A problem of Roger Liouville

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics University of Cambridge

Dirac Operators and Special Geometries, Marburg, September 2009

Robert Bryant, MD, Mike Eastwood (2008) arXiv:0801.0300 . To appear in J. Diff. Geom (2010).

MD, Paul Tod (2009) arXiv:0901.2261.

• Path geometry: y'' = F(x, y, y'). Douglas (1936).

- Path geometry: y'' = F(x, y, y'). Douglas (1936).
- When are the paths unparametrised geodesics of some connection Γ on U ⊂ ℝ²? Elliminate the parameter in ẍ^a + Γ^a_{bc}ẋ^bẋ^c ~ ẋ^a.

$$y'' = A_0(x, y) + A_1(x, y)y' + A_2(x, y)(y')^2 + A_3(x, y)(y')^3, \quad x^a = (x, y).$$

Liouville (1889), Tresse (1896), Cartan (1922) – projective structures.

- Path geometry: y'' = F(x, y, y'). Douglas (1936).
- When are the paths unparametrised geodesics of some connection Γ on U ⊂ ℝ²? Elliminate the parameter in ẍ^a + Γ^a_{bc}ẋ^bẋ^c ~ ẋ^a.

$$y'' = A_0(x, y) + A_1(x, y)y' + A_2(x, y)(y')^2 + A_3(x, y)(y')^3, \quad x^a = (x, y).$$

Liouville (1889), Tresse (1896), Cartan (1922) –projective structures.

• When are the paths geodesics of $g = E dx^2 + 2F dx dy + G dy^2$?

• A projective structure on an open set $U \subset \mathbb{R}^n$ is an equivalence class of torsion free connections $[\Gamma]$. Two connections Γ and $\hat{\Gamma}$ are equivalent if they share the same unparametrised geodesics.

- A projective structure on an open set U ⊂ ℝⁿ is an equivalence class of torsion free connections [Γ]. Two connections Γ and Γ̂ are equivalent if they share the same unparametrised geodesics.
- The geodesic flows project to the same foliation of $\mathbb{P}(TU).$ The analytic expression for this equivalence class is

$$\hat{\Gamma}_{ab}^{c} = \Gamma_{ab}^{c} + \delta_{a}{}^{c}\omega_{b} + \delta_{b}{}^{c}\omega_{a}, \qquad a, b, c = 1, 2, \dots, n$$

for some one–form $\omega = \omega_a dx^a$.

- A projective structure on an open set U ⊂ ℝⁿ is an equivalence class of torsion free connections [Γ]. Two connections Γ and Γ̂ are equivalent if they share the same unparametrised geodesics.
- The geodesic flows project to the same foliation of $\mathbb{P}(TU).$ The analytic expression for this equivalence class is

$$\hat{\Gamma}_{ab}^{c} = \Gamma_{ab}^{c} + \delta_{a}{}^{c}\omega_{b} + \delta_{b}{}^{c}\omega_{a}, \qquad a, b, c = 1, 2, \dots, n$$

for some one–form $\omega = \omega_a dx^a$.

• A 'forgotten' subject. Goes back to Tracy Thomas (1925), Elie Cartan (1922).

- A projective structure on an open set U ⊂ ℝⁿ is an equivalence class of torsion free connections [Γ]. Two connections Γ and Γ̂ are equivalent if they share the same unparametrised geodesics.
- The geodesic flows project to the same foliation of $\mathbb{P}(TU).$ The analytic expression for this equivalence class is

$$\hat{\Gamma}_{ab}^{c} = \Gamma_{ab}^{c} + \delta_{a}{}^{c}\omega_{b} + \delta_{b}{}^{c}\omega_{a}, \qquad a, b, c = 1, 2, \dots, n$$

for some one–form $\omega = \omega_a dx^a$.

- A 'forgotten' subject. Goes back to Tracy Thomas (1925), Elie Cartan (1922).
- In two dimensions there is a link with second order ODEs. Projective invariants of $[\Gamma] =$ point invariants of the ODE. Liouville (1889), Tresse (1896), Cartan, ..., Hitchin, Bryant, Tod, Nurowski, Godliński.

A basic unsolved problem in projective differential geometry is to determine the explicit criterion for the metrisability of projective structure

• What are the necessary and sufficient local conditions on a connection Γ^c_{ab} for the existence of a one form ω_a and a symmetric non-degenerate tensor g_{ab} such that the projectively equivalent connection

$$\Gamma^c_{ab} + \delta_a{}^c\omega_b + \delta_b{}^c\omega_a$$

is the Levi-Civita connection for g_{ab} .

A basic unsolved problem in projective differential geometry is to determine the explicit criterion for the metrisability of projective structure

• What are the necessary and sufficient local conditions on a connection Γ^c_{ab} for the existence of a one form ω_a and a symmetric non-degenerate tensor g_{ab} such that the projectively equivalent connection

$$\Gamma^c_{ab} + \delta_a{}^c\omega_b + \delta_b{}^c\omega_a$$

is the Levi-Civita connection for g_{ab} .

 We mainly focus on local metricity: The pair (g, ω) with det (g) ≠ 0 is required to exist in a neighbourhood of a point p ∈ U. A basic unsolved problem in projective differential geometry is to determine the explicit criterion for the metrisability of projective structure

• What are the necessary and sufficient local conditions on a connection Γ^c_{ab} for the existence of a one form ω_a and a symmetric non-degenerate tensor g_{ab} such that the projectively equivalent connection

$$\Gamma^c_{ab} + \delta_a{}^c\omega_b + \delta_b{}^c\omega_a$$

is the Levi-Civita connection for g_{ab} .

- We mainly focus on local metricity: The pair (g, ω) with $\det(g) \neq 0$ is required to exist in a neighbourhood of a point $p \in U$.
- Vastly overdetermined system of PDEs for g and ω : There are $n^2(n+1)/2$ components in a connection, and (n+n(n+1)/2) components in (ω,g) . Naively expect $n(n^2-3)/2$ conditions on Γ .

 Neccesary condition: obstruction of order 5 in the components of a connection in a projective class. Point invariant for a second order ODE whose integral curves are the geodesics of [Γ] or a weighted scalar projective invariant of the projective class.

- Neccesary condition: obstruction of order 5 in the components of a connection in a projective class. Point invariant for a second order ODE whose integral curves are the geodesics of [Γ] or a weighted scalar projective invariant of the projective class.
- Sufficient conditions: In the generic case (what does it mean?) vanishing of two invariants of order 6. Non-generic cases: one obstruction of order at most 8. Need real analyticity: No set of local obstruction can guarantee metrisability of the whole surface U in the smooth case even if U is simply connected.

- Neccesary condition: obstruction of order 5 in the components of a connection in a projective class. Point invariant for a second order ODE whose integral curves are the geodesics of [Γ] or a weighted scalar projective invariant of the projective class.
- Sufficient conditions: In the generic case (what does it mean?) vanishing of two invariants of order 6. Non-generic cases: one obstruction of order at most 8. Need real analyticity: No set of local obstruction can guarantee metrisability of the whole surface U in the smooth case even if U is simply connected.
- Counter intuitive naively expect only one condition (metric = 3 functions of 2 variables, projective structure = 4 functions of 2 variables).

SECOND ORDER ODES

• Geodesic equations for $\boldsymbol{x}^a(t) = (\boldsymbol{x}(t), \boldsymbol{y}(t))$

$$\ddot{x}^c + \Gamma^c_{ab} \dot{x}^a \dot{x}^b = v \dot{x}^c.$$

SECOND ORDER ODES

• Geodesic equations for
$$x^a(t) = (x(t), y(t))$$

$$\ddot{x}^c + \Gamma^c_{ab} \dot{x}^a \dot{x}^b = v \dot{x}^c.$$

• Eliminate the parameter t: second order ODE

$$\frac{d^2y}{dx^2} = A_3(x,y) \left(\frac{dy}{dx}\right)^3 + A_2(x,y) \left(\frac{dy}{dx}\right)^2 + A_1(x,y) \left(\frac{dy}{dx}\right) + A_0(x,y)$$

where

$$A_0 = -\Gamma_{11}^2, \quad A_1 = \Gamma_{11}^1 - 2\Gamma_{12}^2, \quad A_2 = 2\Gamma_{12}^1 - \Gamma_{22}^2, \quad A_3 = \Gamma_{22}^1.$$

Second order ODEs

• Geodesic equations for
$$\boldsymbol{x}^a(t) = (\boldsymbol{x}(t), \boldsymbol{y}(t))$$

$$\ddot{x}^c + \Gamma^c_{ab} \dot{x}^a \dot{x}^b = v \dot{x}^c.$$

• Eliminate the parameter t: second order ODE

$$\frac{d^2y}{dx^2} = A_3(x,y) \left(\frac{dy}{dx}\right)^3 + A_2(x,y) \left(\frac{dy}{dx}\right)^2 + A_1(x,y) \left(\frac{dy}{dx}\right) + A_0(x,y)$$
 where

$$A_0 = -\Gamma_{11}^2, \quad A_1 = \Gamma_{11}^1 - 2\Gamma_{12}^2, \quad A_2 = 2\Gamma_{12}^1 - \Gamma_{22}^2, \quad A_3 = \Gamma_{22}^1.$$

• This formulation removes the projective ambiguity.

• Metric
$$g = E(x, y)dx^2 + 2F(x, y)dxdy + G(x, y)dy^2$$
 gives

$$A_0 = (E\partial_y E - 2E\partial_x F + F\partial_x E) (EG - F^2)^{-1}/2,$$

$$A_1 = (3F\partial_y E + G\partial_x E - 2F\partial_x F - 2E\partial_x G) (EG - F^2)^{-1}/2,$$

$$A_2 = (2F\partial_y F + 2G\partial_y E - 3F\partial_x G - E\partial_y G) (EG - F^2)^{-1}/2,$$

$$A_3 = (2G\partial_y F - G\partial_x G - F\partial_y G) (EG - F^2)^{-1}/2,$$
(*)

- ∢ 🗇 ト

э

• Metric
$$g = E(x, y)dx^2 + 2F(x, y)dxdy + G(x, y)dy^2$$
 gives

$$A_0 = (E\partial_y E - 2E\partial_x F + F\partial_x E) (EG - F^2)^{-1}/2,$$

$$A_1 = (3F\partial_y E + G\partial_x E - 2F\partial_x F - 2E\partial_x G) (EG - F^2)^{-1}/2,$$

$$A_2 = (2F\partial_y F + 2G\partial_y E - 3F\partial_x G - E\partial_y G) (EG - F^2)^{-1}/2,$$

$$A_3 = (2G\partial_y F - G\partial_x G - F\partial_y G) (EG - F^2)^{-1}/2,$$
(*)

• First order homogeneous differential operator with one-dimensional fibres

$$\sigma^0:J^1(S^2(T^*U))\longrightarrow J^0(\Pr(U))$$

• Metric
$$g = E(x, y)dx^2 + 2F(x, y)dxdy + G(x, y)dy^2$$
 gives

$$A_0 = (E\partial_y E - 2E\partial_x F + F\partial_x E) (EG - F^2)^{-1}/2,$$

$$A_1 = (3F\partial_y E + G\partial_x E - 2F\partial_x F - 2E\partial_x G) (EG - F^2)^{-1}/2,$$

$$A_2 = (2F\partial_y F + 2G\partial_y E - 3F\partial_x G - E\partial_y G) (EG - F^2)^{-1}/2,$$

$$A_3 = (2G\partial_y F - G\partial_x G - F\partial_y G) (EG - F^2)^{-1}/2,$$
(*)

• First order homogeneous differential operator with one-dimensional fibres

$$\sigma^0:J^1(S^2(T^*U)) \longrightarrow J^0(\Pr(U))$$

• Differentiating (*) prolongs this operator to bundle maps $\sigma^k: J^{k+1}(S^2(T^*U)) \longrightarrow J^k(\Pr(U))$

• Metric
$$g = E(x, y)dx^2 + 2F(x, y)dxdy + G(x, y)dy^2$$
 gives

$$A_0 = (E\partial_y E - 2E\partial_x F + F\partial_x E) (EG - F^2)^{-1}/2,$$

$$A_1 = (3F\partial_y E + G\partial_x E - 2F\partial_x F - 2E\partial_x G) (EG - F^2)^{-1}/2,$$

$$A_2 = (2F\partial_y F + 2G\partial_y E - 3F\partial_x G - E\partial_y G) (EG - F^2)^{-1}/2,$$

$$A_3 = (2G\partial_y F - G\partial_x G - F\partial_y G) (EG - F^2)^{-1}/2,$$
(*)

• First order homogeneous differential operator with one-dimensional fibres

$$\sigma^0:J^1(S^2(T^*U)) \longrightarrow J^0(\Pr(U))$$

• Differentiating (*) prolongs this operator to bundle maps

$$\sigma^k: J^{k+1}(S^2(T^*U)) \longrightarrow J^k(\mathsf{Pr}(U))$$

• Liouville (1889). Relations (*) linearise:

$$E = \psi_1 / \Delta, \quad F = \psi_2 / \Delta, \quad G = \psi_3 / \Delta, \quad \Delta = (\psi_1 \psi_3 - \psi_2^2)^2.$$

7 / 18

A projective structure $[\Gamma]$ is metrisable on a neighbourhood of a point $p\in U$ iff there exists functions $\psi_i(x,y), i=1,2,3$ defined on a neighbourhood of p such that $\psi_1\psi_3-\psi_2{}^2$ does not vanish at p and such that the equations

$$\begin{aligned} \frac{\partial \psi_1}{\partial x} &= \frac{2}{3} A_1 \psi_1 - 2A_0 \psi_2, \\ \frac{\partial \psi_3}{\partial y} &= 2A_3 \psi_2 - \frac{2}{3} A_2 \psi_3, \\ \frac{\partial \psi_1}{\partial y} + 2 \frac{\partial \psi_2}{\partial x} &= \frac{4}{3} A_2 \psi_1 - \frac{2}{3} A_1 \psi_2 - 2A_0 \psi_3, \\ \frac{\partial \psi_3}{\partial x} + 2 \frac{\partial \psi_2}{\partial y} &= 2A_3 \psi_1 - \frac{4}{3} A_1 \psi_3 + \frac{2}{3} A_2 \psi_2 \end{aligned}$$

hold on the domain of definition.

k	$rank(J^{k+1}(S^2(T^*U)))$	$rank(J^k(Pr(U)))$	$rank(ker\sigma^k)$	$co\operatorname{-rank}(ker\sigma^k)$
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	1 = 1
6	108	112	1	5 = 3 + 2
7	135	144	1	10 = 6 + 6 - 2

• No obstruction on a projective structure before the order 5.

k	$rank(J^{k+1}(S^2(T^*U)))$	$rank(J^k(Pr(U)))$	$rank(ker\sigma^k)$	$co\operatorname{-rank}(ker\sigma^k)$
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	1 = 1
6	108	112	1	5 = 3 + 2
7	135	144	1	10 = 6 + 6 - 2

• No obstruction on a projective structure before the order 5.

 $\bullet\,$ 5-jets. At least a 1D fiber, at most 83D image. First obstruction M .

k	$rank(J^{k+1}(S^2(T^*U)))$	$rank(J^k(Pr(U)))$	$rank(ker\sigma^k)$	$co\text{-}rank(ker\sigma^k)$
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	1 = 1
6	108	112	1	5 = 3 + 2
7	135	144	1	10 = 6 + 6 - 2

- No obstruction on a projective structure before the order 5.
- $\bullet\,$ 5-jets. At least a 1D fiber, at most 83D image. First obstruction M .
- 6-jets. Dimension 112 3 = 109. The image of the 7-jets of metric structures can have dimension 108 1 = 107. Two more 6th order obstructions E_1, E_2 .

k	$rank(J^{k+1}(S^2(T^*U)))$	$rank(J^k(Pr(U)))$	$rank(ker\sigma^k)$	$co\operatorname{-rank}(ker\sigma^k)$
0	9	4	5	0
1	18	12	6	0
2	30	24	6	0
3	45	40	5	0
4	63	60	3	0
5	84	84	1	1 = 1
6	108	112	1	5 = 3 + 2
7	135	144	1	10 = 6 + 6 - 2

- No obstruction on a projective structure before the order 5.
- $\bullet\,$ 5-jets. At least a 1D fiber, at most 83D image. First obstruction M .
- 6-jets. Dimension 112 3 = 109. The image of the 7-jets of metric structures can have dimension 108 1 = 107. Two more 6th order obstructions E_1, E_2 .
- 7-jets. The image has codimension 10. 2 relations between the first derivatives of $E_1 = E_2 = 0$ and the second derivatives of the 5th order equation M = 0. The system is involutive.

9 / 18

• Let $\Gamma \in [\Gamma]$. The curvature decomposition

 $[\nabla_a, \nabla_b] X^c = R_{ab}{}^c{}_d X^d, \quad R_{ab}{}^c{}_d = \delta^c_a \mathcal{P}_{bd} X^d - \delta^c_b \mathcal{P}_{ad} X^d + \beta_{ab} \delta^c_d$

where β_{ab} is skew.

• Let $\Gamma \in [\Gamma]$. The curvature decomposition

 $[\nabla_a, \nabla_b] X^c = R_{ab}{}^c{}_d X^d, \quad R_{ab}{}^c{}_d = \delta^c_a P_{bd} X^d - \delta^c_b P_{ad} X^d + \beta_{ab} \delta^c_d$ where β_{ab} is skew.

• If we change the connection in the projective class then

$$\hat{\mathbf{P}}_{ab} = \mathbf{P}_{ab} - \nabla_a \omega_b + \omega_a \omega_b, \quad \hat{\beta}_{ab} = \beta_{ab} + 2\nabla_{[a} \omega_{b]}.$$

Assume the cohomology class $[\beta] \in H^2(U, \mathbb{R})$ vanishes. Set $\beta_{ab} = 0$.

• Let $\Gamma \in [\Gamma]$. The curvature decomposition

 $[\nabla_a, \nabla_b] X^c = R_{ab}{}^c{}_d X^d, \quad R_{ab}{}^c{}_d = \delta^c_a P_{bd} X^d - \delta^c_b P_{ad} X^d + \beta_{ab} \delta^c_d$ where β_{ab} is skew.

• If we change the connection in the projective class then

$$\hat{\mathbf{P}}_{ab} = \mathbf{P}_{ab} - \nabla_a \omega_b + \omega_a \omega_b, \quad \hat{\beta}_{ab} = \beta_{ab} + 2\nabla_{[a} \omega_{b]}$$

Assume the cohomology class $[\beta] \in H^2(U, \mathbb{R})$ vanishes. Set $\beta_{ab} = 0$.

• Now $P_{ab} = P_{ba}$. Bianchi identity: Γ is flat on canonical bundle. There exists a volume form ϵ^{ab} such that

$$\nabla_a \epsilon^{bc} = 0.$$

• Let $\Gamma \in [\Gamma]$. The curvature decomposition

 $[\nabla_a, \nabla_b] X^c = R_{ab}{}^c{}_d X^d, \quad R_{ab}{}^c{}_d = \delta^c_a P_{bd} X^d - \delta^c_b P_{ad} X^d + \beta_{ab} \delta^c_d$ where β_{ab} is skew.

• If we change the connection in the projective class then

$$\hat{\mathbf{P}}_{ab} = \mathbf{P}_{ab} - \nabla_a \omega_b + \omega_a \omega_b, \quad \hat{\beta}_{ab} = \beta_{ab} + 2\nabla_{[a} \omega_{b]}.$$

Assume the cohomology class $[\beta] \in H^2(U, \mathbb{R})$ vanishes. Set $\beta_{ab} = 0$.

• Now $P_{ab} = P_{ba}$. Bianchi identity: Γ is flat on canonical bundle. There exists a volume form ϵ^{ab} such that

$$\nabla_a \epsilon^{bc} = 0.$$

• Use ϵ^{ab} to rise indices. Residual freedom $\omega_a = \nabla_a f$

 $\epsilon_{ab} \longrightarrow e^{3f} \epsilon_{ab}, \quad h \longrightarrow e^{wf} h, \qquad \text{projective weight } w.$

10 / 18

• Prolongation of the Liouville condition $\nabla_{(a}\sigma_{bc)}=0$:

• Prolongation of the Liouville condition $\nabla_{(a}\sigma_{bc)} = 0$: • $\nabla_{a}\sigma^{bc} = \delta^{b}_{a}\mu^{c} + \delta^{c}_{a}\mu^{b}$,

• Prolongation of the Liouville condition $\nabla_{(a}\sigma_{bc)}=0$:

• Prolongation of the Liouville condition $\nabla_{(a}\sigma_{bc)}=0$:

$$\begin{array}{l} \bullet \quad \nabla_a \sigma^{bc} = \delta^b_a \mu^c + \delta^c_a \mu^b, \\ \bullet \quad \nabla_a \mu^b = \delta^b_a \rho - \mathcal{P}_{ac} \sigma^{bc}, \\ \bullet \quad \nabla_a \rho = -2 \mathcal{P}_{ab} \mu^b + 2 Y_{abc} \sigma^{bc} \end{array}$$

for some tensors $\Psi^{\alpha} = (\sigma^{ab}, \mu^{a}, \rho)$, where $Y_{abc} = \frac{1}{2} (\nabla_{a} P_{bc} - \nabla_{b} P_{ac})$.

• Prolongation of the Liouville condition $\nabla_{(a}\sigma_{bc)} = 0$:

$$\begin{aligned} & \bullet \quad \nabla_a \sigma^{bc} = \delta^b_a \mu^c + \delta^c_a \mu^b, \\ & \bullet \quad \nabla_a \mu^b = \delta^b_a \rho - \mathcal{P}_{ac} \sigma^{bc}, \\ & \bullet \quad \nabla_a \rho = -2\mathcal{P}_{ab} \mu^b + 2Y_{abc} \sigma^{bc} \end{aligned}$$

for some tensors $\Psi^{\alpha} = (\sigma^{ab}, \mu^{a}, \rho)$, where $Y_{abc} = \frac{1}{2} (\nabla_{a} P_{bc} - \nabla_{b} P_{ac})$.

• Commute covatiant derivatives (curvature), set $Y_c := \epsilon^{ab} Y_{abc}$.

$$\Psi^{\alpha}\Sigma_{\alpha} := 5Y_a\mu^a + (\nabla_a Y_b)\sigma^{ab} = 0. \qquad (**)$$

• Prolongation of the Liouville condition $\nabla_{(a}\sigma_{bc)} = 0$:

for some tensors $\Psi^{\alpha} = (\sigma^{ab}, \mu^{a}, \rho)$, where $Y_{abc} = \frac{1}{2} (\nabla_{a} \mathbf{P}_{bc} - \nabla_{b} \mathbf{P}_{ac})$.

• Commute covatiant derivatives (curvature), set $Y_c := \epsilon^{ab} Y_{abc}$.

$$\Psi^{\alpha}\Sigma_{\alpha} := 5Y_a\mu^a + (\nabla_a Y_b)\sigma^{ab} = 0. \qquad (**)$$

Differetiate (**) twice. Use (*) to eliminate derivatives of Σ^α. Get six homogeneous linear equations on six unknowns (σ^{ab}, μ^a, ρ)

$$\mathcal{F}_2 \Psi = 0.$$

• Prolongation of the Liouville condition $\nabla_{(a}\sigma_{bc)} = 0$:

$$\begin{aligned} & \nabla_a \sigma^{bc} = \delta^b_a \mu^c + \delta^c_a \mu^b, \\ & \odot \nabla_a \mu^b = \delta^b_a \rho - \mathcal{P}_{ac} \sigma^{bc}, \\ & \odot \nabla_a \rho = -2\mathcal{P}_{ab} \mu^b + 2Y_{abc} \sigma^{bc} \end{aligned}$$

for some tensors $\Psi^{\alpha} = (\sigma^{ab}, \mu^{a}, \rho)$, where $Y_{abc} = \frac{1}{2} (\nabla_{a} \mathbf{P}_{bc} - \nabla_{b} \mathbf{P}_{ac})$.

• Commute covatiant derivatives (curvature), set $Y_c := \epsilon^{ab} Y_{abc}$.

$$\Psi^{\alpha}\Sigma_{\alpha} := 5Y_a\mu^a + (\nabla_a Y_b)\sigma^{ab} = 0. \qquad (**)$$

• Differetiate (**) twice. Use (*) to eliminate derivatives of Σ^{α} . Get six homogeneous linear equations on six unknowns $(\sigma^{ab}, \mu^a, \rho)$

$$\mathcal{F}_2 \Psi = 0.$$

• The determinat of the 6 by 6 matrix \mathcal{F}_2 gives the 5th order obstruction M - a section of $\Lambda^2(T^*U)^{\otimes 14}$

$$\det \left(\mathcal{F}_2\right)([\Gamma]) \left(dx \wedge dy\right)^{\otimes 14}$$

is a projective invariant.

EXPLICIT INVARIANT: 1746 TERMS!

$$\det \left(\mathcal{F}_{2}\right) = \left(Q_{gi}S_{mp}T_{njk}U_{ac}V_{deq}X_{bfhl} - \frac{1}{6}P_{p}R_{m}S_{nq}X_{acgi}X_{behk}X_{dfjl}\right)$$
$$-\frac{1}{2}P_{p}S_{mq}T_{njl}U_{ce}X_{adgk}X_{bfhi} - \frac{1}{2}P_{p}T_{mgi}T_{njk}U_{ac}V_{deq}X_{bfhl}$$
$$+\frac{1}{2}P_{p}R_{m}T_{ngi}V_{acq}X_{dejk}X_{bfhl} - \frac{1}{2}Q_{gi}R_{m}S_{np}V_{acq}X_{dejk}X_{bfhl}$$
$$-\frac{1}{2}Q_{gi}R_{m}T_{njk}V_{acp}V_{deq}X_{bfhl} - \frac{1}{4}Q_{gi}S_{mp}S_{nq}U_{ac}X_{dejk}X_{bfhl}$$
$$\frac{1}{4}Q_{gi}T_{mjk}T_{nhl}U_{ac}V_{dep}V_{bfq}\right)\epsilon^{ab}\epsilon^{cd}\epsilon^{ef}\epsilon^{gh}\epsilon^{ij}\epsilon^{kl}\epsilon^{mn}\epsilon^{pq},$$

where

$$\begin{aligned} P_a &\equiv 5Y_a, \quad Q_{ab} \equiv 12Z_{ab}, \quad R_c \equiv 5Y_c, \quad S_{ca} \equiv 5\nabla_a Y_c + 2Z_{ac}, \\ T_{cab} &\equiv 5\nabla_{(a}\nabla_{b)}Y_c + 4\nabla_{(a}Z_{b)c} - 5\mathbf{P}_{ab}Y_c - 15\mathbf{P}_{c(a}Y_b), \quad U_{cd} \equiv Z_{cd}, \\ X_{cdab} &\equiv \nabla_{(a}\nabla_{b)}Z_{cd} - 5(\nabla_{(a}\mathbf{P}_{b)(c)}Y_d) - 5\mathbf{P}_{c(a}\nabla_{b)}Y_d - 5\mathbf{P}_{d(a}\nabla_{b)}Y_c \\ -\mathbf{P}_{c(a}Z_{b)d} - \mathbf{P}_{d(a}Z_{b)c} + 10Y_{(a}Y_{b)(cd)}, \quad V_{cda} \equiv \nabla_a Z_{cd} = 5\mathbf{P}_{a(c}Y_d) \equiv \nabla_a C_{cd} = 5\mathbf{P}_{c(c}Y_d) = 0 \end{aligned}$$

 $d\Psi + \Omega \ \Psi = 0$

of a rank six vector bundle $\mathbb{E} \to U$ with connection.

 $d\Psi + \Omega \ \Psi = 0$

of a rank six vector bundle $\mathbb{E} \to U$ with connection.

• First integrability condition $F\Psi = 0$, where

$$\mathbf{F} = d\Omega + \Omega \wedge \Omega = (\partial_x \Omega_2 - \partial_y \Omega_1 + [\Omega_1, \Omega_2]) dx \wedge dy$$

= $F dx \wedge dy.$

 $d\Psi + \Omega \ \Psi = 0$

of a rank six vector bundle $\mathbb{E} \to U$ with connection.

• First integrability condition $F\Psi = 0$, where

$$\mathbf{F} = d\Omega + \Omega \wedge \Omega = (\partial_x \Omega_2 - \partial_y \Omega_1 + [\Omega_1, \Omega_2]) dx \wedge dy$$

= $F dx \wedge dy.$

• Differentiate $(D_a F)\Psi = 0$, $(D_a D_b F)\Psi = 0$, ..., where $D_a F = \partial_a F + [\Omega_a, F]$.

 $d\Psi + \Omega \ \Psi = 0$

of a rank six vector bundle $\mathbb{E} \to U$ with connection.

• First integrability condition $F\Psi = 0$, where

 $\mathbf{F} = d\Omega + \Omega \wedge \Omega = (\partial_x \Omega_2 - \partial_y \Omega_1 + [\Omega_1, \Omega_2]) dx \wedge dy$ = $F dx \wedge dy.$

• Differentiate $(D_a F)\Psi = 0$, $(D_a D_b F)\Psi = 0$,..., where $D_a F = \partial_a F + [\Omega_a, F]$.

• After K steps $\mathcal{F}_K \Psi = 0$, where \mathcal{F}_K is a K(K+1)/2 by 6 matrix.

 $d\Psi + \Omega \ \Psi = 0$

of a rank six vector bundle $\mathbb{E} \to U$ with connection.

• First integrability condition $F\Psi = 0$, where

 $\mathbf{F} = d\Omega + \Omega \wedge \Omega = (\partial_x \Omega_2 - \partial_y \Omega_1 + [\Omega_1, \Omega_2]) dx \wedge dy$ = $F dx \wedge dy.$

• Differentiate $(D_a F)\Psi = 0$, $(D_a D_b F)\Psi = 0$, ..., where $D_a F = \partial_a F + [\Omega_a, F]$.

• After K steps $\mathcal{F}_K \Psi = 0$, where \mathcal{F}_K is a K(K+1)/2 by 6 matrix.

• Stop when rank $(\mathcal{F}_K) = \operatorname{rank} (\mathcal{F}_{K+1})$. The space of parallel sections has dimension $(6 - \operatorname{rank}(\mathcal{F}_K))$.

SUFFICIENT CONDITIONS

• A projective structure is generic in a neighbourhood of $p \in U$ if rank \mathcal{F}_2 is maximal and equal to 5 and

$$P([\Gamma]) := W_1 W_3 - (W_2)^2 \neq 0$$

in this neighbourhood, where $(W_1, ..., W_6)^T$ spans Ker $\mathcal{F}_2([\Gamma])$.

• A projective structure is generic in a neighbourhood of $p \in U$ if rank \mathcal{F}_2 is maximal and equal to 5 and

$$P([\Gamma]) := W_1 W_3 - (W_2)^2 \neq 0$$

in this neighbourhood, where $(W_1, ..., W_6)^T$ spans Ker $\mathcal{F}_2([\Gamma])$.

• In the generic case there will exist a metric in the (real analytic) projective class if the rank of the next derived matrix \mathcal{F}_3 does not go up and is equal to five. Two invariants of order 6.

• A projective structure is generic in a neighbourhood of $p \in U$ if rank \mathcal{F}_2 is maximal and equal to 5 and

$$P([\Gamma]) := W_1 W_3 - (W_2)^2 \neq 0$$

in this neighbourhood, where $(W_1, ..., W_6)^T$ spans Ker $\mathcal{F}_2([\Gamma])$.

- In the generic case there will exist a metric in the (real analytic) projective class if the rank of the next derived matrix \mathcal{F}_3 does not go up and is equal to five. Two invariants of order 6.
- If rank $\mathcal{F}_2([\Gamma]) < 5$ (non–generic case) non–degenerate kernel always exists, and

rank
$$(\mathcal{F}_5) \leq 5$$

is sufficient for the existence of the metric. One invariant of order 8.

• A projective structure is generic in a neighbourhood of $p \in U$ if rank \mathcal{F}_2 is maximal and equal to 5 and

$$P([\Gamma]) := W_1 W_3 - (W_2)^2 \neq 0$$

in this neighbourhood, where $(W_1, ..., W_6)^T$ spans Ker $\mathcal{F}_2([\Gamma])$.

- In the generic case there will exist a metric in the (real analytic) projective class if the rank of the next derived matrix \mathcal{F}_3 does not go up and is equal to five. Two invariants of order 6.
- If rank $\mathcal{F}_2([\Gamma]) < 5$ (non–generic case) non–degenerate kernel always exists, and

rank
$$(\mathcal{F}_5) \leq 5$$

is sufficient for the existence of the metric. One invariant of order 8.

• Spinoff: Koenigs Theorem: The space of metrics compatible with a given projective structures can have dimensions 0, 1, 2, 3, 4 or 6.

• One parameter family of projective structures

$$\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx}\right)^2.$$

• One parameter family of projective structures

$$\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx}\right)^2.$$

• 5th order condition holds if $\hat{c} = 48c - 11$ is a root of a quartic

$$\hat{c}^4 - 11286\,\hat{c}^2 - 850968\,\hat{c} - 19529683 = 0.$$

• One parameter family of projective structures

$$\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx}\right)^2.$$

• 5th order condition holds if $\hat{c} = 48c - 11$ is a root of a quartic

$$\hat{c}^4 - 11286\,\hat{c}^2 - 850968\,\hat{c} - 19529683 = 0.$$

• The 6th order conditions are satisfied iff

$$\begin{split} 3\,\hat{c}^5 + 529\,\hat{c}^4 + 222\,\hat{c}^3 - 2131102\,\hat{c}^2 - 103196849\,\hat{c} - 1977900451 = 0, \\ \\ \hat{c}^3 - 213\,\hat{c}^2 - 7849\,\hat{c} - 19235 = 0. \end{split}$$

• One parameter family of projective structures

$$\frac{d^2y}{dx^2} = c e^x + e^{-x} \left(\frac{dy}{dx}\right)^2.$$

• 5th order condition holds if $\hat{c} = 48c - 11$ is a root of a quartic

$$\hat{c}^4 - 11286\,\hat{c}^2 - 850968\,\hat{c} - 19529683 = 0.$$

• The 6th order conditions are satisfied iff

 $3\,\hat{c}^5 + 529\,\hat{c}^4 + 222\,\hat{c}^3 - 2131102\,\hat{c}^2 - 103196849\,\hat{c} - 1977900451 = 0,$

$$\hat{c}^3 - 213\,\hat{c}^2 - 7849\,\hat{c} - 19235 = 0.$$

• These three polynomials do not have a common root. We can make the 5th order obstruction vanish, but the two 6th order obstructions E_1, E_2 do not vanish.

Given a Riemannian manifold (M,g) is there a non-zero function Ω such that $\Omega^2 g$ is Kähler with respect to some complex structure?

• Leads to overdetermined PDEs. Proceed as before: prolong, construct a curvature, restrict its holonomy, find conformal invariants.

Given a Riemannian manifold (M,g) is there a non-zero function Ω such that $\Omega^2 g$ is Kähler with respect to some complex structure?

- Leads to overdetermined PDEs. Proceed as before: prolong, construct a curvature, restrict its holonomy, find conformal invariants.
- Solved recently in dimension four: MD, Paul Tod, arXiv:0901.2261.

Given a Riemannian manifold (M,g) is there a non-zero function Ω such that $\Omega^2 g$ is Kähler with respect to some complex structure?

- Leads to overdetermined PDEs. Proceed as before: prolong, construct a curvature, restrict its holonomy, find conformal invariants.
- Solved recently in dimension four: MD, Paul Tod, arXiv:0901.2261.
- Also read Semmelmann, arXiv:math/0206117.

Given a Riemannian manifold (M,g) is there a non-zero function Ω such that $\Omega^2 g$ is Kähler with respect to some complex structure?

- Leads to overdetermined PDEs. Proceed as before: prolong, construct a curvature, restrict its holonomy, find conformal invariants.
- Solved recently in dimension four: MD, Paul Tod, arXiv:0901.2261.
- Also read Semmelmann, arXiv:math/0206117.
- Link with the Liouville problem: Given a 2D projective structure $(U, [\Gamma])$ construct a signature (2, 2) metric on TU

$$g = dz_a \otimes dx^a - \prod_{ab}^c(x) z_c dx^a \otimes dx^b, \quad a, b, c = 1, 2.$$

where $\Pi_{ab}^c = \Gamma_{ab}^c - \frac{1}{3}\Gamma_{da}^d \delta_b^c - \frac{1}{3}\Gamma_{db}^d \delta_a^c$. Walker (1953), Yano–Ishihara, ..., Nurowski–Sparling, MD–West.

Given a Riemannian manifold (M,g) is there a non-zero function Ω such that $\Omega^2 g$ is Kähler with respect to some complex structure?

- Leads to overdetermined PDEs. Proceed as before: prolong, construct a curvature, restrict its holonomy, find conformal invariants.
- Solved recently in dimension four: MD, Paul Tod, arXiv:0901.2261.
- Also read Semmelmann, arXiv:math/0206117.
- Link with the Liouville problem: Given a 2D projective structure $(U, [\Gamma])$ construct a signature (2, 2) metric on TU

$$g = dz_a \otimes dx^a - \prod_{ab}^c(x) z_c dx^a \otimes dx^b, \quad a, b, c = 1, 2.$$

where $\Pi_{ab}^c = \Gamma_{ab}^c - \frac{1}{3}\Gamma_{da}^d \delta_b^c - \frac{1}{3}\Gamma_{db}^d \delta_a^c$. Walker (1953), Yano–Ishihara, ..., Nurowski–Sparling, MD–West.

• Theorem (MD, Tod): The metric g is conformal to (para) Kähler iff the projective structure is metrisable.

16 / 18

TWISTOR THEORY

• One-to-one correspondence between holomorphic projective structures $(U, [\Gamma])$ and complex surfaces \mathbb{T} with a family of rational curves.

geodesics \longleftrightarrow points

points \longleftrightarrow rational curves with normal bundle $\mathcal{O}(1)$.

TWISTOR THEORY

• One-to-one correspondence between holomorphic projective structures $(U, [\Gamma])$ and complex surfaces \mathbb{T} with a family of rational curves.

geodesics \longleftrightarrow points points \longleftrightarrow rational curves with normal bundle $\mathcal{O}(1)$. • Double fibration $U \longleftarrow \mathbb{P}(TU) \longrightarrow \mathbb{T} = \mathbb{P}(TU)/D_x$, where $D_x = z^a \frac{\partial}{\partial x^a} - \Gamma^c_{ab} z^a z^b \frac{\partial}{\partial z^c}$ is a geodesic spray.

TWISTOR THEORY

• One-to-one correspondence between holomorphic projective structures $(U, [\Gamma])$ and complex surfaces \mathbb{T} with a family of rational curves.

geodesics \longleftrightarrow points points \longleftrightarrow rational curves with normal bundle $\mathcal{O}(1)$. • Double fibration $U \longleftarrow \mathbb{P}(TU) \longrightarrow \mathbb{T} = \mathbb{P}(TU)/D_x$, where $D_x = z^a \frac{\partial}{\partial x^a} - \Gamma^c_{ab} z^a z^b \frac{\partial}{\partial z^c}$ is a geodesic spray.

• $(U, [\Gamma])$ is metrisable iff \mathbb{T} is equipped with a preferred section of the line bundle $\kappa_{\mathbb{T}}^{-2/3}$, where $\kappa_{\mathbb{T}}$ is the canonical bundle.

OXFORD MATHEMATICS

Solitons, Instantons and Twistors

Maciej Dunajski

OXFORD GRADUATE TEXTS IN MATHEMATICS 19

DUNAJSKI (DAMTP, CAMBRIDGE)

Metricity

25 September 2009