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SCENARIO

4-dimensional manifolds with symmetry,

be this Einstein, selfdual or Kähler geometry

Let (M 4, g) be a smooth Riemannian four-manifold

• If ω1, . . . , ω6 are ON symplectic forms =⇒ g is flat

“the convergence of six figures in a flat space

has a comforting geometry” McEwan (1998)

• Pairs: Salamon (1991), Bande–Kotschick (2006)

• Triples: Geiges–Gonzalo Pérez (1995), (2009)

Might as well consider five ON symplectic forms

span{ω1, ω2, ω3} = Λ2
−M

4, {ω4, ω5} ⊂ Λ2
+M
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Consequence: M is hyperKähler.

Expected: constraints on curvature.
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I want to study

Hermitian surfaces with

1-dimensional Chern holonomy.

Core results on (M 4, g, I) Hermitian:

Einstein =⇒ W+ degenerate (ie eigenvalues not distinct)

(aka ‘Riemannian Goldberg-Sachs’ Nurowski, 1993)

lcK =⇒ W+ degenerate (⇐⇒ when compact)

Ricci I-invariant =⇒ W+ degenerate

Apostolov–Gauduchon (1997)

This presentation:

∗ despite Ricci is I-invariant, M may still not be lcK.

∗∗ But if this happens: complete local classification,

in most cases deformations of Kähler surfaces of Calabi-
type.

∗ ∗ ∗ NEW Hermitian, non-lcK examples whose Ricci
admits exactly one constant eigenvalue equal 0.

Plus, there is a positive complex structure, unlike examples
of Apostolov–Armstrong–Drăghici (2002)
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TWO-FORMS

Let M 4 be a real, oriented, smooth 4-manifold with an
almost Hermitian structure (g, I)

I2 = −IdTM , g(I·, I·) = g(·, ·) > 0, ωI = g(I·, ·).

• The bundle of real 2-forms decomposes as

Λ2 = λ1,1 ⊕ λ2︷ ︸︸ ︷
RωI ⊕ λ1,1

0 ⊕
︷ ︸︸ ︷
λ2,0 ⊕ λ0,2

where λ1,1 are the I-invariant two-forms

λ1,1
0 = Ker(ωI ∧ ·) are the primitive (1, 1)-forms

λ2 ∼= K(M,I) is the canonical line bundle

• Paramount feature of dim 4 is ‘self-duality’

Λ2 = Λ+ ⊕ Λ−

originating from so(4) = so(3)⊕ so(3), so

Λ+ = RωI ⊕ λ2, Λ− = λ1,1
0
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K.W.Lamson, TAMS (1930):
contains the SD equations !
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CANONICAL CONNECTION

Via the Levi-Civita connection ∇ defined by g build the
intrinsic torsion of (g, I)

η =
1

2
(∇I)I ∈ Λ1 ⊗ λ2.

The components of η determine the type and features of
the almost Hermitian structure, like

(M 4, g, I) Hermitian ⇐⇒ (M 4, I) complex surface

⇐⇒ η ∈ λ1,1 ⊗ Λ1

Lee form: unique θ ∈ Λ1 such that dωI = θ ∧ ωI

The second canonical Hermitian connection of (g, I)
Gauduchon (1984)

∇C = ∇ + η

is metric, Hermitian, with torsion

T (X, Y ) = ηXY − ηYX

Notation: ηX = 1
2(∇XI)I ∈ λ2, ∇C

XY = ∇XY + (ηXY )]
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CURVATURE

The Riemannian curvature decomposes

R =

(
W+ + 1

12s
1
2 Ric0

1
2 RicT

0 W− + 1
12s

)
,

W± = 1
2(W ± ?W ), Ric = trR,

κ = 3〈W+ωI , ωI〉 s = tr Ric .

I will call Chern curvature

RC(X, Y ) = ∇C
[X,Y ] − [∇C

X ,∇C
Y ] ∈ λ1,1.

Comparison formula

RC(X, Y ) = R(X, Y )− dCη(X, Y ) + [ηX , ηY ]− ηT (X,Y )

Lemma RC = W− + s
12IdΛ− + 1

2 Ric −0 +1
2γ

C
1 ⊗ ωI

where γC1 (X, Y ) ∝ 〈RC(X, Y ), ωI〉 is the first Chern form.
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HOLONOMY

Consider when holC ⊆ u(2) is one-dimensional, let F
be a generator

RC = γ ⊗ F

As ∇C is Hermitian

F = F0 + αωI ∈ su(2) ⊕ R,

where α 6= 0 is constant, and F0 is either identically, or
never, zero.

If F0 6= 0, can parametrise F0 = g(J ·, ·) = ωJ by means
of an OCS J with orientation opposite to that of I .

Proposition. The following statements are equivalent:

i) holC is 1-dimensional, generated by F in λ1,1 with
F0 6= 0;

ii) ∇C is not flat and there is a ‘negative’ Kähler J such
that γC1 = αρJ , where ρJ is the Ricci form.

Either assumption implies RC =
ρJ
2
⊗ (ωJ + αωI).
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Proposition. When F0 = 0

RC = 1
2γ

C
1 ⊗ ωI ⇐⇒ Ric = 0 and W− = 0.

In particular: g flat =⇒ dim holC 6 1.

Corollary. Let (M 4, g, I) be compact Hermitian,
with RC = 1

2γ
C
1 ⊗ωI . Then (g, I) is a flat Kähler structure

(and these are classified).

cf. Apostolov–Gauduchon (2002) classifies SD Einstein-Hermitian surfaces

CHERN-FLAT SURFACES:

Proposition. Let (M 4, g, I) be almost Hermitian with
RC = 0. Then g is flat.

Compare to

Mn Hermitian with holomorphic torsion and constant
holo sectional curvature =⇒ either Kähler or flat.

Balas (1985)

Mn compact almost Kähler, Chern-flat =⇒ flat Kähler.

Di Scala–Vezzoni (arXiv 2008)
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5-FRAMES

A closed 5-frame of two-forms on M 4 (just smooth!) is
a system ω1, . . . , ω5 of symplectic forms satisfying

ωi ∧ ωj = ±δij ω1 ∧ ω1

at each point. This induces an orientation on M .

As
GL(4,R)

CO(4)
∼=

SL(4,C)

SO(4)
∼=

SO0(3, 3)

SO(3)× SO(3)
,

Atiyah–Hitchin–Singer (1978), Salamon (1982)

in every conformal class there is a unique g > 0 such that

span{ω1, ω2, ω3} = Λ−, {ω4, ω5} ⊂ Λ+.

Complete to a basis with ωI = g(I·, ·) ∈ Λ+ (non-closed)

Proposition.
Let M 4 possess a closed 5-frame. Then (g, I) is Hermitian
and RC = 1

2γ
C
1 ⊗ ωI .

(M 4, g, I) Hermitian: pointwise there is a closed 5-frame
if and only if RC = −1

4d(Iθ)⊗ ωI .
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EXAMPLE: ‘Gibbons-Hawking Ansatz’

Let (M 4, g, I, J,K) be hyperKähler with tri-holomorphic
Killing field X .

There are local coordinates (x, y, z, u) such that X = ∂
∂u,

XyωI = dx, XyωI = dy, XyωK = dz.

‖X‖−2 = U(x, y, z) is harmonic for the flat metric on R3.

Let Θ satisfy the monopole equation dΘ = ?R3dU .

Then the metric reads

g = U(dx2 + dy2 + dz2) + U−1(du + Θ)2

and Λ− is trivialised.

Vice versa, U(x, y, z) > 0 harmonic and dΘ = ?dU =⇒
g hyperKähler, locally.

Gibbons-Hawking (1978), see also Gauduchon-Tod (1998)

Importance:

• Key method yielding (strictly) almost Kähler, Einstein
metrics in dimension 4.

• First example of this kin by Nurowski-Przanowski (1999)
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• No coincidence this construction admits a closed 5-frame,
for

Theorem.

1. An M 4 with a closed 5-frame is determined via the
Gibbons-Hawking Ansatz by choosing U(y) = ay + b.

2. (M, g) is isometric to a quotient of a diagonal Bianchi
metric of class II on S1 ×H3.

Proof relies on:

Let (M 4, g, I) be Hermitian, with Ric = 0 = W−. Then

i) W+ωI = κ
6 ωI

ii) (κ
2
3g, I) is Kähler

iii) X = Igrad (κ−
1
3 ) is holomorphic Killing

iv) d+X[ = − 1
12κ

2
3ωI .

i)⇐⇒ ii) on compact, not necessarily Einstein, Hermitian surfaces

Apostolov–Gauduchon (1997), Boyer (1986), Derdziński (1983),
Nurowski, 1993

The metric cannot be complete, otherwiseX tri-holomorphic
would force flatness Bielawski (1999)

NB: H3 is the real three-dimensional Heisenberg group
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KÄHLER-HERMITIAN SURFACES

A Hermitian surface (M 4, g, I) admitting a Kähler struc-
ture (g, J) with the opposite orientation will be referred
to as a Kähler-Hermitian surface (M , g,J , I).

(lest we forget, from Proposition on p. 9)

The endomorphisms I and J commute and J 6= ±I .

The rank-two orthogonal distributions

D± = Ker(IJ ∓ Id), TM = D+ ⊕D−

are invariant under J and I , and preserved by ∇C .

Proposition. The distribution D+ is totally geodesic,
and holomorphic for both I and J .

A distribution V on (M 4, I) complex is said holo-

morphic if I preserves it (IV ⊆ V), and it is locally

spanned by holomorphic vectors (ie (LVI)X ∈ V for

any X, by Frobenius)
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Conversely,

Proposition. Let (M, g, J) be a Kähler surface equipped
with a holomorphic distribution E, and call F = E⊥.
Define the OCS

I|E = −J, I|F = J .

Then (i) E is I-holomorphic

(ii) (IJ)θ = θ

(iii) I integrable ⇐⇒ E totally geodesic.

The notion of holomorphic distribution on a Kähler surface
has yet another geometrical interpretation

A foliation with leaf-tangent-distribution V is confor-
mal if

(LVg)(X, Y ) = k(V)g(X, Y ) X, Y ∈ V⊥

and homothetic if dk = 0.

On M 4 Kähler: complex conformal ⇐⇒ holomorphic

Important in theory of harmonic morphisms

Although few examples are known on Kähler surfaces,

Theorem. Let (M, g, J) be a Kähler surface equipped
with a complex homothetic foliation F .

If F is totally geodesic, M arises as a holomorphic line
bundle over a Riemann surface (à la Calabi)

C ↪→M → Σ.
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REVIEW OF CALABI’S CONSTRUCTION

(Σ, ωΣ, IΣ) Riemann surface

L complex line bundle with c1(L ) = −[ωΣ]

Pick a Hermitian metric h on the fibres and a Hermitian
connection with curvature −ωΣ

The distribution V tangent to the fibres has a complex
structure IV induced by h, so

TL ∼= TΣ⊕ V
(pullbacks omitted) secures an integrable complex struc-
ture

I = IΣ + IV .

If f is a function of the fibres’ norm,

ω = ωΣ + dIdf

defines an I-compatible Kähler metric on L \{0}.
Calabi, 1982
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Lemma. When (JI)θ = θ

W+ is degenerate ⇐⇒ Ric is I-invariant

in contrast to Hermitian surfaces (no J), where only ⇐=
holds.

Hence I am interested in

(JI)θ = θ

and call (M, g, J, I) a Kähler surface of Calabi-type
with respect to I if

(JI)θ = θ and dθ = 0.

Examples

1. Calabi’s Kähler metrics on C ↪→ L → Σ

2. some weakly SD Kähler surfaces (W− harmonic)

Apostolov–Calderbank–Gauduchon (2003)

where ‘Calabi-type’ means there’s a Hamiltonian Killing X

with (g, I) conformally Kähler, and

I = J on span{X, JX}, I = −J on span{X, JX}⊥
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CLASSIFICATION I (generic case)

Theorem.
(M 4, g, J, I) is connected Kähler-Hermitian, with holC span-
ned by αωI + ωJ , α 6= ±1, if and only if

• M = M+ ∪M−, for some M± open, disjoint subsets

• (IJ)θ = ±θ on M±,

• constraints (on α, θ, s, ρ)

• W+ degenerate everywhere on M

NB: The ‘minus’ corresponds to flipping the sign of I.

Corollary.
A compact Kähler-Hermitian surface with holC = 〈αωI +
ωJ〉 is of Calabi-type for I .

Theorem.
(M 4, g, J, I) Kähler-Hermitian, with (IJ)θ = θ. On any
connected component of {dθ ∧ θ 6= 0}
• the scalar curvature s+ of the leaves is constant (if not

0, then α is fixed).

• d+θ = 0 =⇒ there is an explicit ‘normal form’
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CLASSIFICATION II (α = ±1)

Theorem.
A Kähler-Hermitian (M 4, g, J, I) with holC = 〈±ωI +ωJ〉
is locally a torus-bundle over a Riemann surface

T 2 ↪→M → Σ ,

with d+θ 6= 0 where θ 6= 0.

If M compact, (g, I) is Kähler.

How ‘⇐=’ goes, in two words:

Curvatures dθk = fk

2 ωΣ (f 2
1 + f 2

2 = 1)

D+ = span{θ]1, θ
]
2} the torus-action distribution

D− the horizontal distribution

Build integrable OCSs

Iθ1 = −θ2, I|D− = IΣ

Jθ1 = θ2, J |D− = IΣ.

for the Riemannian metric g = θ1⊗ θ1 + θ2⊗ θ2 + tgΣ
(t > 0 a map)

Then

ωJ = −θ1 ∧ θ2 + tωΣ is closed, forcing (g, J) Kähler

θ = t−1(−f2θ1 + f1θ2) belongs in D+

θ]k are I-holo, and ηθk
= 0, so ∇Cθk = 0.

NB: dθ ∧ θ = 0 ⇐⇒ f1, f2 are constant.
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CLASSIFICATION III

cases left: dθ ∧ θ = 0 or dθ 6= 0.

Theorem.
In both cases the Kähler-Hermitian surface is a suitable
‘deformation’ of a Kähler surface of Calabi-type, where
θ 6= 0.

This means
C ↪→ L → Σ

inherits coords from the Hamiltonian Killing X field
tangent to S1-action on M = L .

Use γ ∈ Λ0,1(Σ, L−1) to modify Calabi’s construction

for my purposes. . .

If not lcK, Goldberg-Sachs guarantees there’s no Einstein
metric in the conformal class.

Yet, Ric has one constant double eigenvalue!

All cases dealt with.

The local structure of each
is fully described.
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