-normal.

Question

Does the hyper-normality of the almost contact 3-structure imply the integrability of \mathcal{V} ?

It is known that the Reeb distribution $\mathcal{V}:=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ is integrable in 3-Sasakian manifolds and in 3-cosymplectic manifolds.

manifold	space of leaves	
3-Sasakian	Quaternionic- Kähler	Ishihara (Kodai Math. Sem. Rep. 1973) Boyer-Galicki-Mann (J. Reine Angew. Math. 1994)
3-cosymplectic	Hyper-Kähler	C. M. - De Nicola (J. Geom. Phys. 2007)

Both 3-Sasakian manifolds and 3-cosymplectic manifolds are hyper-normal.

Question

Does the hyper-normality of the almost contact 3 -structure imply the integrability of \mathcal{V} ?

Rather surprisingly, the answer is NO.

Example (C. M., Differential Geom. Appl. 2009)
Let g be the $(4 n+3)$-dimensional Lie algebra with basis $\left\{E_{1}, \ldots, E_{4 n}\right.$, $\left.\xi_{1}, \xi_{2}, \xi_{3}\right\}$ and Lie brackets defined by

$$
\left[\xi_{1}, \xi_{2}\right]=E_{1},\left[\xi_{2}, \xi_{3}\right]=E_{n+1},\left[\xi_{2}, \xi_{3}\right]=E_{2 n+1}, \quad\left[E_{n,}, E_{k}\right]=\left[\xi_{i}, X_{k}\right]=0
$$

Let G be a Lie group whose Lie algebra is g. We define on G a leftinvariant almost contact 3 -structure ($\varphi_{i}, \xi_{i}, \eta_{i}$) by putting $\varphi_{i} \xi_{j}=\varepsilon_{i j k} \xi_{k}$ and

$$
\begin{aligned}
& \varphi_{1} E_{h}=E_{n+h}, \varphi_{1} E_{n+h}=-E_{h,}, \varphi_{1} E_{2 n+h}=E_{3 n+h}, \varphi_{1} E_{3 n+h}=-E_{2 n+h} \\
& \varphi_{2} E_{h}=E_{2 n+h}, \varphi_{2} E_{n+h}=-E_{3 n+h}, \varphi_{2} E_{2 n+h}=-E_{h}, \varphi_{2} E_{3 n+h}=E_{n+h} \\
& \varphi_{3} E_{h}=E_{3 n+h}, \varphi_{3} E_{n+h}=E_{2 n+h,}, \varphi_{3} E_{2 n+h}=-E_{n+h}, \varphi_{3} E_{3 n+h}=-E_{h \prime}
\end{aligned}
$$

and setting $\eta_{i}\left(E_{k}\right)=0$ and $\eta_{i}\left(\xi_{j}\right)=\delta_{i j}$. Then $\left(\varphi_{i}, \xi_{i,} \eta_{i}\right)$ is a hypernormal almost contact 3-structure on G though the Reeb distribution is not integrable.

Example (C. M., Differential Geom. Appl. 2009)
Let g be the $(4 n+3)$-dimensional Lie algebra with basis $\left\{E_{1}, \ldots, E_{4 n}\right.$, $\left.\xi_{1}, \xi_{2}, \xi_{3}\right\}$ and Lie brackets defined by

$$
\left[\xi_{1}, \xi_{2}\right]=E_{1},\left[\xi_{2}, \xi_{3}\right]=E_{n+1},\left[\xi_{2}, \xi_{3}\right]=E_{2 n+1}, \quad\left[E_{n}, E_{k}\right]=\left[\xi_{i}, X_{k}\right]=0
$$

Let G be a Lie group whose Lie algebra is g. We define on G a leftinvariant almost contact 3 -structure ($\varphi_{i}, \xi_{i}, \eta_{i}$) by putting $\varphi_{i} \xi_{j}=\varepsilon_{i j k} \xi_{k}$ and

$$
\begin{aligned}
& \varphi_{1} E_{h}=E_{n+h}, \varphi_{1} E_{n+h}=-E_{h,}, \varphi_{1} E_{2 n+h}=E_{3 n+h}, \varphi_{1} E_{3 n+h}=-E_{2 n+h} \\
& \varphi_{2} E_{h}=E_{2 n+h}, \varphi_{2} E_{n+h}=-E_{3 n+h}, \varphi_{2} E_{2 n+h}=-E_{h}, \varphi_{2} E_{3 n+h}=E_{n+h} \\
& \varphi_{3} E_{h}=E_{3 n+h}, \varphi_{3} E_{n+h}=E_{2 n+h}, \varphi_{3} E_{2 n+h}=-E_{n+h}, \varphi_{3} E_{3 n+h}=-E_{h,}
\end{aligned}
$$

and setting $\eta_{i}\left(E_{k}\right)=0$ and $\eta_{i}\left(\xi_{j}\right)=\delta_{i j}$. Then $\left(\varphi_{i,}, \xi_{i}, \eta_{i}\right)$ is a hypernormal almost contact 3-structure on G though the Reeb distribution is not integrable.

Therefore
hyper-normality of the 3 -structure \nRightarrow integrability of \mathcal{V}.

Conversely,

hyper-normality of the 3-structure \nLeftarrow integrability of \mathcal{V}.

Example

Let g be the 7-dimensional Lie algebra with basis $\left\{X_{1}, X_{2}, X_{3}, X_{4}, \xi_{1}\right.$, $\left.\xi_{2}, \xi_{3}\right\}$ and Lie brackets defined by

$$
\left[X_{h}, X_{k}\right]=0, \quad\left[\xi_{i}, \xi_{j}\right]=0, \quad\left[\xi_{i}, X_{k}\right]=\xi_{i} .
$$

Let G be a Lie group whose Lie algebra is g. We define on G a leftinvariant almost contact 3 -structure ($\varphi_{i}, \xi_{i}, \eta_{i}$) by putting $\varphi_{i} \xi_{j}=\varepsilon_{i j k} \xi_{k}$ and

$$
\begin{array}{lll}
\varphi_{1} X_{1}=X_{2}, & \varphi_{1} X_{2}=-X_{1}, & \varphi_{1} X_{3}=X_{4},
\end{array} \varphi_{1} X_{4}=-X_{3},
$$

and setting $\eta_{i}\left(X_{h}\right)=0$ and $\eta_{i}\left(\xi_{j}\right)=\delta_{i j}$. Then $\left(G, \varphi_{i}, \xi_{i,} \eta_{i}\right)$ is an almost 3contact manifold which is not hyper-normal. Nevertheless, \mathcal{V} is integrable.

Definition

An almost 3-contact manifold such that the Reeb distribution is involutive is said to be a foliated almost 3-contact manifold.

Definition

An almost 3-contact manifold such that the Reeb distribution is involutive is said to be a foliated almost 3-contact manifold.

Theorem (C. M., Different. Geom. Appl. 2009)
Let ($\left.M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be an almost 3-contact metric manifold. Then any two of the following conditions imply the other one:
(i) $\mathcal{V}:=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ is integrable;
(ii) each Reeb vector field is an infinitesimal automorphism with respect to the horizontal distribution \mathcal{H};
(iii) $\left.\quad\left(\mathcal{L}_{\xi_{i}} g\right)\right|_{H \times V}=0$ for all $i \in\{1,2,3\}$.

Moreover, if any two, and hence all, of the above conditions hold, then \mathcal{V} defines a totally geodesic foliation of $M^{4 n+3}$.

- The most famous example of foliated almost 3-contact manifolds is given by 3-Sasakian manifolds. Indeed, in any 3Sasakian manifold

$$
\left[\xi_{i}, \xi_{j}\right]=2 \xi_{k}
$$

- Another important class is given by 3-cosymplectic manifolds, where

$$
\left[\xi_{i}, \xi_{j}\right]=0 .
$$

- A more general class is given by 3-quasi-Sasakian manifolds.

3-quasi-Sasakian manifolds

A 3-quasi-Sasakian manifold is an almost 3-contact metric manifold ($M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g$) such that each structure is quasiSasakian, that is for each $i \in\{1,2,3\} \quad N_{i} \equiv 0$ and $\mathrm{d} \Phi_{i}=0$, where

$$
N_{i}:=\left[\varphi_{i}, \varphi_{i}\right]+2 \eta_{i} \otimes \xi_{i}
$$

and

$$
\Phi_{i}(X, Y):=g\left(X, \varphi_{i} Y\right) .
$$

Some recent results on 3-quasi-Sasaki manifolds are obtained in

- C. M., De Nicola, Dileo, 3-quasi-Sasakian manifolds, Ann. Glob. Anal. Geom. (2008)
- C. M., De Nicola, Dileo, The geometry of 3-quasi-Sasakian manifolds, Internat. J. Math. (2009)

Theorem 1

Let ($M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g$) be a 3-quasi-Sasakian manifold. Then the Reeb distribution $\mathcal{V}:=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ defines a Riemannian foliation with totally geodesic leaves, and the Reeb vector fields obey to the rule

$$
\left[\xi_{i}, \xi_{j}\right]=c \xi_{k \prime}
$$

for some $c \in \mathbb{R}$. Moreover, $M^{4 n+3}$ is 3-cosymplectic if and only if $c=0$.

Theorem 1

Let $\left(M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a 3-quasi-Sasakian manifold. Then the Reeb distribution $\mathcal{V}:=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ defines a Riemannian foliation with totally geodesic leaves, and the Reeb vector fields obey to the rule

$$
\left[\xi_{i}, \xi_{j}\right]=c \xi_{k \prime}
$$

for some $c \in \mathbb{R}$. Moreover, $M^{4 n+3}$ is 3-cosymplectic if and only if $c=0$.

Sub-classes of the 3-quasi-Sasakian manifolds are given by the 3Sasakian manifolds ($c=2$) e by the 3-cosymplectic manifolds ($c=0$).
Nevertheless there are also examples of 3 -quasi-Sasakian manifolds which are neither 3-Sasakian nor 3-cosymplectic.

The rank of a 3-quasi-Sasakian manifold

In a 3-quasi-Sasakian manifold one has, in principle, the three odd ranks r_{1}, r_{2}, r_{3} associated to the 1 -forms $\eta_{1}, \eta_{2}, \eta_{3}$, since we have three distinct, although related, quasi-Sasakian structures.

The rank of a 3-quasi-Sasakian manifold

In a 3-quasi-Sasakian manifold one has, in principle, the three odd ranks r_{1}, r_{2}, r_{3} associated to the 1-forms $\eta_{1}, \eta_{2}, \eta_{3}$, since we have three distinct, although related, quasi-Sasakian structures.

We have proved that $r_{1}=r_{2}=r_{3}$.

Theorem 2

Let $\left(M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be 3 -quasi-Sasakian manifold. Then the almost contact structures $\left(\varphi_{1}, \xi_{1}, \eta_{1}\right),\left(\varphi_{2}, \xi_{2}, \eta_{2}\right),\left(\varphi_{3}, \xi_{3}, \eta_{3}\right)$ have the same rank, which we call the rank of the 3 -quasi-Sasakian manifold $M^{4 n+3}$, and

$$
\begin{array}{ll}
\operatorname{rank}(M)=1 & \text { if } M \text { is } 3 \text {-cosymplectic }(c=0) \\
\operatorname{rank}(M)=4 I+3, I \leq n, & \text { in the other cases }(c \neq 0)
\end{array}
$$

Furthermore, M is of maximal rank if and only if it is $3-\alpha$-Sasakian (i.e. $\mathrm{d} \eta_{i}=\alpha \Phi_{i}$ for each $i=1,2,3$).

Theorem 3

Let ($M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g$) be a 3-quasi-Sasakian manifold of rank 4/+3 with $\left[\xi_{i}, \xi_{j}\right]=2 \xi_{k}$. Then $M^{4 n+3}$ is locally a Riemannian product of a 3Sasakian manifold $S^{4 /+3}$ and a hyper-Kähler manifold $\mathcal{K}^{4 m}$, where $m=n-l$.

Theorem 3

Let $\left(M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a 3 -quasi-Sasakian manifold of rank $4 /+3$ with $\left[\xi_{i}, \xi_{j}\right]=2 \xi_{k}$. Then $M^{4 n+3}$ is locally a Riemannian product of a 3Sasakian manifold $S^{4 /+3}$ and a hyper-Kähler manifold $\mathcal{K}^{4 m}$, where $m=n-l$.

Theorem 4

Every 3-quasi-Sasakian manifold has non-negative scalar curvature

$$
\frac{1}{2} c^{2}(2 n+1)(4 /+3)
$$

where $\operatorname{dim}(M)=4 n+3, \operatorname{rank}(M)=4 /+3$ and $\left[\xi_{i}, \xi_{j}\right]=c \xi_{k}$.
Furthermore, any 3-quasi-Sasakian manifold is Einstein if and only if it is $3-\alpha$-Sasakian (strictly positive scalar curvature) or 3-cosymplectic (Ricci-flat).

Theorem 3

Let $\left(M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a 3 -quasi-Sasakian manifold of rank 4/+3 with $\left[\xi_{i}, \xi_{j}\right]=2 \xi_{k}$. Then $M^{4 n+3}$ is locally a Riemannian product of a 3Sasakian manifold $S^{4 /+3}$ and a hyper-Kähler manifold $\mathcal{K}^{4 m}$, where $m=n-l$.

Theorem 4

Every 3-quasi-Sasakian manifold has non-negative scalar curvature

$$
\frac{1}{2} c^{2}(2 n+1)(4 /+3),
$$

where $\operatorname{dim}(M)=4 n+3, \operatorname{rank}(M)=4 /+3$ and $\left[\xi_{i}, \xi_{j}\right]=c \xi_{k}$.
Furthermore, any 3-quasi-Sasakian manifold is Einstein if and only if it is 3- α-Sasakian (strictly positive scalar curvature) or 3-cosymplectic (Ricci-flat).

- Such results are peculiar to the 3-quasi-Sasakian setting, since they do not hold in general for a single quasi-Sasakian structure on a manifold $M^{2 n+1}$.

3-structures with torsion

Another class of foliated almost 3-contact manifolds is given by the "almost 3-contact metric manifolds with torsion".

Definition

A linear connection ∇ on a Riemannian manifold (M, g) is said to be a metric connection with torsion if $\nabla g=0$ and the torsion tensor T, defined as

$$
T(X, Y, Z)=g(T \nabla(X, Y), Z)
$$

is a 3-form.

Riemannian manifolds admitting a metric connection with totally skew-symmetric torsion recently become of interest in Theoretical and Mathematical Physics, especially in

- supersymmetry theories
- supergravity
- string theory

Of particular interest are hyper-Kähler manifolds with torsion (HKT) and quaternionic-Kähler manifolds with torsion (QKT)

- A HKT manifold is a hyper-Hermitian manifold $\left(M^{4 n}, J_{1}, J_{2}, J_{3}, g\right)$ which admits a metric connection with torsion ∇ such that $\nabla J_{1}=$ $\nabla J_{2}=\nabla J_{3}=0$.
- Likewise, a QKT manifold is an almost quaternionic-Hermitian manifold ($M^{4 n}, Q, g$) admitting a metric connection with torsion ∇ such that $\nabla Q \subset Q$ and

$$
T(X, Y, Z)=T\left(J_{i} X, J_{i} Y, Z\right)+T\left(J_{i} X, Y, J_{i} Z\right)+T\left(X_{,} J_{i} Y, J_{i} Z\right)
$$

for all $X, Y, Z \in \Gamma\left(T M^{4 n}\right)$ and $i \in\{1,2,3\}$, where $\left\{J_{1}, J_{2}, J_{3}\right\}$ is an admissible basis which locally spans the almost quaternionic structure Q.

- I. Agricola, The Srní lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), 5-84.

Question

What is a possible generalization in odd dimension of the notion of hyper-Kähler structure with torsion?

Theorem (Friedrich - Ivanov, Asian J. Math. 2002)
An almost contact metric manifold ($M^{2 n+1}, \varphi, \xi, \eta, g$) admits a metric connection ∇ with totally skew-symmetric torsion T such that $\nabla \xi=$ $\nabla \eta=\nabla \varphi=0$ if and only if ξ is a Killing vector field and the tensor N^{\prime} given by

$$
N^{\prime}(X, Y, Z):=g(N(X, Y), Z)=g([\varphi, \varphi](X, Y)+\mathrm{d} \eta(X, Y) \xi, Z)
$$

is skew-symmetric. The connection ∇ is explicitly given by

$$
g\left(\nabla_{X} Y, Z\right)=g\left(\nabla^{g} X Y, Z\right)+\frac{1}{2} T(X, Y, Z)
$$

with

$$
T=\eta \wedge \mathrm{d} \eta+\mathrm{d}^{\varphi} \Phi+N^{\prime}-\eta \wedge\left(\mathrm{i}_{\xi} N\right)
$$

where $\mathrm{d}^{\varphi} \Phi$ denotes the " φ-twisted" derivative defined by $\mathrm{d}^{\varphi} \Phi(X, Y, Z):=$ -d $\Phi(\varphi X, \varphi Y, \varphi Z)$.

Theorem (Friedrich - Ivanov, Asian J. Math. 2002)
An almost contact metric manifold ($M^{2 n+1}, \varphi, \xi, \eta, g$) admits a metric connection ∇ with totally skew-symmetric torsion T such that $\nabla \xi=$ $\nabla \eta=\nabla \varphi=0$ if and only if ξ is a Killing vector field and the tensor N^{\prime} given by

$$
N^{\prime}(X, Y, Z):=g(N(X, Y), Z)=g([\varphi, \varphi](X, Y)+\mathrm{d} \eta(X, Y) \xi, Z)
$$

is skew-symmetric. The connection ∇ is explicitly given by

$$
g\left(\nabla_{X} Y, Z\right)=g\left(\nabla^{g} X Y, Z\right)+\frac{1}{2} T(X, Y, Z)
$$

with

$$
T=\eta \wedge \mathrm{d} \eta+\mathrm{d}^{\varphi} \Phi+N^{\prime}-\eta \wedge\left(\mathrm{i}_{\xi} N\right)
$$

where $\mathrm{d}^{\varphi} \Phi$ denotes the " φ-twisted" derivative defined by $\mathrm{d}^{\varphi} \Phi(X, Y, Z):=$ -d $\Phi(\varphi X, \varphi Y, \varphi Z)$.

- In particular, if $\left(M^{2 n+1}, \varphi, \xi, \eta, g\right)$ is Sasakian then $N \equiv 0$ and $\mathrm{d} \eta=\Phi$ (hence $\mathrm{d}^{\varphi} \Phi=0$), and so

$$
T=\eta \wedge \mathrm{d} \eta .
$$

Using that result, Agricola pointed out that a 3-Sasakian manifold ($\left.M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ can not admit any metric connection ∇ with totally skew-symmetric torsion such that $\nabla \xi_{i}=\nabla \eta_{i}=\nabla \varphi_{i}=0$, for each $i \in\{1,2,3\}$.

Indeed by the previous theorem we have that $M^{4 n+3}$ admits three connections $\nabla^{1}, \nabla^{2}, \nabla^{3}$, one for each Sasakian structure ($\varphi_{i,} \xi_{i}, \eta_{i}, g$), such that

$$
\nabla^{i} \xi_{i}=\nabla^{i} \eta_{i}=\nabla^{i} \varphi_{i}=0 \quad \text { and } \quad T^{i}=\eta_{i} \wedge \mathrm{~d} \eta_{i}
$$

for each $i \in\{1,2,3\}$.

But the problem is that these three connections do not coincide and so the 3 -Sasakian structure in question is not preserved by any metric connection with skew-symmetric torsion.

Definition

An almost 3-contact metric manifold with torsion is a hypernormal almost 3-contact metric manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$) admitting a linear connection ∇ such that

$$
\begin{aligned}
\nabla g= & 0, \quad \nabla \eta_{1}=\nabla \eta_{2}=\nabla \eta_{3}=0, \quad \nabla \xi_{1}=\nabla \xi_{2}=\nabla \xi_{3}=0, \\
& \left(\nabla \times \varphi_{1}\right) Y=-c \eta_{2}(X) \varphi_{3} Y^{h}+c \eta_{3}(X) \varphi_{2} Y^{h}, \\
& \left(\nabla \times \varphi_{2}\right) Y=-c \eta_{3}(X) \varphi_{1} Y^{h}+c \eta_{1}(X) \varphi_{3} Y^{h}, \\
& \left(\nabla \times \varphi_{3}\right) Y=-c \eta_{1}(X) \varphi_{2} Y^{h}+c \eta_{2}(X) \varphi_{1} Y^{h},
\end{aligned}
$$

for some $c \in \mathbb{R}$, and whose torsion tensor T satisfies the following conditions:
(i) T is horizontally skew-symmetric,
(ii) $T\left(X, Y, \xi_{i}\right)=T\left(X, \xi_{i}, Y\right)=T\left(X, \xi_{j}, \xi_{i}\right)=T\left(\xi_{i}, \xi_{j}, X\right)=0$ for all $X, Y \in \Gamma(\mathcal{H})$,
(iii) $T\left(\xi_{i}, \xi_{j}, \xi_{k}\right)=-c \varepsilon_{i j k}$ for all $i, j, k \in\{1,2,3\}$.

Remark

The conditions

$$
\begin{aligned}
& \left(\nabla_{x} \varphi_{1}\right) Y=-c \eta_{2}(X) \varphi_{3} Y^{h}+c \eta_{3}(X) \varphi_{2} Y^{h} \\
& \left(\nabla_{X} \varphi_{2}\right) Y=-c \eta_{3}(X) \varphi_{1} Y^{h}+c \eta_{1}(X) \varphi_{3} Y^{h} \\
& \left(\nabla_{x} \varphi_{3}\right) Y=-c \eta_{1}(X) \varphi_{2} Y^{h}+c \eta_{2}(X) \varphi_{1} Y^{h}
\end{aligned}
$$

are equivalent to

$$
\begin{aligned}
& \nabla \varphi_{1}=-c\left(\eta_{2} \otimes \varphi_{3}-\eta_{3} \otimes \varphi_{2}+\left(\eta_{2} \otimes \eta_{2}+\eta_{3} \otimes \eta_{3}\right) \otimes \xi_{1}-\eta_{1} \otimes \eta_{2} \otimes \xi_{2}-\eta_{1} \otimes \eta_{3} \otimes \xi_{3}\right) \\
& \nabla \varphi_{2}=-c\left(\eta_{3} \otimes \varphi_{1}-\eta_{1} \otimes \varphi_{3}-\eta_{1} \otimes \eta_{2} \otimes \xi_{1}+\left(\eta_{1} \otimes \eta_{1}+\eta_{3} \otimes \eta_{3}\right) \otimes \xi_{2}-\eta_{3} \otimes \eta_{2} \otimes \xi_{3}\right) \\
& \nabla \varphi_{3}=-c\left(\eta_{2} \otimes \varphi_{3}-\eta_{3} \otimes \varphi_{2}+\left(\eta_{2} \otimes \eta_{2}+\eta_{3} \otimes \eta_{3}\right) \otimes \xi_{1}-\eta_{1} \otimes \eta_{2} \otimes \xi_{2}-\eta_{1} \otimes \eta_{3} \otimes \xi_{3}\right)
\end{aligned}
$$

- C. M., 3-structures with torsion, Different. Geom. Appl. 27 (2009), 496-506
- C. M., 3-structures with torsion, Different. Geom. Appl. 27 (2009), 496-506

Theorem 1

Let ($M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g$) be a hyper-normal almost 3 -contact metric manifold. Then $M^{4 n+3}$ is an "almost 3-contact metric manifold with torsion" if and only if

1. $d^{\varphi_{1}} \Phi_{1}=d^{\varphi_{2}} \Phi_{2}=d^{\varphi_{3}} \Phi_{3}$ on \mathcal{H},
2. $\xi_{1}, \xi_{2}, \xi_{3}$ are Killing,
3. the Reeb distribution $\mathcal{V}=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ is integrable,
4. the tensor fields $\varphi_{1}, \varphi_{2}, \varphi_{3}$ satisfy the relations

$$
\mathcal{L}_{\xi_{i}} \varphi_{j}=c \varphi_{k} .
$$

If an "almost 3-contact metric connection with torsion" exists, then it is unique.

Theorem 2

Any almost 3-contact metric manifold with torsion is a foliated almost 3-contact manifold. Moreover, the Reeb vector fields obey to the rule

$$
\left[\xi_{i}, \xi_{j}\right]=c \xi_{k} .
$$

The space of leaves (with respect to \mathcal{V}) is HKT or QKT according to $c=0$ or $c \neq 0$, respectively.

Theorem 2

Any almost 3-contact metric manifold with torsion is a foliated almost 3-contact manifold. Moreover, the Reeb vector fields obey to the rule

$$
\left[\xi_{i}, \xi_{j}\right]=c \xi_{k} .
$$

The space of leaves (with respect to \mathcal{V}) is HKT or QKT according to $c=0$ or $c \neq 0$, respectively.

Thus we may divide almost 3-contact metric manifolds with torsion in two classes according to the behavior of the leaves of \mathcal{V} : those for which each leaf of \mathcal{V} is locally $S O(3)$ (which corresponds to the case $c \neq 0$) and those for which each leaf of \mathcal{V} is locally an abelian group ($c=0$).

Theorem 2

Any almost 3-contact metric manifold with torsion is a foliated almost 3-contact manifold. Moreover, the Reeb vector fields obey to the rule

$$
\left[\xi_{i}, \xi_{j}\right]=c \xi_{k} .
$$

The space of leaves (with respect to \mathcal{V}) is HKT or QKT according to $c=0$ or $c \neq 0$, respectively.

Thus we may divide almost 3-contact metric manifolds with torsion in two classes according to the behavior of the leaves of \mathcal{V} : those for which each leaf of \mathcal{V} is locally $S O(3)$ (which corresponds to the case $c \neq 0$) and those for which each leaf of \mathcal{V} is locally an abelian group ($c=0$).

- Almost 3-contact metric manifolds with torsion such that $c=2$ are called 3-Sasakian manifolds with torsion.
- Almost 3-contact metric manifolds with torsion such that $c=0$ are called 3-cosymplectic manifolds with torsion.

Corollary 1

The torsion T is totally skew-symmetric if and only if the horizontal distribution \mathcal{H} is integrable.

Corollary 1

The torsion T is totally skew-symmetric if and only if the horizontal distribution \mathcal{H} is integrable.

Corollary 2

An almost contact metric 3-structure with torsion ($\varphi_{i,} \xi_{i,} \eta_{i}, g, \nabla$) on M is 3-quasi-Sasakian if and only if the torsion is given by

$$
T(X, Y, Z)=c \sum_{i} \eta_{i}(X) \Phi_{i}(Y, Z) .
$$

Corollary 1

The torsion T is totally skew-symmetric if and only if the horizontal distribution \mathcal{H} is integrable.

Corollary 2

An almost contact metric 3-structure with torsion ($\varphi_{i,}, \xi_{i}, \eta_{i}, g, \nabla$) on M is 3-quasi-Sasakian if and only if the torsion is given by

$$
T(X, Y, Z)=c \sum_{i} \eta_{i}(X) \Phi_{i}(Y, Z) .
$$

In this case,

- if $c=0$ then $M^{4 n+3}$ is 3 -cosymplectic and ∇ coincides with the Levi Civita connection

Corollary 1

The torsion T is totally skew-symmetric if and only if the horizontal distribution \mathcal{H} is integrable.

Corollary 2

An almost contact metric 3-structure with torsion ($\varphi_{i}, \xi_{i,}, \eta_{i}, g, \nabla$) on M is 3-quasi-Sasakian if and only if the torsion is given by

$$
T(X, Y, Z)=c \sum_{i} \eta_{i}(X) \Phi_{i}(Y, Z) .
$$

In this case,

- if $c=0$ then $M^{4 n+3}$ is 3 -cosymplectic and ∇ coincides with the Levi Civita connection
- if $c=2$ then $M^{4 n+3}$ is 3-Sasakian and ∇ coincides with the Biquard connection.

Some open problems

- Classification of foliated almost contact 3-structures
- The class of (foliated) almost 3-contact metric manifolds which are Einstein.
- Conjecture: the only foliated almost 3-contact metric manifolds which are Einstein are the 3-Sasakian and the 3cosymplectic manifolds.
- Example with negative curvature?
- Curvature properties of 3-Sasakian and 3-cosymplectic manifolds with torsion (ongoing paper)

References

1. B. Cappelletti Montano, 3-structures with torsion, Different. Geom. Appl. 27 (2009), 496-506.
2. B. Cappelletti Montano, A. De Nicola, G. Dileo, The geometry of a 3-quasi-Sasakian manifold, Internat. J. Math. (in press).
3. B. Cappelletti Montano, A. De Nicola, G. Dileo, 3-quasi-Sasakian manifolds, Ann. Glob. Anal. Geom. 33 (2008), 397-409.
4. B. Cappelletti Montano, A. De Nicola, 3-Sasakian manifolds, 3cosymplectic manifolds and Darboux theorem, J. Geom. Phys. 57 (2007), 2509-20
5. B. Cappelletti Montano, Curvature of 3-Sasakian manifolds with torsion, in preparation.

References

1. B. Cappelletti Montano, 3-structures with torsion, Different. Geom. Appl. 27 (2009), 496-506.
2. B. Cappelletti Montano, A. De Nicola, G. Dileo, The geometry of a 3-quasi-Sasakian manifold, Internat. J. Math. (in press).
3. B. Cappelletti Montano, A. De Nicola, G. Dileo, 3-quasi-Sasakian manifolds, Ann. Glob. Anal. Geom. 33 (2008), 397-409.
4. B. Cappelletti Montano, A. De Nicola, 3-Sasakian manifolds, 3cosymplectic manifolds and Darboux theorem, J. Geom. Phys. 57 (2007), 2509-20
5. B. Cappelletti Montano, Curvature of 3-Sasakian manifolds with torsion, in preparation.

Example

Consider $\mathbb{R}^{4 n+3}$ with its global coordinates $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, u_{1}, \ldots, u_{n}$, $v_{1}, \ldots, v_{n}, z_{1}, z_{2}, z_{3}$. Let M be the open submanifold of $\mathbb{R}^{4 n+3}$ obtained by removing the points where $\sin \left(z_{2}\right)=0$ and define three vector fields on M

$$
\begin{aligned}
& \xi_{1}:=c \partial_{1} \\
& \xi_{2}:=c\left(\cos \left(z_{1}\right) \cot \left(z_{2}\right) \partial_{1}+\sin \left(z_{1}\right) \partial_{2}-\cos \left(z_{1}\right) / \sin \left(z_{2}\right) \partial_{3}\right) \\
& \xi_{3}:=c\left(-\sin \left(z_{1}\right) \cot \left(z_{2}\right) \partial_{1}+\cos \left(z_{1}\right) \partial_{2}+\sin \left(z_{1}\right) / \sin \left(z_{2}\right) \partial_{3}\right)
\end{aligned}
$$

(where $\partial_{i}=\partial / \partial z_{i}$) for some $c \neq 0$, and three 1-forms

$$
\begin{aligned}
& \eta_{1}:=c^{-1}\left(\mathrm{~d} z_{1}+\cos \left(z_{2}\right) \mathrm{d} z_{3}\right) \\
& \eta_{2}:=c^{-1}\left(\sin \left(z_{1}\right) \mathrm{d} z_{2}-\cos \left(z_{1}\right) \sin \left(z_{2}\right) \mathrm{d} z_{3}\right) \\
& \eta_{3}:=c^{-1}\left(\cos \left(z_{1}\right) \mathrm{d} z_{2}+\sin \left(z_{1}\right) \sin \left(z_{2}\right) \mathrm{d} z_{3}\right) .
\end{aligned}
$$

One has $\left[\xi_{i}, \xi_{j}\right]=c \xi_{k}$ and $\eta_{i}\left(\xi_{j}\right)=\delta_{i j}$.
Define a Riemannian metric g by declaring that the set $\left\{X_{i}=\partial / \partial X_{i}\right.$ $\left.Y_{i}=\partial / \partial y_{i}, U_{i}=\partial / \partial u_{i}, V_{i}=\partial / \partial v_{i,} \xi_{1}, \xi_{2}, \xi_{3}\right\} \quad(i=1, \ldots, n)$ is a global orthonormal frame.

Moreover, define three tensor fields $\varphi_{1}, \varphi_{2}, \varphi_{3}$ on M by setting

$$
\begin{gathered}
\varphi_{i} \xi_{j}=\varepsilon_{i j k} \xi_{k} \\
\varphi_{1} X_{i}=Y_{i,}, \varphi_{1} Y_{i}=-X_{i,}, \varphi_{1} U_{i}=V_{i,}, \varphi_{1} V_{i}=-U_{i,} \\
\varphi_{2} X_{i}=U_{i,} \\
\varphi_{2} Y_{i}=-V_{i,}, \varphi_{2} X_{3}=-X_{1}, \varphi_{2} V_{i}=Y_{i} \\
\varphi_{3} X_{i}=V_{i,}, \\
\varphi_{3} Y_{i}=U_{i,},
\end{gathered} \varphi_{3} U_{i}=-Y_{i,}, \varphi_{3} V_{i}=-X_{i} .
$$

One can prove that ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$) is a 3-quasi-Sasakian manifold, which is

- neither 3-cosymplectic, since the Reeb vector fields do not commute,
- nor 3-Sasakian, since it admits Darboux-like coordinates

Theorem (C. M. - De Nicola, J. Geom. Phys. 2007)
A 3-Sasakian manifold can not admit a Darboux-like coordinate system.
For "Darboux-like coordinate system" we mean local coordinates $x_{1}, \ldots, x_{4 n}$, z_{1}, z_{2}, z_{3} with respect to which, for each $i \in\{1,2,3\}, \Phi_{i}=\mathrm{d} \eta_{i}$ has constant components and $\xi_{i}=a^{1}{ }_{i} \partial / \partial z_{1}+a^{2}{ }_{i} \partial / \partial z_{2}+a^{3}{ }_{i} \partial / \partial z_{3}$, where $a^{j}{ }_{i}$ are functions depending only on the coordinates z_{1}, z_{2}, z_{3}.

Furthermore, $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is η-Einstein, i.e. the Ricci tensor is of the form

$$
\text { Ric }=a g+b_{1} \eta_{1} \otimes \eta_{1}+b_{2} \eta_{2} \otimes \eta_{2}+b_{3} \eta_{3} \otimes \eta_{3} .
$$

Indeed one has

$$
\text { Ric }=c^{2} / 4\left(\eta_{1} \otimes \eta_{1}+\eta_{2} \otimes \eta_{2}+\eta_{3} \otimes \eta_{3}\right) .
$$

Thus, differently from 3-Sasakian and 3-cosymplectic geometry, there are 3-quasi-Sasakian manifolds which are not Einstein.

Let us write the explicit expression of the "connection with torsion" stated in the previous theorem.

Since \mathcal{V} is involutive, we can consider the corresponding Bott connection ∇^{B}. Then we put

$$
\nabla_{X} Y:= \begin{cases}\left(\nabla^{1}{ }_{x} Y\right)^{h}=\left(\nabla^{2}{ }_{x} Y\right)^{h}=\left(\nabla^{3}{ }_{x} Y\right)^{h} & \text { if } X, Y \in \Gamma(\mathcal{H}) \\ \nabla^{B}{ }_{V} Y & \text { if } V \in \Gamma(\mathcal{V}), Y \in \Gamma(\mathcal{H}) \\ X\left(\eta_{1}(Y)\right) \xi_{1}+X\left(\eta_{2}(Y)\right) \xi_{2}+X\left(\eta_{3}(Y)\right) \xi_{3} & \text { if } Y \in \Gamma(\mathcal{V}) .\end{cases}
$$

The complete expression of the torsion is the following:

$$
\begin{gathered}
T(X, Y, Z)=\mathrm{d} \Phi_{i}\left(\varphi_{i} X, \varphi_{i} Y, \varphi_{i} Z\right), \quad T\left(\xi_{i}, X, Y\right)=\mathrm{d} \eta_{i}(X, Y), \\
T\left(\xi_{i}, \xi_{j}, \xi_{k}\right)=-c \varepsilon_{i j k}
\end{gathered}
$$

for all $X, Y, Z \in \Gamma(\mathcal{H})$, the remaining terms being zero.

Example of 3-structure with torsion

Let g be the 11-dimensional Lie algebra with basis $\left\{E_{1}, \ldots, E_{8}, \xi_{1}, \xi_{2}, \xi_{3}\right\}$ and Lie brackets defined by

$$
\left[E_{1}, E_{2}\right]=-\left[E_{3}, E_{4}\right]=E_{5},\left[E_{1}, E_{3}\right]=\left[E_{2}, E_{4}\right]=E_{6},\left[E_{1}, E_{4}\right]=-\left[E_{2}, E_{3}\right]=E_{7},
$$

with the remaining brackets zero. Let G be a Lie group whose Lie algebra is g. Define on G an almost contact metric 3 -structure ($\varphi_{i}, \xi_{i,}, \eta_{i}, g$) by putting $\eta_{i}\left(E_{h}\right)=0, \eta_{i}\left(\xi_{j}\right)=\delta_{i j}$ for all $i, j \in\{1,2,3\}, h \in\{1, \ldots, 8\}$, and

$$
\begin{array}{llllll}
\varphi_{1} E_{1}=E_{2} & \varphi_{1} E_{2}=-E_{1} & \varphi_{1} E_{3}=E_{4} & \varphi_{1} E_{4}=-E_{3} & \varphi_{1} E_{5}=E_{6} & \varphi_{1} E_{6}=-E_{5} \\
\varphi_{1} E_{7}=E_{8} & \varphi_{1} E_{8}=-E_{7} & \varphi_{1} \xi_{1}=0 & \varphi_{1} \xi_{2}=\xi_{3} & \varphi_{1} \xi_{3}=-\xi_{2} & \\
\varphi_{2} E_{1}=E_{3} & \varphi_{2} E_{2}=-E_{4} & \varphi_{2} E_{3}=-E_{1} & \varphi_{2} E_{4}=E_{2} & \varphi_{2} E_{5}=E_{7} & \varphi_{2} E_{6}=-E_{8} \\
\varphi_{2} E_{7}=-E_{5} & \varphi_{2} E_{8}=E_{6} & \varphi_{2} \xi_{1}=-\xi_{3} & \varphi_{2} \xi_{2}=0 & \varphi_{2} \xi_{3}=\xi_{1} & \\
\varphi_{3} E_{1}=E_{4} & \varphi_{3} E_{2}=E_{3} & \varphi_{3} E_{3}=-E_{2} & \varphi_{3} E_{4}=-E_{1} & \varphi_{3} E_{5}=E_{8} & \varphi_{3} E_{6}=E_{7} \\
\varphi_{3} E_{7}=-E_{6} & \varphi_{3} E_{8}=-E_{5} & \varphi_{3} \xi_{1}=\xi_{2} & \varphi_{3} \xi_{2}=-\xi_{1} & \varphi_{3} \xi_{3}=0 . &
\end{array}
$$

The Riemannian metric g is defined by requiring that $\left\{E_{1}, \ldots, E_{8}, \xi_{1}, \xi_{2}, \xi_{3}\right\}$ is g-orthonormal.

Definition

Let $M^{4 n+3}$ be a smooth manifold of dimension $4 n+3$. A quaternionic-contact structure ($Q C$-structure) is given by:

- a distribution H of codimension 3 on $M^{4 n+3}$, locally defined by the kernel of a \mathbb{R}^{3}-valued 1 -form $\eta=\left(\eta_{1}, \eta_{2}, \eta_{3}\right), H=\operatorname{ker}(\eta)$,
- a metric tensor g on H and a local hyper-complex structure $Q=\left(I_{1}, I_{2}, I_{3}\right)$ on $H\left(I_{s}: H \rightarrow H, s=1,2,3\right)$, compatible with g, i.e. such that $g\left(X, I_{s} Y\right)=\mathrm{d} \eta_{s}(X, Y), s=1,2,3, X, Y \in \Gamma(H)$.
O. Biquard, Métriques d'Einstein asymptotiquement symétriques, Astérisque 265 (2000).

Theorem (Biquard)

Let H be a quaternionic-contact structure on $M^{4 n+3}$ and let us assume $n>1$. Then there exists a unique distribution V supplementary to H and a unique linear connection ∇ on $M^{4 n+3}$ such that

1. V and H are ∇-parallel,
2. $\nabla g=0$,
3. $\nabla Q \subset Q$,
4. the torsion tensor field T of ∇ satisfies the conditions
a. for any $X, Y \in \Gamma(H), T(X, Y)=-\left.[X, Y]\right|_{V}$
b. for any $\xi \in \Gamma(V)$, the endomorphism $T_{\xi}:=\left(\left.X \mapsto(T(X, \xi))\right|_{H}\right)$

$$
\in(s p(n) \oplus s p(1))^{\perp} \subset s o(4 n) .
$$

The unique connection stated in the theorem is called Biquard connection. In dimension 7 its existence was proved, under a further assumption, by Duchemin.

Corollary

Let $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right), i \in\{1,2,3\}$, be an almost contact metric 3 -structure of $M^{4 n+3}$ such that each Reeb vector field ξ_{i} is Killing and is an infinitesimal automorphism with respect to \mathcal{H}. Then $\left(M^{4 n+3}, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is a foliated almost 3 -contact manifold. More precisely, \mathcal{V} defines a Riemannian foliation of $M^{4 n+3}$ with totally geodesic leaves and the Reeb vector fields satisfy

$$
\left[\xi_{i}, \xi_{j}\right]=c \xi_{k}
$$

for any even permutation (i, j, k) of $\{1,2,3\}$ and for some $c \in \mathbb{R}$.

The peculiarity of 3-quasi-Sasakian manifolds is that they are foliated by four canonical Riemannian foliations, namely

- $\mathcal{V}:=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$
- $\mathcal{H}_{1}:=\left\{X \in \mathcal{H} \mid i_{X}\left(\mathrm{~d} \eta_{j}\right)=0\right.$ for each $\left.j=1,2,3\right\}$
- $\mathcal{H}_{1} \oplus \mathcal{V}$
- $\mathcal{H}_{2} \oplus \mathcal{V}$, with $\mathcal{H}_{2}:=\mathcal{H}_{1}{ }^{\perp} \cap \mathcal{H}$
where: $4 n+3=\operatorname{dim}(M), 4 /+3=\operatorname{rank}(M), m=n-/$.
- The distributions $\mathcal{H}_{1}, \mathcal{H}_{2}$ and \mathcal{V} are mutually orthogonal and one has the following orthogonal decomposition

$$
T_{p} M=\mathcal{H}_{1 p} \oplus \mathcal{H}_{2 p} \oplus \mathcal{V}_{p}=\mathcal{H}_{p} \oplus \mathcal{V}_{p}
$$

- $\varphi_{i}\left(\mathcal{H}_{1}\right) \subset \mathcal{H}_{1}, \varphi_{i}\left(\mathcal{H}_{2}\right) \subset \mathcal{H}_{2}$ and $\varphi_{i}(\mathcal{V}) \subset \mathcal{V}$, for each $i \in\{1,2,3\}$.
- $\left[\xi_{i}, \mathcal{H}_{1}\right] \subset \mathcal{H}_{1},\left[\xi_{i}, \mathcal{H}_{2}\right] \subset \mathcal{H}_{2}$, for each $i \in\{1,2,3\}$.

The results of our study on the "transverse geometry" with respect to those foliations is summarized in the following table:

foliation	leaves	space of leaves
\mathcal{V}	3-dimensional Lie groups	Almost quaternionic-
\mathcal{R}^{3} or $\operatorname{SO}(3)$	Hermitian	
\mathcal{H}_{1}	Hyper-Kähler	$3-\alpha$-Sasakian
$\mathcal{H}_{1} \oplus \mathcal{V}$	3-cosymplectic	Quaternionic-Kähler
$\mathcal{H}_{2} \oplus \mathcal{V}$	3- α-Sasakian	Hyper-Kähler

