A problem of Roger Liouville

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics
University of Cambridge
Dirac Operators and Special Geometries, Marburg, September 2009

Robert Bryant, MD, Mike Eastwood (2008) arXiv:0801.0300 . To appear in J. Diff. Geom (2010).
MD, Paul Tod (2009) arXiv:0901.2261.

A problem of R. Liouville (1889)

Cover a plane with curves, one curve through each point in each direction. How can you tell whether these curves are geodesics of some metric?

A problem of R. Liouville (1889)

Cover a plane with curves, one curve through each point in each direction. How can you tell whether these curves are geodesics of some metric?

- Path geometry: $y^{\prime \prime}=F\left(x, y, y^{\prime}\right)$. Douglas (1936).

A problem of R. Liouville (1889)

Cover a plane with curves, one curve through each point in each direction. How can you tell whether these curves are geodesics of some metric?

- Path geometry: $y^{\prime \prime}=F\left(x, y, y^{\prime}\right)$. Douglas (1936).
- When are the paths unparametrised geodesics of some connection Γ on $U \subset \mathbb{R}^{2}$? Elliminate the parameter in $\ddot{x}^{a}+\Gamma_{b c}^{a} \dot{x}^{b} \dot{x}^{c} \sim \dot{x}^{a}$.
$y^{\prime \prime}=A_{0}(x, y)+A_{1}(x, y) y^{\prime}+A_{2}(x, y)\left(y^{\prime}\right)^{2}+A_{3}(x, y)\left(y^{\prime}\right)^{3}, \quad x^{a}=(x, y)$.
Liouville (1889), Tresse (1896), Cartan (1922) -projective structures.

A problem of R. Liouville (1889)

Cover a plane with curves, one curve through each point in each direction. How can you tell whether these curves are geodesics of some metric?

- Path geometry: $y^{\prime \prime}=F\left(x, y, y^{\prime}\right)$. Douglas (1936).
- When are the paths unparametrised geodesics of some connection Γ on $U \subset \mathbb{R}^{2}$? Elliminate the parameter in $\ddot{x}^{a}+\Gamma_{b c}^{a} \dot{x}^{b} \dot{x}^{c} \sim \dot{x}^{a}$.
$y^{\prime \prime}=A_{0}(x, y)+A_{1}(x, y) y^{\prime}+A_{2}(x, y)\left(y^{\prime}\right)^{2}+A_{3}(x, y)\left(y^{\prime}\right)^{3}, \quad x^{a}=(x, y)$.
Liouville (1889), Tresse (1896), Cartan (1922) -projective structures.
- When are the paths geodesics of $g=E d x^{2}+2 F d x d y+G d y^{2}$?

Projective Structures

- A projective structure on an open set $U \subset \mathbb{R}^{n}$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.

Projective Structures

- A projective structure on an open set $U \subset \mathbb{R}^{n}$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.
- The geodesic flows project to the same foliation of $\mathbb{P}(T U)$. The analytic expression for this equivalence class is

$$
\hat{\Gamma}_{a b}^{c}=\Gamma_{a b}^{c}+\delta_{a}{ }^{c} \omega_{b}+\delta_{b}{ }^{c} \omega_{a}, \quad a, b, c=1,2, \ldots, n
$$

for some one-form $\omega=\omega_{a} d x^{a}$.

Projective Structures

- A projective structure on an open set $U \subset \mathbb{R}^{n}$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.
- The geodesic flows project to the same foliation of $\mathbb{P}(T U)$. The analytic expression for this equivalence class is

$$
\hat{\Gamma}_{a b}^{c}=\Gamma_{a b}^{c}+\delta_{a}{ }^{c} \omega_{b}+\delta_{b}{ }^{c} \omega_{a}, \quad a, b, c=1,2, \ldots, n
$$

for some one-form $\omega=\omega_{a} d x^{a}$.

- A 'forgotten' subject. Goes back to Tracy Thomas (1925), Elie Cartan (1922).

Projective Structures

- A projective structure on an open set $U \subset \mathbb{R}^{n}$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.
- The geodesic flows project to the same foliation of $\mathbb{P}(T U)$. The analytic expression for this equivalence class is

$$
\hat{\Gamma}_{a b}^{c}=\Gamma_{a b}^{c}+\delta_{a}^{c} \omega_{b}+\delta_{b}^{c} \omega_{a}, \quad a, b, c=1,2, \ldots, n
$$

for some one-form $\omega=\omega_{a} d x^{a}$.

- A 'forgotten' subject. Goes back to Tracy Thomas (1925), Elie Cartan (1922).
- In two dimensions there is a link with second order ODEs. Projective invariants of $[\Gamma]=$ point invariants of the ODE. Liouville (1889), Tresse (1896), Cartan, ..., Hitchin, Bryant, Tod, Nurowski, Godliński.

Metrisability Problem

A basic unsolved problem in projective differential geometry is to determine the explicit criterion for the metrisability of projective structure

- What are the necessary and sufficient local conditions on a connection $\Gamma_{a b}^{c}$ for the existence of a one form ω_{a} and a symmetric non-degenerate tensor $g_{a b}$ such that the projectively equivalent connection

$$
\Gamma_{a b}^{c}+\delta_{a}{ }^{c} \omega_{b}+\delta_{b}{ }^{c} \omega_{a}
$$

is the Levi-Civita connection for $g_{a b}$.

Metrisability Problem

A basic unsolved problem in projective differential geometry is to determine the explicit criterion for the metrisability of projective structure

- What are the necessary and sufficient local conditions on a connection $\Gamma_{a b}^{c}$ for the existence of a one form ω_{a} and a symmetric non-degenerate tensor $g_{a b}$ such that the projectively equivalent connection

$$
\Gamma_{a b}^{c}+\delta_{a}^{c} \omega_{b}+\delta_{b}{ }^{c} \omega_{a}
$$

is the Levi-Civita connection for $g_{a b}$.

- We mainly focus on local metricity: The pair (g, ω) with $\operatorname{det}(g) \neq 0$ is required to exist in a neighbourhood of a point $p \in U$.

Metrisability Problem

A basic unsolved problem in projective differential geometry is to determine the explicit criterion for the metrisability of projective structure

- What are the necessary and sufficient local conditions on a connection $\Gamma_{a b}^{c}$ for the existence of a one form ω_{a} and a symmetric non-degenerate tensor $g_{a b}$ such that the projectively equivalent connection

$$
\Gamma_{a b}^{c}+\delta_{a}{ }^{c} \omega_{b}+\delta_{b}{ }^{c} \omega_{a}
$$

is the Levi-Civita connection for $g_{a b}$.

- We mainly focus on local metricity: The pair (g, ω) with $\operatorname{det}(g) \neq 0$ is required to exist in a neighbourhood of a point $p \in U$.
- Vastly overdetermined system of PDEs for g and ω : There are $n^{2}(n+1) / 2$ components in a connection, and $(n+n(n+1) / 2)$ components in (ω, g). Naively expect $n\left(n^{2}-3\right) / 2$ conditions on Γ.

Summary of the Results in 2D

- Neccesary condition: obstruction of order 5 in the components of a connection in a projective class. Point invariant for a second order ODE whose integral curves are the geodesics of [Γ] or a weighted scalar projective invariant of the projective class.

Summary of the Results in 2D

- Neccesary condition: obstruction of order 5 in the components of a connection in a projective class. Point invariant for a second order ODE whose integral curves are the geodesics of $[\Gamma]$ or a weighted scalar projective invariant of the projective class.
- Sufficient conditions: In the generic case (what does it mean?) vanishing of two invariants of order 6. Non-generic cases: one obstruction of order at most 8 . Need real analyticity: No set of local obstruction can guarantee metrisability of the whole surface U in the smooth case even if U is simply connected.

Summary of the Results in 2D

- Neccesary condition: obstruction of order 5 in the components of a connection in a projective class. Point invariant for a second order ODE whose integral curves are the geodesics of [Γ] or a weighted scalar projective invariant of the projective class.
- Sufficient conditions: In the generic case (what does it mean?) vanishing of two invariants of order 6. Non-generic cases: one obstruction of order at most 8 . Need real analyticity: No set of local obstruction can guarantee metrisability of the whole surface U in the smooth case even if U is simply connected.
- Counter intuitive - naively expect only one condition (metric $=3$ functions of 2 variables, projective structure $=4$ functions of 2 variables).

SEcond order ODEs

- Geodesic equations for $x^{a}(t)=(x(t), y(t))$

$$
\ddot{x}^{c}+\Gamma_{a b}^{c} \dot{x}^{a} \dot{x}^{b}=v \dot{x}^{c} .
$$

Second order ODEs

- Geodesic equations for $x^{a}(t)=(x(t), y(t))$

$$
\ddot{x}^{c}+\Gamma_{a b}^{c} \dot{x}^{a} \dot{x}^{b}=v \dot{x}^{c} .
$$

- Eliminate the parameter t : second order ODE

$$
\frac{d^{2} y}{d x^{2}}=A_{3}(x, y)\left(\frac{d y}{d x}\right)^{3}+A_{2}(x, y)\left(\frac{d y}{d x}\right)^{2}+A_{1}(x, y)\left(\frac{d y}{d x}\right)+A_{0}(x, y)
$$

where

$$
A_{0}=-\Gamma_{11}^{2}, \quad A_{1}=\Gamma_{11}^{1}-2 \Gamma_{12}^{2}, \quad A_{2}=2 \Gamma_{12}^{1}-\Gamma_{22}^{2}, \quad A_{3}=\Gamma_{22}^{1} .
$$

Second order ODEs

- Geodesic equations for $x^{a}(t)=(x(t), y(t))$

$$
\ddot{x}^{c}+\Gamma_{a b}^{c} \dot{x}^{a} \dot{x}^{b}=v \dot{x}^{c} .
$$

- Eliminate the parameter t : second order ODE

$$
\frac{d^{2} y}{d x^{2}}=A_{3}(x, y)\left(\frac{d y}{d x}\right)^{3}+A_{2}(x, y)\left(\frac{d y}{d x}\right)^{2}+A_{1}(x, y)\left(\frac{d y}{d x}\right)+A_{0}(x, y)
$$

where

$$
A_{0}=-\Gamma_{11}^{2}, \quad A_{1}=\Gamma_{11}^{1}-2 \Gamma_{12}^{2}, \quad A_{2}=2 \Gamma_{12}^{1}-\Gamma_{22}^{2}, \quad A_{3}=\Gamma_{22}^{1} .
$$

- This formulation removes the projective ambiguity.

Prolongation

- Metric $g=E(x, y) d x^{2}+2 F(x, y) d x d y+G(x, y) d y^{2}$ gives

$$
\begin{align*}
& A_{0}=\left(E \partial_{y} E-2 E \partial_{x} F+F \partial_{x} E\right)\left(E G-F^{2}\right)^{-1} / 2 \\
& A_{1}=\left(3 F \partial_{y} E+G \partial_{x} E-2 F \partial_{x} F-2 E \partial_{x} G\right)\left(E G-F^{2}\right)^{-1} / 2 \\
& A_{2}=\left(2 F \partial_{y} F+2 G \partial_{y} E-3 F \partial_{x} G-E \partial_{y} G\right)\left(E G-F^{2}\right)^{-1} / 2 \\
& A_{3}=\left(2 G \partial_{y} F-G \partial_{x} G-F \partial_{y} G\right)\left(E G-F^{2}\right)^{-1} / 2, \tag{*}
\end{align*}
$$

Prolongation

- Metric $g=E(x, y) d x^{2}+2 F(x, y) d x d y+G(x, y) d y^{2}$ gives

$$
\begin{align*}
& A_{0}=\left(E \partial_{y} E-2 E \partial_{x} F+F \partial_{x} E\right)\left(E G-F^{2}\right)^{-1} / 2, \\
& A_{1}=\left(3 F \partial_{y} E+G \partial_{x} E-2 F \partial_{x} F-2 E \partial_{x} G\right)\left(E G-F^{2}\right)^{-1} / 2 \\
& A_{2}=\left(2 F \partial_{y} F+2 G \partial_{y} E-3 F \partial_{x} G-E \partial_{y} G\right)\left(E G-F^{2}\right)^{-1} / 2, \\
& A_{3}=\left(2 G \partial_{y} F-G \partial_{x} G-F \partial_{y} G\right)\left(E G-F^{2}\right)^{-1} / 2, \tag{*}
\end{align*}
$$

- First order homogeneous differential operator with one-dimensional fibres

$$
\sigma^{0}: J^{1}\left(S^{2}\left(T^{*} U\right)\right) \longrightarrow J^{0}(\operatorname{Pr}(U))
$$

Prolongation

- Metric $g=E(x, y) d x^{2}+2 F(x, y) d x d y+G(x, y) d y^{2}$ gives

$$
\begin{align*}
& A_{0}=\left(E \partial_{y} E-2 E \partial_{x} F+F \partial_{x} E\right)\left(E G-F^{2}\right)^{-1} / 2 \\
& A_{1}=\left(3 F \partial_{y} E+G \partial_{x} E-2 F \partial_{x} F-2 E \partial_{x} G\right)\left(E G-F^{2}\right)^{-1} / 2 \\
& A_{2}=\left(2 F \partial_{y} F+2 G \partial_{y} E-3 F \partial_{x} G-E \partial_{y} G\right)\left(E G-F^{2}\right)^{-1} / 2, \\
& A_{3}=\left(2 G \partial_{y} F-G \partial_{x} G-F \partial_{y} G\right)\left(E G-F^{2}\right)^{-1} / 2, \tag{*}
\end{align*}
$$

- First order homogeneous differential operator with one-dimensional fibres

$$
\sigma^{0}: J^{1}\left(S^{2}\left(T^{*} U\right)\right) \longrightarrow J^{0}(\operatorname{Pr}(U))
$$

- Differentiating $(*)$ prolongs this operator to bundle maps

$$
\sigma^{k}: J^{k+1}\left(S^{2}\left(T^{*} U\right)\right) \longrightarrow J^{k}(\operatorname{Pr}(U))
$$

Prolongation

- Metric $g=E(x, y) d x^{2}+2 F(x, y) d x d y+G(x, y) d y^{2}$ gives

$$
\begin{align*}
& A_{0}=\left(E \partial_{y} E-2 E \partial_{x} F+F \partial_{x} E\right)\left(E G-F^{2}\right)^{-1} / 2 \\
& A_{1}=\left(3 F \partial_{y} E+G \partial_{x} E-2 F \partial_{x} F-2 E \partial_{x} G\right)\left(E G-F^{2}\right)^{-1} / 2 \\
& A_{2}=\left(2 F \partial_{y} F+2 G \partial_{y} E-3 F \partial_{x} G-E \partial_{y} G\right)\left(E G-F^{2}\right)^{-1} / 2, \\
& A_{3}=\left(2 G \partial_{y} F-G \partial_{x} G-F \partial_{y} G\right)\left(E G-F^{2}\right)^{-1} / 2, \tag{*}
\end{align*}
$$

- First order homogeneous differential operator with one-dimensional fibres

$$
\sigma^{0}: J^{1}\left(S^{2}\left(T^{*} U\right)\right) \longrightarrow J^{0}(\operatorname{Pr}(U))
$$

- Differentiating $(*)$ prolongs this operator to bundle maps

$$
\sigma^{k}: J^{k+1}\left(S^{2}\left(T^{*} U\right)\right) \longrightarrow J^{k}(\operatorname{Pr}(U))
$$

- Liouville (1889). Relations (*) linearise:

$$
E=\psi_{1} / \Delta, \quad F=\psi_{2} / \Delta, \quad G=\psi_{3} / \Delta, \quad \Delta=\left(\psi_{1} \psi_{3}-\psi_{2}^{2}\right)^{2}
$$

Liouville System (1889)

A projective structure $[\Gamma]$ is metrisable on a neighbourhood of a point $p \in U$ iff there exists functions $\psi_{i}(x, y), i=1,2,3$ defined on a neighbourhood of p such that $\psi_{1} \psi_{3}-\psi_{2}{ }^{2}$ does not vanish at p and such that the equations

$$
\begin{aligned}
\frac{\partial \psi_{1}}{\partial x} & =\frac{2}{3} A_{1} \psi_{1}-2 A_{0} \psi_{2} \\
\frac{\partial \psi_{3}}{\partial y} & =2 A_{3} \psi_{2}-\frac{2}{3} A_{2} \psi_{3} \\
\frac{\partial \psi_{1}}{\partial y}+2 \frac{\partial \psi_{2}}{\partial x} & =\frac{4}{3} A_{2} \psi_{1}-\frac{2}{3} A_{1} \psi_{2}-2 A_{0} \psi_{3} \\
\frac{\partial \psi_{3}}{\partial x}+2 \frac{\partial \psi_{2}}{\partial y} & =2 A_{3} \psi_{1}-\frac{4}{3} A_{1} \psi_{3}+\frac{2}{3} A_{2} \psi_{2}
\end{aligned}
$$

hold on the domain of definition.

Prolongation $\sigma^{k}: J^{k+1}\left(S^{2}\left(T^{*} U\right)\right) \longrightarrow J^{k}(\operatorname{Pr}(U))$

k	$\operatorname{rank}\left(J^{k+1}\left(S^{2}\left(T^{*} U\right)\right)\right)$	$\operatorname{rank}\left(J^{k}(\operatorname{Pr}(U))\right)$	$\operatorname{rank}\left(\operatorname{ker} \sigma^{k}\right)$	co-rank $\left(\operatorname{ker} \sigma^{k}\right)$
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	$1=\mathbf{1}$
6	108	112	1	$5=3+\mathbf{2}$
7	135	144	1	$10=6+6-2$

- No obstruction on a projective structure before the order 5 .

Prolongation $\sigma^{k}: J^{k+1}\left(S^{2}\left(T^{*} U\right)\right) \longrightarrow J^{k}(\operatorname{Pr}(U))$

k	$\operatorname{rank}\left(J^{k+1}\left(S^{2}\left(T^{*} U\right)\right)\right)$	$\operatorname{rank}\left(J^{k}(\operatorname{Pr}(U))\right)$	$\operatorname{rank}\left(\operatorname{ker} \sigma^{k}\right)$	$\operatorname{co-rank}\left(\operatorname{ker} \sigma^{k}\right)$
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	$1=\mathbf{1}$
6	108	112	1	$5=3+\mathbf{2}$
7	135	144	1	$10=6+6-2$

- No obstruction on a projective structure before the order 5 .
- 5-jets. At least a 1D fiber, at most 83D image. First obstruction M.

Prolongation $\sigma^{k}: J^{k+1}\left(S^{2}\left(T^{*} U\right)\right) \longrightarrow J^{k}(\operatorname{Pr}(U))$

k	$\operatorname{rank}\left(J^{k+1}\left(S^{2}\left(T^{*} U\right)\right)\right)$	$\operatorname{rank}\left(J^{k}(\operatorname{Pr}(U))\right)$	$\operatorname{rank}\left(\operatorname{ker} \sigma^{k}\right)$	$\operatorname{co}-\operatorname{rank}\left(\operatorname{ker} \sigma^{k}\right)$
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	$1=\mathbf{1}$
6	108	112	1	$5=3+\mathbf{2}$
7	135	144	1	$10=6+6-2$

- No obstruction on a projective structure before the order 5 .
- 5-jets. At least a 1D fiber, at most 83D image. First obstruction M.
- 6-jets. Dimension $112-3=109$. The image of the 7 -jets of metric structures can have dimension $108-1=107$. Two more 6 th order obstructions E_{1}, E_{2}.

Prolongation $\sigma^{k}: J^{k+1}\left(S^{2}\left(T^{*} U\right)\right) \longrightarrow J^{k}(\operatorname{PR}(U))$

k	$\operatorname{rank}\left(J^{k+1}\left(S^{2}\left(T^{*} U\right)\right)\right)$	$\operatorname{rank}\left(J^{k}(\operatorname{Pr}(U))\right)$	$\operatorname{rank}\left(\operatorname{ker} \sigma^{k}\right)$	$\operatorname{co-rank}\left(\operatorname{ker} \sigma^{k}\right)$
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	$1=\mathbf{1}$
6	108	112	1	$5=3+\mathbf{2}$
7	135	144	1	$10=6+6-2$

- No obstruction on a projective structure before the order 5 .
- 5-jets. At least a 1D fiber, at most 83D image. First obstruction M.
- 6-jets. Dimension $112-3=109$. The image of the 7 -jets of metric structures can have dimension $108-1=107$. Two more 6 th order obstructions E_{1}, E_{2}.
- 7-jets. The image has codimension 10. 2 relations between the first derivatives of $E_{1}=E_{2}=0$ and the second derivatives of the 5th order equation $M=0$. The system is involutive.

Invariant approach

- Let $\Gamma \in[\Gamma]$. The curvature decomposition

$$
\left[\nabla_{a}, \nabla_{b}\right] X^{c}=R_{a b}{ }^{c}{ }_{d} X^{d}, \quad R_{a b}^{c}{ }_{d}=\delta_{a}^{c} \mathrm{P}_{b d} X^{d}-\delta_{b}^{c} \mathrm{P}_{a d} X^{d}+\beta_{a b} \delta_{d}^{c}
$$

where $\beta_{a b}$ is skew.

Invariant approach

- Let $\Gamma \in[\Gamma]$. The curvature decomposition

$$
\left[\nabla_{a}, \nabla_{b}\right] X^{c}=R_{a b}{ }^{c}{ }_{d} X^{d}, \quad R_{a b}{ }^{c}{ }_{d}=\delta_{a}^{c} \mathrm{P}_{b d} X^{d}-\delta_{b}^{c} \mathrm{P}_{a d} X^{d}+\beta_{a b} \delta_{d}^{c}
$$

where $\beta_{a b}$ is skew.

- If we change the connection in the projective class then

$$
\hat{\mathrm{P}}_{a b}=\mathrm{P}_{a b}-\nabla_{a} \omega_{b}+\omega_{a} \omega_{b}, \quad \hat{\beta}_{a b}=\beta_{a b}+2 \nabla_{[a} \omega_{b]} .
$$

Assume the cohomology class $[\beta] \in H^{2}(U, \mathbb{R})$ vanishes. Set $\beta_{a b}=0$.

Invariant approach

- Let $\Gamma \in[\Gamma]$. The curvature decomposition

$$
\left[\nabla_{a}, \nabla_{b}\right] X^{c}=R_{a b}{ }^{c}{ }_{d} X^{d}, \quad R_{a b}{ }^{c}{ }_{d}=\delta_{a}^{c} \mathrm{P}_{b d} X^{d}-\delta_{b}^{c} \mathrm{P}_{a d} X^{d}+\beta_{a b} \delta_{d}^{c}
$$

where $\beta_{a b}$ is skew.

- If we change the connection in the projective class then

$$
\hat{\mathrm{P}}_{a b}=\mathrm{P}_{a b}-\nabla_{a} \omega_{b}+\omega_{a} \omega_{b}, \quad \hat{\beta}_{a b}=\beta_{a b}+2 \nabla_{[a} \omega_{b]} .
$$

Assume the cohomology class $[\beta] \in H^{2}(U, \mathbb{R})$ vanishes. Set $\beta_{a b}=0$.

- Now $\mathrm{P}_{a b}=\mathrm{P}_{b a}$. Bianchi identity: Γ is flat on canonical bundle. There exists a volume form $\epsilon^{a b}$ such that

$$
\nabla_{a} \epsilon^{b c}=0
$$

Invariant approach

- Let $\Gamma \in[\Gamma]$. The curvature decomposition

$$
\left[\nabla_{a}, \nabla_{b}\right] X^{c}=R_{a b}{ }^{c}{ }_{d} X^{d}, \quad R_{a b}{ }^{c}{ }_{d}=\delta_{a}^{c} \mathrm{P}_{b d} X^{d}-\delta_{b}^{c} \mathrm{P}_{a d} X^{d}+\beta_{a b} \delta_{d}^{c}
$$

where $\beta_{a b}$ is skew.

- If we change the connection in the projective class then

$$
\hat{\mathrm{P}}_{a b}=\mathrm{P}_{a b}-\nabla_{a} \omega_{b}+\omega_{a} \omega_{b}, \quad \hat{\beta}_{a b}=\beta_{a b}+2 \nabla_{[a} \omega_{b]} .
$$

Assume the cohomology class $[\beta] \in H^{2}(U, \mathbb{R})$ vanishes. Set $\beta_{a b}=0$.

- Now $\mathrm{P}_{a b}=\mathrm{P}_{b a}$. Bianchi identity: Γ is flat on canonical bundle. There exists a volume form $\epsilon^{a b}$ such that

$$
\nabla_{a} \epsilon^{b c}=0
$$

- Use $\epsilon^{a b}$ to rise indices. Residual freedom $\omega_{a}=\nabla_{a} f$

$$
\epsilon_{a b} \longrightarrow e^{3 f} \epsilon_{a b}, \quad h \longrightarrow e^{w f} h, \quad \text { projective weight } w .
$$

Invariant approach

- Prolongation of the Liouville condition $\nabla_{(a} \sigma_{b c)}=0$:

Invariant approach

- Prolongation of the Liouville condition $\nabla_{(a} \sigma_{b c}=0$:
(1) $\nabla_{a} \sigma^{b c}=\delta_{a}^{b} \mu^{c}+\delta_{a}^{c} \mu^{b}$,

Invariant approach

- Prolongation of the Liouville condition $\nabla_{(a} \sigma_{b c}=0$:
(1) $\nabla_{a} \sigma^{b c}=\delta_{a}^{b} \mu^{c}+\delta_{a}^{c} \mu^{b}$,
(2) $\nabla_{a} \mu^{b}=\delta_{a}^{b} \rho-\mathrm{P}_{a c} \sigma^{b c}$,

Invariant approach

- Prolongation of the Liouville condition $\nabla_{(a} \sigma_{b c}=0$:
(1) $\nabla_{a} \sigma^{b c}=\delta_{a}^{b} \mu^{c}+\delta_{a}^{c} \mu^{b}$,
(2) $\nabla_{a} \mu^{b}=\delta_{a}^{b} \rho-\mathrm{P}_{a c} \sigma^{b c}$,
(8) $\nabla_{a} \rho=-2 \mathrm{P}_{a b} \mu^{b}+2 Y_{a b c} \sigma^{b c}$
for some tensors $\Psi^{\alpha}=\left(\sigma^{a b}, \mu^{a}, \rho\right)$, where $Y_{a b c}=\frac{1}{2}\left(\nabla_{a} \mathrm{P}_{b c}-\nabla_{b} \mathrm{P}_{a c}\right)$.

Invariant approach

- Prolongation of the Liouville condition $\nabla_{(a} \sigma_{b c)}=0$:
(1) $\nabla_{a} \sigma^{b c}=\delta_{a}^{b} \mu^{c}+\delta_{a}^{c} \mu^{b}$,
(2) $\nabla_{a} \mu^{b}=\delta_{a}^{b} \rho-\mathrm{P}_{a c} \sigma^{b c}$,
(3) $\nabla_{a} \rho=-2 \mathrm{P}_{a b} \mu^{b}+2 Y_{a b c} \sigma^{b c}$
for some tensors $\Psi^{\alpha}=\left(\sigma^{a b}, \mu^{a}, \rho\right)$, where $Y_{a b c}=\frac{1}{2}\left(\nabla_{a} \mathrm{P}_{b c}-\nabla_{b} \mathrm{P}_{a c}\right)$.
- Commute covatiant derivatives (curvature), set $Y_{c}:=\epsilon^{a b} Y_{a b c}$.

$$
\Psi^{\alpha} \Sigma_{\alpha}:=5 Y_{a} \mu^{a}+\left(\nabla_{a} Y_{b}\right) \sigma^{a b}=0
$$

Invariant approach

- Prolongation of the Liouville condition $\nabla_{(a} \sigma_{b c)}=0$:
(1) $\nabla_{a} \sigma^{b c}=\delta_{a}^{b} \mu^{c}+\delta_{a}^{c} \mu^{b}$,
(2) $\nabla_{a} \mu^{b}=\delta_{a}^{b} \rho-\mathrm{P}_{a c} \sigma^{b c}$,
(3) $\nabla_{a} \rho=-2 \mathrm{P}_{a b} \mu^{b}+2 Y_{a b c} \sigma^{b c}$
for some tensors $\Psi^{\alpha}=\left(\sigma^{a b}, \mu^{a}, \rho\right)$, where $Y_{a b c}=\frac{1}{2}\left(\nabla_{a} \mathrm{P}_{b c}-\nabla_{b} \mathrm{P}_{a c}\right)$.
- Commute covatiant derivatives (curvature), set $Y_{c}:=\epsilon^{a b} Y_{a b c}$.

$$
\Psi^{\alpha} \Sigma_{\alpha}:=5 Y_{a} \mu^{a}+\left(\nabla_{a} Y_{b}\right) \sigma^{a b}=0
$$

- Differetiate $(* *)$ twice. Use $(*)$ to eliminate derivatives of Σ^{α}. Get six homogeneous linear equations on six unknowns ($\left.\sigma^{a b}, \mu^{a}, \rho\right)$

$$
\mathcal{F}_{2} \Psi=0
$$

Invariant approach

- Prolongation of the Liouville condition $\nabla_{(a} \sigma_{b c)}=0$:
(1) $\nabla_{a} \sigma^{b c}=\delta_{a}^{b} \mu^{c}+\delta_{a}^{c} \mu^{b}$,
(2) $\nabla_{a} \mu^{b}=\delta_{a}^{b} \rho-\mathrm{P}_{a c} \sigma^{b c}$,
(3) $\nabla_{a} \rho=-2 \mathrm{P}_{a b} \mu^{b}+2 Y_{a b c} \sigma^{b c}$
for some tensors $\Psi^{\alpha}=\left(\sigma^{a b}, \mu^{a}, \rho\right)$, where $Y_{a b c}=\frac{1}{2}\left(\nabla_{a} \mathrm{P}_{b c}-\nabla_{b} \mathrm{P}_{a c}\right)$.
- Commute covatiant derivatives (curvature), set $Y_{c}:=\epsilon^{a b} Y_{a b c}$.

$$
\Psi^{\alpha} \Sigma_{\alpha}:=5 Y_{a} \mu^{a}+\left(\nabla_{a} Y_{b}\right) \sigma^{a b}=0
$$

- Differetiate $(* *)$ twice. Use $(*)$ to eliminate derivatives of Σ^{α}. Get six homogeneous linear equations on six unknowns $\left(\sigma^{a b}, \mu^{a}, \rho\right)$

$$
\mathcal{F}_{2} \Psi=0
$$

- The determinat of the 6 by 6 matrix \mathcal{F}_{2} gives the 5 th order obstruction M - a section of $\Lambda^{2}\left(T^{*} U\right)^{\otimes 14}$

$$
\operatorname{det}\left(\mathcal{F}_{2}\right)([\Gamma])(d x \wedge d y)^{\otimes 14}
$$

is a projective invariant.

Explicit Invariant: 1746 TERMS!

$$
\begin{aligned}
& \operatorname{det}\left(\mathcal{F}_{2}\right)=\left(Q_{g i} S_{m p} T_{n j k} U_{a c} V_{d e q} X_{b f h l}-\frac{1}{6} P_{p} R_{m} S_{n q} X_{a c g i} X_{b e h k} X_{d f j l}\right. \\
&- \frac{1}{2} P_{p} S_{m q} T_{n j l} U_{c e} X_{a d g k} X_{b f h i}-\frac{1}{2} P_{p} T_{m g i} T_{n j k} U_{a c} V_{d e q} X_{b f h l} \\
&+ \frac{1}{2} P_{p} R_{m} T_{n g i} V_{a c q} X_{d e j k} X_{b f h l}-\frac{1}{2} Q_{g i} R_{m} S_{n p} V_{a c q} X_{d e j k} X_{b f h l} \\
&- \frac{1}{2} Q_{g i} R_{m} T_{n j k} V_{a c p} V_{d e q} X_{b f h l}-\frac{1}{4} Q_{g i} S_{m p} S_{n q} U_{a c} X_{d e j k} X_{b f h l} \\
&\left.\frac{1}{4} Q_{g i} T_{m j k} T_{n h l} U_{a c} V_{d e p} V_{b f q}\right) \epsilon^{a b} \epsilon^{c d} \epsilon^{e f} \epsilon^{g h} \epsilon^{i j} \epsilon^{k l} \epsilon^{m n} \epsilon^{p q}
\end{aligned}
$$

where

$$
\begin{aligned}
& P_{a} \equiv 5 Y_{a}, \quad Q_{a b} \equiv 12 Z_{a b}, \quad R_{c} \equiv 5 Y_{c}, \quad S_{c a} \equiv 5 \nabla_{a} Y_{c}+2 Z_{a c}, \\
& T_{c a b} \equiv 5 \nabla_{(a} \nabla_{b)} Y_{c}+4 \nabla_{(a} Z_{b) c}-5 \mathrm{P}_{a b} Y_{c}-15 \mathrm{P}_{c(a} Y_{b)}, \quad U_{c d} \equiv Z_{c d}, \\
& X_{c d a b} \equiv \nabla_{(a} \nabla_{b)} Z_{c d}-5\left(\nabla_{(a} \mathrm{P}_{b)(c)}\right) Y_{d)}-5 \mathrm{P}_{c(a} \nabla_{b)} Y_{d}-5 \mathrm{P}_{d(a} \nabla_{b)} Y_{c} \\
& -\mathrm{P}_{c(a} Z_{b) d}-\mathrm{P}_{d(a} Z_{b) c}+10 Y_{(a} Y_{b)(c d)}, \quad V_{c d a} \equiv \nabla_{a} Z_{c d}-5 \mathrm{P}_{a \neq c} Y_{d) \text { 亥 }}
\end{aligned}
$$

Tractor Bundle

- Solution to the prolonged Liouville system $=$ paralel section

$$
d \Psi+\Omega \Psi=0
$$

of a rank six vector bundle $\mathbb{E} \rightarrow U$ with connection.

Tractor Bundle

- Solution to the prolonged Liouville system $=$ paralel section

$$
d \Psi+\Omega \Psi=0
$$

of a rank six vector bundle $\mathbb{E} \rightarrow U$ with connection.

- First integrability condition $F \Psi=0$, where

$$
\begin{aligned}
\mathbf{F} & =d \Omega+\Omega \wedge \Omega=\left(\partial_{x} \Omega_{2}-\partial_{y} \Omega_{1}+\left[\Omega_{1}, \Omega_{2}\right]\right) d x \wedge d y \\
& =F d x \wedge d y
\end{aligned}
$$

Tractor Bundle

- Solution to the prolonged Liouville system $=$ paralel section

$$
d \Psi+\Omega \Psi=0
$$

of a rank six vector bundle $\mathbb{E} \rightarrow U$ with connection.

- First integrability condition $F \Psi=0$, where

$$
\begin{aligned}
\mathbf{F} & =d \Omega+\Omega \wedge \Omega=\left(\partial_{x} \Omega_{2}-\partial_{y} \Omega_{1}+\left[\Omega_{1}, \Omega_{2}\right]\right) d x \wedge d y \\
& =F d x \wedge d y
\end{aligned}
$$

- Differentiate $\left(D_{a} F\right) \Psi=0,\left(D_{a} D_{b} F\right) \Psi=0, \ldots$, where $D_{a} F=\partial_{a} F+\left[\Omega_{a}, F\right]$.

Tractor Bundle

- Solution to the prolonged Liouville system $=$ paralel section

$$
d \Psi+\Omega \Psi=0
$$

of a rank six vector bundle $\mathbb{E} \rightarrow U$ with connection.

- First integrability condition $F \Psi=0$, where

$$
\begin{aligned}
\mathbf{F} & =d \Omega+\Omega \wedge \Omega=\left(\partial_{x} \Omega_{2}-\partial_{y} \Omega_{1}+\left[\Omega_{1}, \Omega_{2}\right]\right) d x \wedge d y \\
& =F d x \wedge d y
\end{aligned}
$$

- Differentiate $\left(D_{a} F\right) \Psi=0,\left(D_{a} D_{b} F\right) \Psi=0, \ldots$, where $D_{a} F=\partial_{a} F+\left[\Omega_{a}, F\right]$.
- After K steps $\mathcal{F}_{K} \Psi=0$, where \mathcal{F}_{K} is a $K(K+1) / 2$ by 6 matrix.

Tractor Bundle

- Solution to the prolonged Liouville system $=$ paralel section

$$
d \Psi+\Omega \Psi=0
$$

of a rank six vector bundle $\mathbb{E} \rightarrow U$ with connection.

- First integrability condition $F \Psi=0$, where

$$
\begin{aligned}
\mathbf{F} & =d \Omega+\Omega \wedge \Omega=\left(\partial_{x} \Omega_{2}-\partial_{y} \Omega_{1}+\left[\Omega_{1}, \Omega_{2}\right]\right) d x \wedge d y \\
& =F d x \wedge d y
\end{aligned}
$$

- Differentiate $\left(D_{a} F\right) \Psi=0,\left(D_{a} D_{b} F\right) \Psi=0, \ldots$, where $D_{a} F=\partial_{a} F+\left[\Omega_{a}, F\right]$.
- After K steps $\mathcal{F}_{K} \Psi=0$, where \mathcal{F}_{K} is a $K(K+1) / 2$ by 6 matrix.
- Stop when $\operatorname{rank}\left(\mathcal{F}_{K}\right)=\operatorname{rank}\left(\mathcal{F}_{K+1}\right)$. The space of parallel sections has dimension $\left(6-\operatorname{rank}\left(\mathcal{F}_{K}\right)\right)$.

Sufficient Conditions

- A projective structure is generic in a neighbourhood of $p \in U$ if rank \mathcal{F}_{2} is maximal and equal to 5 and

$$
P([\Gamma]):=W_{1} W_{3}-\left(W_{2}\right)^{2} \neq 0
$$

in this neighbourhood, where $\left(W_{1}, \ldots, W_{6}\right)^{T}$ spans $\operatorname{Ker} \mathcal{F}_{2}([\Gamma])$.

Sufficient Conditions

- A projective structure is generic in a neighbourhood of $p \in U$ if rank \mathcal{F}_{2} is maximal and equal to 5 and

$$
P([\Gamma]):=W_{1} W_{3}-\left(W_{2}\right)^{2} \neq 0
$$

in this neighbourhood, where $\left(W_{1}, \ldots, W_{6}\right)^{T}$ spans $\operatorname{Ker} \mathcal{F}_{2}([\Gamma])$.

- In the generic case there will exist a metric in the (real analytic) projective class if the rank of the next derived matrix \mathcal{F}_{3} does not go up and is equal to five. Two invariants of order 6.

Sufficient Conditions

- A projective structure is generic in a neighbourhood of $p \in U$ if rank \mathcal{F}_{2} is maximal and equal to 5 and

$$
P([\Gamma]):=W_{1} W_{3}-\left(W_{2}\right)^{2} \neq 0
$$

in this neighbourhood, where $\left(W_{1}, \ldots, W_{6}\right)^{T}$ spans $\operatorname{Ker} \mathcal{F}_{2}([\Gamma])$.

- In the generic case there will exist a metric in the (real analytic) projective class if the rank of the next derived matrix \mathcal{F}_{3} does not go up and is equal to five. Two invariants of order 6.
- If rank $\mathcal{F}_{2}([\Gamma])<5$ (non-generic case) non-degenerate kernel always exists, and

$$
\operatorname{rank}\left(\mathcal{F}_{5}\right) \leq 5
$$

is sufficient for the existence of the metric. One invariant of order 8 .

Sufficient Conditions

- A projective structure is generic in a neighbourhood of $p \in U$ if rank \mathcal{F}_{2} is maximal and equal to 5 and

$$
P([\Gamma]):=W_{1} W_{3}-\left(W_{2}\right)^{2} \neq 0
$$

in this neighbourhood, where $\left(W_{1}, \ldots, W_{6}\right)^{T}$ spans $\operatorname{Ker} \mathcal{F}_{2}([\Gamma])$.

- In the generic case there will exist a metric in the (real analytic) projective class if the rank of the next derived matrix \mathcal{F}_{3} does not go up and is equal to five. Two invariants of order 6.
- If rank $\mathcal{F}_{2}([\Gamma])<5$ (non-generic case) non-degenerate kernel always exists, and

$$
\operatorname{rank}\left(\mathcal{F}_{5}\right) \leq 5
$$

is sufficient for the existence of the metric. One invariant of order 8 .

- Spinoff: Koenigs Theorem: The space of metrics compatible with a given projective structures can have dimensions $0,1,2,3,4$ or 6 .

The importance of 6TH ORDER CONDITIONS

- One parameter family of projective structures

$$
\frac{d^{2} y}{d x^{2}}=c e^{x}+e^{-x}\left(\frac{d y}{d x}\right)^{2}
$$

The importance of 6TH ORDER CONDITIONS

- One parameter family of projective structures

$$
\frac{d^{2} y}{d x^{2}}=c e^{x}+e^{-x}\left(\frac{d y}{d x}\right)^{2}
$$

- 5th order condition holds if $\hat{c}=48 c-11$ is a root of a quartic

$$
\hat{c}^{4}-11286 \hat{c}^{2}-850968 \hat{c}-19529683=0
$$

The importance of 6TH ORDER CONDITIONS

- One parameter family of projective structures

$$
\frac{d^{2} y}{d x^{2}}=c e^{x}+e^{-x}\left(\frac{d y}{d x}\right)^{2}
$$

- 5th order condition holds if $\hat{c}=48 c-11$ is a root of a quartic

$$
\hat{c}^{4}-11286 \hat{c}^{2}-850968 \hat{c}-19529683=0
$$

- The 6th order conditions are satisfied iff

$$
3 \hat{c}^{5}+529 \hat{c}^{4}+222 \hat{c}^{3}-2131102 \hat{c}^{2}-103196849 \hat{c}-1977900451=0
$$

$$
\hat{c}^{3}-213 \hat{c}^{2}-7849 \hat{c}-19235=0
$$

The importance of 6 TH ORDER CONDITIONS

- One parameter family of projective structures

$$
\frac{d^{2} y}{d x^{2}}=c e^{x}+e^{-x}\left(\frac{d y}{d x}\right)^{2}
$$

- 5th order condition holds if $\hat{c}=48 c-11$ is a root of a quartic

$$
\hat{c}^{4}-11286 \hat{c}^{2}-850968 \hat{c}-19529683=0
$$

- The 6th order conditions are satisfied iff

$$
\begin{gathered}
3 \hat{c}^{5}+529 \hat{c}^{4}+222 \hat{c}^{3}-2131102 \hat{c}^{2}-103196849 \hat{c}-1977900451=0 \\
\hat{c}^{3}-213 \hat{c}^{2}-7849 \hat{c}-19235=0
\end{gathered}
$$

- These three polynomials do not have a common root. We can make the 5th order obstruction vanish, but the two 6th order obstructions E_{1}, E_{2} do not vanish.

Related problem: conformal to Kähler in $4 D$

Given a Riemannian manifold (M, g) is there a non-zero function Ω such that $\Omega^{2} g$ is Kähler with respect to some complex structure?

- Leads to overdetermined PDEs. Proceed as before: prolong, construct a curvature, restrict its holonomy, find conformal invariants.

Related problem: conformal to KÄHler in $4 D$

Given a Riemannian manifold (M, g) is there a non-zero function Ω such that $\Omega^{2} g$ is Kähler with respect to some complex structure?

- Leads to overdetermined PDEs. Proceed as before: prolong, construct a curvature, restrict its holonomy, find conformal invariants.
- Solved recently in dimension four: MD, Paul Tod, arXiv:0901.2261.

Related problem: conformal to KÄHler in $4 D$

Given a Riemannian manifold (M, g) is there a non-zero function Ω such that $\Omega^{2} g$ is Kähler with respect to some complex structure?

- Leads to overdetermined PDEs. Proceed as before: prolong, construct a curvature, restrict its holonomy, find conformal invariants.
- Solved recently in dimension four: MD, Paul Tod, arXiv:0901.2261.
- Also read Semmelmann, arXiv:math/0206117.

Related problem: conformal to KÄHler in $4 D$

Given a Riemannian manifold (M, g) is there a non-zero function Ω such that $\Omega^{2} g$ is Kähler with respect to some complex structure?

- Leads to overdetermined PDEs. Proceed as before: prolong, construct a curvature, restrict its holonomy, find conformal invariants.
- Solved recently in dimension four: MD, Paul Tod, arXiv:0901.2261.
- Also read Semmelmann, arXiv:math/0206117.
- Link with the Liouville problem: Given a 2D projective structure $(U,[\Gamma])$ construct a signature $(2,2)$ metric on $T U$

$$
g=d z_{a} \otimes d x^{a}-\Pi_{a b}^{c}(x) z_{c} d x^{a} \otimes d x^{b}, \quad a, b, c=1,2 .
$$

where $\Pi_{a b}^{c}=\Gamma_{a b}^{c}-\frac{1}{3} \Gamma_{d a}^{d} \delta_{b}^{c}-\frac{1}{3} \Gamma_{d b}^{d} \delta_{a}^{c}$. Walker (1953), Yano-Ishihara, ..., Nurowski-Sparling, MD-West.

Related problem: conformal to Kähler in $4 D$

Given a Riemannian manifold (M, g) is there a non-zero function Ω such that $\Omega^{2} g$ is Kähler with respect to some complex structure?

- Leads to overdetermined PDEs. Proceed as before: prolong, construct a curvature, restrict its holonomy, find conformal invariants.
- Solved recently in dimension four: MD, Paul Tod, arXiv:0901.2261.
- Also read Semmelmann, arXiv:math/0206117.
- Link with the Liouville problem: Given a 2D projective structure $(U,[\Gamma])$ construct a signature $(2,2)$ metric on $T U$

$$
g=d z_{a} \otimes d x^{a}-\Pi_{a b}^{c}(x) z_{c} d x^{a} \otimes d x^{b}, \quad a, b, c=1,2 .
$$

where $\Pi_{a b}^{c}=\Gamma_{a b}^{c}-\frac{1}{3} \Gamma_{d a}^{d} \delta_{b}^{c}-\frac{1}{3} \Gamma_{d b}^{d} \delta_{a}^{c}$. Walker (1953), Yano-Ishihara, ..., Nurowski-Sparling, MD-West.

- Theorem (MD, Tod): The metric g is conformal to (para) Kähler iff the projective structure is metrisable.

Twistor Theory

- One-to-one correspondence between holomorphic projective structures $(U,[\Gamma])$ and complex surfaces \mathbb{T} with a family of rational curves.

geodesics \longleftrightarrow points points \longleftrightarrow rational curves with normal bundle $\mathcal{O}(1)$.

Twistor Theory

- One-to-one correspondence between holomorphic projective structures $(U,[\Gamma])$ and complex surfaces \mathbb{T} with a family of rational curves.

geodesics \longleftrightarrow points points \longleftrightarrow rational curves with normal bundle $\mathcal{O}(1)$.
- Double fibration $U \longleftarrow \mathbb{P}(T U) \longrightarrow \mathbb{T}=\mathbb{P}(T U) / D_{x}$, where $D_{x}=z^{a} \frac{\partial}{\partial x^{a}}-\Gamma_{a b}^{c} z^{a} z^{b} \frac{\partial}{\partial z^{c}}$ is a geodesic spray.

Twistor Theory

- One-to-one correspondence between holomorphic projective structures $(U,[\Gamma])$ and complex surfaces \mathbb{T} with a family of rational curves.

geodesics \longleftrightarrow points points \longleftrightarrow rational curves with normal bundle $\mathcal{O}(1)$.
- Double fibration $U \longleftarrow \mathbb{P}(T U) \longrightarrow \mathbb{T}=\mathbb{P}(T U) / D_{x}$, where $D_{x}=z^{a} \frac{\partial}{\partial x^{a}}-\Gamma_{a b}^{c} z^{a} z^{b} \frac{\partial}{\partial z^{c}}$ is a geodesic spray.
- ($U,[\Gamma]$) is metrisable iff \mathbb{T} is equipped with a preferred section of the line bundle $\kappa_{\mathbb{T}}{ }^{-2 / 3}$, where $\kappa_{\mathbb{T}}$ is the canonical bundle.

