On some cohomological properties of almost complex manifolds

joint with A. Tomassini

Workshop "Dirac operators and special Geometries", Castle Rauischholzhausen - 24 September 2009

UNIVERSITA DITORINO

(1) Motivation

Tamed and calibrated almost complex structures
Symplectic cones
(2) \mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure
(3) Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case

4) Examples

Nakamura manifold
Families in dimension six
(5) References

UNIVERSITAA
DEGLISTUDI
DITORINO

Tamed and calibrated almost complex structures

M: compact oriented $2 n$-dimensional manifold.
A symplectic form ω compatible with the orientation is a closed 2 -form ω such that ω^{n} is a volume form compatible with the orientation.

Definition
An almost complex structure J on a symplectic manifold (M, ω) is tamed by ω if $\omega_{x}(u, J u)>0, \forall x \in M$ and $\forall u \neq 0 \in T_{x} M$. J is calibrated by ω (or ω is compatible with J) if, in addition, $\omega_{x}(J u, J v)=\omega_{x}(u, v), \forall u, v \in T_{x} M$.

If J is calibrated by $\omega \Longrightarrow(\omega, J)$ is an almost-Kähler structure $\Rightarrow g(\cdot, \cdot)=\omega(\cdot, J \cdot)$ is a J-Hermitian metric.

Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

Tamed and calibrated almost complex structures

M: compact oriented $2 n$-dimensional manifold.
A symplectic form ω compatible with the orientation is a closed 2 -form ω such that ω^{n} is a volume form compatible with the orientation.

Definition
An almost complex structure J on a symplectic manifold (M, ω) is tamed by ω if $\omega_{x}(u, J u)>0, \forall x \in M$ and $\forall u \neq 0 \in T_{x} M$. J is calibrated by ω (or ω is compatible with J) if, in addition, $\omega_{x}(J u, J v)=\omega_{x}(u, v), \forall u, v \in T_{x} M$. If J is cali'ibrated by $\omega \Longrightarrow(\omega, J)$ is an almost-Kähler structure $\Rightarrow g(\cdot, \cdot)=\omega(\cdot, J)$ is a J-Hermitian metric.

Tamed and calibrated almost complex structures

M: compact oriented $2 n$-dimensional manifold.
A symplectic form ω compatible with the orientation is a closed 2 -form ω such that ω^{n} is a volume form compatible with the orientation.

Definition

An almost complex structure J on a symplectic manifold (M, ω) is tamed by ω if $\omega_{x}(u, J u)>0, \forall x \in M$ and $\forall u \neq 0 \in T_{x} M$. J is calibrated by ω (or ω is compatible with J) if, in addition, $\omega_{x}(J u, J v)=\omega_{x}(u, v), \forall u, v \in T_{x} M$.

If J is calibrated by $\omega \Longrightarrow(\omega, J)$ is an almost-Kähler structure $\Rightarrow g(\cdot, \cdot)=\omega(\cdot, J \cdot)$ is a J-Hermitian metric.
\mathcal{C}^{∞} pure and full almost complex structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples

Nakamura manifold
Families in dimension six
ω : a fixed non-degenerate closed 2 -form ω on $\mathbb{R}^{2 n}=\mathbb{C}^{n}$. $\mathcal{J}_{c}(\omega)\left(\right.$ resp. $\left.\mathcal{J}_{t}(\omega)\right)=$ the set of almost-complex structures calibrated (resp. tamed) by ω.

Proposition (Audin)

If on \mathbb{C}^{n} one considers the standard symplectic structure $\left(J_{0}, \omega\right)$, then the map

$$
J \mapsto\left(J+J_{0}\right)^{-1} \circ\left(J-J_{0}\right)
$$

is a diffeomorphism from $\mathcal{J}_{t}(\omega)$ (resp. $\mathcal{J}_{c}(\omega)$) onto the open unit ball in the vector space of (resp. symmetric) matrices L such that $J_{0} L=-L J_{0}$.

Then, if J_{0} is calibrated by ω and L is a symmetric matrix such that $\|L\|<1, J_{0} L=-L J_{0}$, then

$$
(I+L) \circ J_{0} \circ(I+L)^{-1}
$$

is still an almost complex structure calibrated by ω.

Motivation

Tamed and calibrated
almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

ω : a fixed non-degenerate closed 2 -form ω on $\mathbb{R}^{2 n}=\mathbb{C}^{n}$. $\mathcal{J}_{c}(\omega)\left(\right.$ resp. $\left.\mathcal{J}_{t}(\omega)\right)=$ the set of almost-complex structures calibrated (resp. tamed) by ω.

Proposition (Audin)

is a diffeomorphism from $\mathcal{J}_{t}(\omega)$ (resp. $\mathcal{J}_{c}(\omega)$) onto the open unit ball in the vector space of (resp. symmetric) matrices L such that $J_{0} L=-L J_{0}$.

Then, if J_{0} is calibrated by ω and L is a symmetric matrix such that $\|L\|<1, J_{0} L=-L J_{0}$, then

Motivation

Tamed and calibrated

almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples
Nakamura manifold
Families in dimension six
ω : a fixed non-degenerate closed 2-form ω on $\mathbb{R}^{2 n}=\mathbb{C}^{n}$. $\mathcal{J}_{c}(\omega)\left(\right.$ resp. $\left.\mathcal{J}_{t}(\omega)\right)=$ the set of almost-complex structures calibrated (resp. tamed) by ω.

Proposition (Audin)

If on \mathbb{C}^{n} one considers the standard symplectic structure $\left(J_{0}, \omega\right)$, then the map

$$
J \mapsto\left(J+J_{0}\right)^{-1} \circ\left(J-J_{0}\right)
$$

is a diffeomorphism from $\mathcal{J}_{t}(\omega)$ (resp. $\mathcal{J}_{c}(\omega)$) onto the open unit ball in the vector space of (resp. symmetric) matrices L such that $J_{0} L=-L J_{0}$.

Then, if J_{0} is calibrated by ω and L is a symmetric matrix such that $\|L\|<1, J_{0} L=-L J_{0}$, then

Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples
Nakamura manifold
Families in dimension six
ω : a fixed non-degenerate closed 2-form ω on $\mathbb{R}^{2 n}=\mathbb{C}^{n}$. $\mathcal{J}_{c}(\omega)\left(\operatorname{resp} . \mathcal{J}_{t}(\omega)\right)=$ the set of almost-complex structures calibrated (resp. tamed) by ω.

Proposition (Audin)

If on \mathbb{C}^{n} one considers the standard symplectic structure $\left(J_{0}, \omega\right)$, then the map

$$
J \mapsto\left(J+J_{0}\right)^{-1} \circ\left(J-J_{0}\right)
$$

is a diffeomorphism from $\mathcal{J}_{t}(\omega)$ (resp. $\mathcal{J}_{c}(\omega)$) onto the open unit ball in the vector space of (resp. symmetric) matrices L such that $J_{0} L=-L J_{0}$.

Then, if J_{0} is calibrated by ω and L is a symmetric matrix such that $\|L\|<1, J_{0} L=-L J_{0}$, then

$$
(I+L) \circ J_{0} \circ(I+L)^{-1}
$$

is still an almost complex structure calibrated by ω.

Symplectic cones

$\mathcal{C}(M)$: symplectic cone of M, i.e. the image of the space of symplectic forms on M compatible with the orientation by the projection $\omega \mapsto[\omega] \in H^{2}(M, \mathbb{R})$.
T. J. Li e W. Zhang studied the following subcones of $\mathcal{C}(M)$: the J-tamed symplectic cone

$$
\mathcal{K}_{J}^{t}(M)=\left\{[\omega] \in H^{2}(M, \mathbb{R}) \mid \omega \text { is tamed by } J\right\}
$$

and the J-compatible symplectic cone

$$
\mathcal{K}^{C}(M)=\left\{[\omega] \in H^{2}(M, \mathbb{R}) \mid \omega \text { is compatible with } J\right\} .
$$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones

\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

> For almost-Kähler manifolds (M, J, ω), the cone $\mathcal{K}_{J}^{C}(M) \neq \emptyset$ and if J is integrable $K_{J}^{C}(M)$ coincides with the Kähler cone.

Symplectic cones

> $\mathcal{C}(M)$: symplectic cone of M, i.e. the image of the space of symplectic forms on M compatible with the orientation by the projection $\omega \mapsto[\omega] \in H^{2}(M, \mathbb{R})$.
> T. J. Li e W. Zhang studied the following subcones of $\mathcal{C}(M)$: the J-tamed symplectic cone

$$
K_{J}^{t}(M)=\left\{[\omega] \in H^{2}(M, \mathbb{R}) \mid \omega \text { is tamed by } J\right\}
$$

and the J-compatible symplectic cone

> For almost-Kähler manifolds (M, J, ω), the cone $\mathcal{K}_{J}^{C}(M) \neq \emptyset$ and if J is integrable $\mathcal{K}_{j}^{C}(M)$ coincides with the Kähler cone.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones

\mathcal{C}^{∞} pure and full almost complex structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Symplectic cones

$\mathcal{C}(M)$: symplectic cone of M, i.e. the image of the space of symplectic forms on M compatible with the orientation by the projection $\omega \mapsto[\omega] \in H^{2}(M, \mathbb{R})$.
T. J. Li e W. Zhang studied the following subcones of $\mathcal{C}(M)$: the J-tamed symplectic cone

$$
\mathcal{K}_{J}^{t}(M)=\left\{[\omega] \in H^{2}(M, \mathbb{R}) \mid \omega \text { is tamed by } J\right\}
$$

and the J-compatible symplectic cone

$$
\mathcal{K}_{J}^{c}(M)=\left\{[\omega] \in H^{2}(M, \mathbb{R}) \mid \omega \text { is compatible with } J\right\} .
$$

> For almost-Kähler manifolds (M, J, ω), the cone $\mathcal{K}_{j}^{C}(M) \neq \emptyset$ and if J is integrable $K_{J}^{C}(M)$ coincides with the Kähler cone.

Motivation

Tamed and calibrated almost complex structures
\mathcal{C}^{∞} pure and full almost complex structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples

Nakamura manifold
Families in dimension six

Symplectic cones

$\mathcal{C}(M)$: symplectic cone of M, i.e. the image of the space of symplectic forms on M compatible with the orientation by the projection $\omega \mapsto[\omega] \in H^{2}(M, \mathbb{R})$.
T. J. Li e W. Zhang studied the following subcones of $\mathcal{C}(M)$: the J-tamed symplectic cone

$$
\mathcal{K}_{J}^{t}(M)=\left\{[\omega] \in H^{2}(M, \mathbb{R}) \mid \omega \text { is tamed by } J\right\}
$$

and the J-compatible symplectic cone

$$
\mathcal{K}_{J}^{c}(M)=\left\{[\omega] \in H^{2}(M, \mathbb{R}) \mid \omega \text { is compatible with } J\right\} .
$$

For almost-Kähler manifolds (M, J, ω), the cone $\mathcal{K}_{J}^{c}(M) \neq \emptyset$ and if J is integrable $\mathcal{K}_{J}^{c}(M)$ coincides with the Kähler cone.

Motivation

Tamed and calibrated almost complex structures
\mathcal{C}^{∞} pure and full almost complex structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Theorem (Li, Zhang)

If J is intearable and $\mathcal{K}_{j}^{c}(M) \neq \emptyset$, one has

$$
\begin{aligned}
& \mathcal{K}_{J}^{t}(M)=\mathcal{K}_{J}^{c}(M)+\left[\left(H_{\partial}^{2,0}(M) \oplus H_{\partial}^{0,2}(M)\right) \cap H^{2}(M, \mathbb{R})\right], \\
& \mathcal{K}_{J}^{t}(M) \cap\left[H_{\partial}^{1,1}(M) \cap H^{2}(M, \mathbb{R})\right]=\mathcal{K}_{J}^{c}(M) .
\end{aligned}
$$

Problem

Find a relation between $K_{J}^{f}(M)$ and $K_{J}^{C}(M)$ in the case that J is non integrable, related to the question by Donaldson for $n=2$: if $\mathcal{K}_{J}^{t}(M) \neq \emptyset$ for some J, then $\mathcal{K}_{J}^{c}(M) \neq \emptyset$ as well?

To solve this problem Li and Zhang introduced the analogous of the previous (real) Dolbeault groups for general almost complex manifolds (M, J).

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

Theorem (Li, Zhang)

If J is integrable and $\mathcal{K}_{J}^{c}(M) \neq \emptyset$, one has

$$
\begin{aligned}
& \mathcal{K}_{J}^{t}(M)=\mathcal{K}_{J}^{c}(M)+\left[\left(H_{\bar{\partial}}^{2,0}(M) \oplus H_{\bar{\partial}}^{0,2}(M)\right) \cap H^{2}(M, \mathbb{R})\right], \\
& \mathcal{K}_{J}^{t}(M) \cap\left[H_{\bar{\partial}}^{1,1}(M) \cap H^{2}(M, \mathbb{R})\right]=\mathcal{K}_{J}^{c}(M) .
\end{aligned}
$$

Problem

Find a ralation between $K_{j}^{\dagger}(M)$ and $K_{j}^{c}(M)$ in the case that J is non integrable, related to the question by Donaldson for $n=2$. if $\mathcal{K}_{J}^{t}(M) \neq \emptyset$ for some J, then $\mathcal{K}_{J}^{c}(M) \neq \emptyset$ as well?

To solve this problem Li and Zhang introduced the analogous of the previous (real) Dolbeault groups for general almost complex manifolds (M, J).

Motivation

Tamed and calibrated almost complex structures
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

UNIVERSITA
DEGLISTUDI DITORINO

Theorem (Li, Zhang)

If J is integrable and $\mathcal{K}_{J}^{c}(M) \neq \emptyset$, one has

$$
\begin{aligned}
& \mathcal{K}_{J}^{t}(M)=\mathcal{K}_{J}^{c}(M)+\left[\left(H_{\bar{\partial}}^{2,0}(M) \oplus H_{\bar{\partial}}^{0,2}(M)\right) \cap H^{2}(M, \mathbb{R})\right], \\
& \mathcal{K}_{J}^{t}(M) \cap\left[H_{\bar{\partial}}^{1,1}(M) \cap H^{2}(M, \mathbb{R})\right]=\mathcal{K}_{J}^{c}(M) .
\end{aligned}
$$

Problem

Find a relation between $\mathcal{K}_{J}^{t}(M)$ and $\mathcal{K}_{J}^{c}(M)$ in the case that J is non integrable, related to the question by Donaldson for $n=2$: if $\mathcal{K}_{J}^{t}(M) \neq \emptyset$ for some J, then $\mathcal{K}_{J}^{c}(M) \neq \emptyset$ as well?

To solve this problem Li and Zhang introduced the analogous of the previous (real) Dolbeault groups for general almost complex manifolds (M, J).
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples
Nakamura manifold
Families in dimension six
References

\mathcal{C}^{∞} pure and full almost complex structures

On (M, J) for the space $\Omega^{k}(M)_{\mathbb{R}}$ of real smooth differential k-forms one has:

$$
\Omega^{k}(M)_{\mathbb{R}}=\bigoplus_{p+q=k} \Omega_{j}^{p, q}(M)_{\mathbb{R}}
$$

where

$$
\Omega_{j}^{p, q}(M)_{\mathbb{R}}=\left\{\alpha \in \Omega_{j}^{p, q}(M) \oplus \Omega_{j}^{q, p}(M) \mid \alpha=\bar{\alpha}\right\}
$$

S : a finite set of pairs of integers. Let

where $\mathcal{Z}_{j}^{p, q}$ and $\mathcal{B}_{j}^{p, q}$ are the spaces of real d-closed (resp. d-exacts) (p, q)-forms.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures

Calibrated and

4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples
Nakamura manifold
Families in dimension six

\mathcal{C}^{∞} pure and full almost complex structures

On (M, J) for the space $\Omega^{k}(M)_{\mathbb{R}}$ of real smooth differential k-forms one has:

$$
\Omega^{k}(M)_{\mathbb{R}}=\bigoplus_{p+q=k} \Omega_{j}^{p, q}(M)_{\mathbb{R}}
$$

where

$$
\Omega_{j}^{p, q}(M)_{\mathbb{R}}=\left\{\alpha \in \Omega_{j}^{p, q}(M) \oplus \Omega_{j}^{q, p}(M) \mid \alpha=\bar{\alpha}\right\} .
$$

S : a finite set of pairs of integers. Let

where $\mathcal{Z}_{j}^{p, q}$ and $\mathcal{B}_{j}^{p, q}$ are the spaces of real d-closed (resp. d-exacts) (p, q)-forms.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

\mathcal{C}^{∞} pure and full almost complex structures

On (M, J) for the space $\Omega^{k}(M)_{\mathbb{R}}$ of real smooth differential k-forms one has:

$$
\Omega^{k}(M)_{\mathbb{R}}=\bigoplus_{p+q=k} \Omega_{j}^{p, q}(M)_{\mathbb{R}},
$$

where

$$
\Omega_{j}^{p, q}(M)_{\mathbb{R}}=\left\{\alpha \in \Omega_{j}^{p, q}(M) \oplus \Omega_{j}^{q, p}(M) \mid \alpha=\bar{\alpha}\right\} .
$$

S : a finite set of pairs of integers. Let

$$
\mathcal{Z}_{J}^{S}=\bigoplus_{(p, q) \in S} \mathcal{Z}_{j}^{p, q}, \quad \mathcal{B}_{J}^{S}=\bigoplus_{(p, q) \in S} \mathcal{B}_{j}^{p, q},
$$

where $\mathcal{Z}_{j}^{p, q}$ and $\mathcal{B}_{j}^{p, q}$ are the spaces of real d-closed (resp. d-exacts) (p, q)-forms.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case

Examples

Nakamura manifold
Families in dimension six

There is a natural map

$$
p S: Z_{J}^{S} / B S \rightarrow z S / B
$$

where \mathcal{B} is the space of d-exact forms.

We will write $\rho_{S}\left(\mathcal{Z}_{J}^{S} / \mathcal{B}_{j}^{S}\right)$ as $\mathcal{Z}_{J}^{S} / \mathcal{B}_{J}^{S}$.

Define

$$
\begin{gathered}
H_{J}^{S}(M)_{\mathbb{R}}=\left\{[\alpha] \mid \alpha \in Z_{J}^{S}\right\}=\frac{\mathcal{Z} S}{\mathcal{B}} \\
H_{J}^{1,1}(M)_{\mathbb{R}}+H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}} \subseteq H^{2}(M, \mathbb{R})
\end{gathered}
$$

Then

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
c^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

There is a natural map

$$
\rho_{S}: \mathcal{Z}_{J}^{S} / \mathcal{B}_{J}^{S} \rightarrow \mathcal{Z}_{J}^{S} / \mathcal{B}
$$

where \mathcal{B} is the space of d-exact forms.

We will write $\rho_{S}\left(\mathcal{Z}_{j}^{S} / \mathcal{B}_{j}^{S}\right)$ as $\mathcal{Z}_{j}^{S} / \mathcal{B}_{j}^{S}$

 Define

Motivation

Tamed and calibrated almost complex structures

Symplectic cones

```
C}\mp@subsup{}{}{\infty}\mathrm{ pure and full
```

almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

There is a natural map

$$
\rho_{S}: \mathcal{Z}_{J}^{S} / \mathcal{B}_{J}^{S} \rightarrow \mathcal{Z}_{J}^{S} / \mathcal{B}
$$

where \mathcal{B} is the space of d-exact forms.
We will write $\rho_{S}\left(\mathcal{Z}_{J}^{S} / \mathcal{B}_{j}^{S}\right)$ as $\mathcal{Z}_{J}^{S} / \mathcal{B}_{j}^{S}$.
Define

Motivation

Tamed and calibrated almost complex structures

Symplectic cones

```
C}\mp@subsup{}{}{\infty}\mathrm{ pure and full
```

almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

There is a natural map

$$
\rho_{S}: \mathcal{Z}_{J}^{S} / \mathcal{B}_{J}^{S} \rightarrow \mathcal{Z}_{J}^{S} / \mathcal{B}
$$

where \mathcal{B} is the space of d-exact forms.
We will write $\rho_{S}\left(\mathcal{Z}_{J}^{S} / \mathcal{B}_{J}^{S}\right)$ as $\mathcal{Z}_{J}^{S} / \mathcal{B}_{j}^{S}$.
Define

$$
H_{J}^{S}(M)_{\mathbb{R}}=\left\{[\alpha] \mid \alpha \in \mathcal{Z}_{J}^{S}\right\}=\frac{\mathcal{Z}_{J}^{S}}{\mathcal{B}} .
$$

Then

$$
H_{j}^{1,1}(M)_{\mathbb{R}}+H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}} \subseteq H^{2}(M, \mathbb{R}) .
$$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case

Examples

Nakamura manifold
Families in dimension six

References

There is a natural map

$$
\rho_{S}: \mathcal{Z}_{J}^{S} / \mathcal{B}_{J}^{S} \rightarrow \mathcal{Z}_{J}^{S} / \mathcal{B}
$$

where \mathcal{B} is the space of d-exact forms.
We will write $\rho_{S}\left(\mathcal{Z}_{J}^{S} / \mathcal{B}_{j}^{S}\right)$ as $\mathcal{Z}_{J}^{S} / \mathcal{B}_{j}^{S}$.
Define

$$
H_{J}^{S}(M)_{\mathbb{R}}=\left\{[\alpha] \mid \alpha \in \mathcal{Z}_{J}^{S}\right\}=\frac{\mathcal{Z}_{J}^{S}}{\mathcal{B}} .
$$

Then

$$
H_{j}^{1,1}(M)_{\mathbb{R}}+H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}} \subseteq H^{2}(M, \mathbb{R})
$$

Motivation

Tamed and calibrated almost complex structures
Symplectic cones
C^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case

Examples

Nakamura manifold
Families in dimension six

Definition (Li, Zhang)

J is C^{∞} nure and full if and only if

$$
H^{2}(M, \mathbb{R})=H_{J}^{1,1}(M)_{\mathbb{R}} \oplus H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}}
$$

- J is \mathcal{C}^{∞} pure if and only if $H_{j}^{1,1}(M)_{\mathbb{R}} \cap H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}}=\{0\}$. - J is \mathcal{C}^{∞} full if and only if

$$
H^{2}(M, \mathbb{R})=H_{J}^{1,1}(M)_{\mathbb{R}}+H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}}
$$

Theorem (Li, Zhang)

If I is a C^{∞} full almost complex structure and $K_{j}(M) \neq 0$, then

$$
\mathcal{K}_{J}^{t}(M)=\mathcal{K}_{J}^{c}(M)+H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}}
$$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures

Calibrated and

4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

UNIVERSITA DEGLI STUDI DITORINO

Definition (Li, Zhang)

J is \mathcal{C}^{∞} pure and full if and only if

$$
H^{2}(M, \mathbb{R})=H_{J}^{1,1}(M)_{\mathbb{R}} \oplus H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}}
$$

- J is \mathcal{C}^{∞} pure if and only if $H_{J}^{1,1}(M)_{\mathbb{R}} \cap H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}}=\{0\}$.
- J is \mathcal{C}^{∞} full if and only if

$$
H^{2}(M, \mathbb{R})=H_{J}^{1,1}(M)_{\mathbb{R}}+H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}}
$$

Theorem (Li, Zhang)

Motivation

Tamed and calibrated almost complex structures Symplectic cones

```
C}\mp@subsup{}{}{\infty}\mathrm{ pure and full
```

almost complex
structures
Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

If J is a \mathcal{C}^{∞} full almost complex structure and $K_{j}(M) \neq 0$, then

$$
\mathcal{K}_{J}^{t}(M)=\mathcal{K}_{J}^{c}(M)+H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}}
$$

Definition (Li, Zhang)

J is \mathcal{C}^{∞} pure and full if and only if

$$
H^{2}(M, \mathbb{R})=H_{J}^{1,1}(M)_{\mathbb{R}} \oplus H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}}
$$

- J is \mathcal{C}^{∞} pure if and only if $H_{J}^{1,1}(M)_{\mathbb{R}} \cap H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}}=\{0\}$.
- J is \mathcal{C}^{∞} full if and only if

$$
H^{2}(M, \mathbb{R})=H_{J}^{1,1}(M)_{\mathbb{R}}+H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}}
$$

Theorem (Li, Zhang)

If J is a \mathcal{C}^{∞} full almost complex structure and $\mathcal{K}_{j}^{c}(M) \neq \emptyset$, then

$$
\mathcal{K}_{J}^{t}(M)=\mathcal{K}_{J}^{c}(M)+H_{J}^{(2,0),(0,2)}(M)_{\mathbb{R}} .
$$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Calibrated and 4-dimensional case

Proposition (-, Tomassini)

Let . . he a symplectic form on a compact manifold $M^{2 n}$. If J is an almost complex structure on $M^{2 n}$ calibrated by ω, then J is \mathcal{C}^{∞} pure.

Theorem (Draghici, Li, Zhang)

On a compact manifold M^{4} of real dimension 4 any almost complex structure is C^{∞} pure and full.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures

Calibrated and

4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Calibrated and 4-dimensional case

Proposition (-, Tomassini)

Let ω be a symplectic form on a compact manifold $M^{2 n}$. If J is an almost complex structure on $M^{2 n}$ calibrated by ω, then J is \mathcal{C}^{∞} pure.

Calibrated and

4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Calibrated and 4-dimensional case

Proposition (-, Tomassini)

Let ω be a symplectic form on a compact manifold $M^{2 n}$. If J is an almost complex structure on $M^{2 n}$ calibrated by ω, then J is \mathcal{C}^{∞} pure.

Theorem (Draghici, Li, Zhang)

On a compact manifold M^{4} of real dimension 4 any almost complex structure is \mathcal{C}^{∞} pure and full.

Calibrated and 4-dimensional case

Proposition (-, Tomassini)

Let ω be a symplectic form on a compact manifold $M^{2 n}$. If J is an almost complex structure on $M^{2 n}$ calibrated by ω, then J is \mathcal{C}^{∞} pure.

Theorem (Draghici, Li, Zhang)

On a compact manifold M^{4} of real dimension 4 any almost complex structure is \mathcal{C}^{∞} pure and full.

Problem

Does the previous property hold in higher dimension?

Example of non \mathcal{C}^{∞} pure almost complex structure

A compact manifold of real dimension 6 may admit non \mathcal{C}^{∞} pure almost complex structures.

Example

Consider the nilmanifold M^{6}, compact quotient of the Lie group:

The left-invariant almost complex structure on M^{6}, defined by

is not \mathcal{C}^{∞} pure, since one has that
$\left[\operatorname{Re}\left(\eta^{1} \wedge \bar{\eta}^{2}\right)\right]=\left[e^{13}+e^{24}\right]=\left[e^{24}\right]=\left[\operatorname{Re}\left(\eta^{1} \wedge \eta^{2}\right)\right]=\left[e^{13}-e^{24}\right]$.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

Example of non \mathcal{C}^{∞} pure almost complex structure

A compact manifold of real dimension 6 may admit non \mathcal{C}^{∞} pure almost complex structures.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures
Calibrated and 4-dimensional case

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

Example of non \mathcal{C}^{∞} pure almost complex structure

A compact manifold of real dimension 6 may admit non \mathcal{C}^{∞} pure almost complex structures.

Example

Consider the nilmanifold M^{6}, compact quotient of the Lie group:

$$
\left\{\begin{array}{l}
d e^{j}=0, \quad j=1, \ldots, 4 \\
d e^{5}=e^{12} \\
d e^{6}=e^{13}
\end{array}\right.
$$

The left-invariant almost complex structure on M^{6}, defined by
is not \mathcal{C}^{∞} pure, since one has that

Example of non \mathcal{C}^{∞} pure almost complex structure

A compact manifold of real dimension 6 may admit non \mathcal{C}^{∞} pure almost complex structures.

Example

Consider the nilmanifold M^{6}, compact quotient of the Lie group:

$$
\left\{\begin{array}{l}
d e^{j}=0, \quad j=1, \ldots, 4 \\
d e^{5}=e^{12} \\
d e^{6}=e^{13}
\end{array}\right.
$$

The left-invariant almost complex structure on M^{6}, defined by

$$
\eta^{1}=e^{1}+i e^{2}, \quad \eta^{2}=e^{3}+i e^{4}, \quad \eta^{3}=e^{5}+i e^{6},
$$

is not \mathcal{C}^{∞} pure, since one has that
$\left[\operatorname{Re}\left(\eta^{1} \wedge \bar{\eta}^{2}\right)\right]=\left[e^{13}+e^{24}\right]=\left[e^{24}\right]=\left[\operatorname{Re}\left(\eta^{1} \wedge \eta^{2}\right)\right]=\left[e^{13}-e^{24}\right]$.
UNIVERSITA
DEGII STUDI

Pure and full almost complex structures

(M, J) (almost) complex manifold of (real) dimension $2 n$.

$\mathcal{E}_{k}(M)$ the space of K-currents on M, i.e. the topological dual of $\Omega^{2 n-k}(M)$.

Since the smooth k-forms can be considered as
($2 n-k)$-currents, then

$$
H_{k}(M, \mathbb{R}) \cong H^{2 n-k}(M, \mathbb{R})
$$

> where $H_{k}(M, \mathbb{R})$ is the k-th de Rham homology group.
> - A k-current is a boundary if and only if it vanishes on the space of closed k-forms.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Pure and full almost complex structures

(M, J) (almost) complex manifold of (real) dimension $2 n$.
$\mathcal{E}_{k}(M)$ the space of k-currents on M, i.e. the topological dual of $\Omega^{2 n-k}(M)$.

Since the smooth k-forms can be considered as
($2 n$ - k)-currents, then

where $H_{k}(M, \mathbb{R})$ is the k-th de Rham homology group.

- A k-current is a boundary if and only if it vanishes on the space of closed k-forms.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Pure and full almost complex structures

(M, J) (almost) complex manifold of (real) dimension $2 n$.
$\mathcal{E}_{k}(M)$ the space of k-currents on M, i.e. the topological dual of $\Omega^{2 n-k}(M)$.

Since the smooth k-forms can be considered as
($2 n-k$)-currents, then

where $H_{k}(M, \mathbb{R})$ is the k-th de Rham homology group.

- A k-current is a boundary if and only if it vanishes on the space of closed k-forms.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case almost complex structure

Pure and full almost

complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples

Nakamura manifold
Families in dimension six

References

Pure and full almost complex structures

(M, J) (almost) complex manifold of (real) dimension $2 n$.
$\mathcal{E}_{k}(M)$ the space of k-currents on M, i.e. the topological dual of $\Omega^{2 n-k}(M)$.
Since the smooth k-forms can be considered as
($2 n-k$)-currents, then

$$
H_{k}(M, \mathbb{R}) \cong H^{2 n-k}(M, \mathbb{R})
$$

where $H_{k}(M, \mathbb{R})$ is the k-th de Rham homology group.

- A k-current is a boundary if and only if it vanishes on the space of closed k-forms.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples
Nakamura manifold
Families in dimension six

Pure and full almost complex structures

(M, J) (almost) complex manifold of (real) dimension $2 n$.
$\mathcal{E}_{k}(M)$ the space of k-currents on M, i.e. the topological dual of $\Omega^{2 n-k}(M)$.
Since the smooth k-forms can be considered as
($2 n-k$)-currents, then

$$
H_{k}(M, \mathbb{R}) \cong H^{2 n-k}(M, \mathbb{R})
$$

where $H_{k}(M, \mathbb{R})$ is the k-th de Rham homology group.

- A k-current is a boundary if and only if it vanishes on the space of closed k-forms.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

On (M, J) for the space of real k-currents $\mathcal{E}_{k}(M)_{\mathbb{R}}$ one has:

$$
\varepsilon_{k}(M) \mathbb{R}=\bigoplus_{p+q=k} \varepsilon_{p, q}^{\prime}(M) \mathbb{R}
$$

where $\mathcal{E}_{p, q}^{J}(M)_{\mathbb{R}}$ is the space of real k-currents of bidimension (p, q).

S : a finite set of pairs of integers. Let

$$
\mathcal{Z}_{S}^{J}=\bigoplus_{(p, q) \in S} \mathcal{Z}_{p, q}^{J}, \quad \mathcal{B}_{S}^{J}=\bigoplus_{(p, q) \in S} \mathcal{B}_{p, q}^{J}
$$

where $\mathcal{Z}_{p, q}^{J}$ and $\mathcal{B}_{p, q}^{J}$ are the space of real d-closed (resp. boundary) currents of bidimension (p, q).

Define

$$
H_{S}^{J}(M)_{\mathbb{R}}=\left\{[\alpha] \mid \alpha \in \mathcal{Z}_{S}^{J}\right\}=\frac{\mathcal{Z}_{S}^{J}}{\mathcal{B}}
$$

where \mathcal{B} denotes the space of currents which are boundaries.

Motivation

Tamed and calibrated almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

On (M, J) for the space of real k-currents $\mathcal{E}_{k}(M)_{\mathbb{R}}$ one has:

$$
\mathcal{E}_{k}(M)_{\mathbb{R}}=\bigoplus_{p+q=k} \mathcal{E}_{p, q}^{J}(M)_{\mathbb{R}}
$$

where $\mathcal{E}_{p, q}^{J}(M)_{\mathbb{R}}$ is the space of real k-currents of bidimension (p, q).

S : a finite set of pairs of integers. Let

where $\mathcal{Z}_{p, q}^{J}$ and $\mathcal{B}_{p, q}^{J}$ are the space of real d-closed (resp.
boundary) currents of bidimension (p, q).
Define

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost

complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

On (M, J) for the space of real k-currents $\mathcal{E}_{k}(M)_{\mathbb{R}}$ one has:

$$
\mathcal{E}_{k}(M)_{\mathbb{R}}=\bigoplus_{p+q=k} \mathcal{E}_{p, q}^{J}(M)_{\mathbb{R}}
$$

where $\mathcal{E}_{p, q}^{J}(M)_{\mathbb{R}}$ is the space of real k-currents of bidimension (p, q).
S : a finite set of pairs of integers. Let

$$
\mathcal{Z}_{S}^{J}=\bigoplus_{(p, q) \in S} \mathcal{Z}_{p, q}^{J}, \quad \mathcal{B}_{S}^{J}=\bigoplus_{(p, q) \in S} \mathcal{B}_{p, q}^{J},
$$

where $\mathcal{Z}_{p, q}^{J}$ and $\mathcal{B}_{p, q}^{J}$ are the space of real d-closed (resp. boundary) currents of bidimension (p, q).

Define
where \mathcal{B} denotes the space of currents which are boundaries.

Motivation

Tamed and calibrated almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples

Nakamura manifold
Families in dimension six

On (M, J) for the space of real k-currents $\mathcal{E}_{k}(M)_{\mathbb{R}}$ one has:

$$
\mathcal{E}_{k}(M)_{\mathbb{R}}=\bigoplus_{p+q=k} \mathcal{E}_{p, q}^{J}(M)_{\mathbb{R}}
$$

where $\mathcal{E}_{p, q}^{J}(M)_{\mathbb{R}}$ is the space of real k-currents of bidimension (p, q).
S : a finite set of pairs of integers. Let

$$
\mathcal{Z}_{S}^{J}=\bigoplus_{(p, q) \in S} \mathcal{Z}_{p, q}^{J}, \quad \mathcal{B}_{S}^{J}=\bigoplus_{(p, q) \in S} \mathcal{B}_{p, q}^{J},
$$

where $\mathcal{Z}_{p, q}^{J}$ and $\mathcal{B}_{p, q}^{J}$ are the space of real d-closed (resp. boundary) currents of bidimension (p, q).
Define

$$
H_{S}^{J}(M)_{\mathbb{R}}=\left\{[\alpha] \mid \alpha \in \mathcal{Z}_{S}^{J}\right\}=\frac{\mathcal{Z}_{S}^{J}}{\mathcal{B}}
$$

where \mathcal{B} denotes the space of currents which are boundaries.

Motivation

Tamed and calibrated almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples

Nakamura manifold
Families in dimension six

Definition (Li, Zhang)

$$
\begin{aligned}
& \text { An almost onmplex structure } J \text { is pure if } \\
& H_{1,1}^{J}(M) \mathbb{R} \cap H_{(2,0),(0,2)}^{J}(M)_{\mathbb{R}}=\{0\} \text { or equivalently if } \\
& \pi_{1,1} B_{2} \cap Z_{1,1}^{J}=B_{1,1}^{J} \\
& J \text { is full if } H_{2}(M, \mathbb{R})=H_{1,1}^{J}(M) \mathbb{R}+H_{(2,0),(0,2)}^{J}(M) \mathbb{R} \text {. }
\end{aligned}
$$

Problem

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

Definition (Li, Zhang)

An almost complex structure J is pure if

$H_{1,1}^{J}(M)_{\mathbb{R}} \cap H_{(2,0),(0,2)}^{J}(M)_{\mathbb{R}}=\{0\}$ or equivalently if
$\pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J}=\mathcal{B}_{1,1}^{J}$.
J is full if $H_{2}(M, \mathbb{R})=H_{1,1}^{J}(M)_{\mathbb{R}}+H_{(2,0),(0,2)}^{J}(M)_{\mathbb{R}}$.

Problem
Relation between c® pure and full and pure and full?

Motivation

Tamed and calibrated almost complex structures Symplectic cones \mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost

complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case

Examples

Nakamura manifold
Families in dimension six

Definition (Li, Zhang)

An almost complex structure J is pure if $H_{1,1}^{J}(M)_{\mathbb{R}} \cap H_{(2,0),(0,2)}^{J}(M)_{\mathbb{R}}=\{0\}$ or equivalently if $\pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J}=\mathcal{B}_{1,1}^{J}$.
J is full if $H_{2}(M, \mathbb{R})=H_{1,1}^{J}(M)_{\mathbb{R}}+H_{(2,0),(0,2)}^{J}(M)_{\mathbb{R}}$.

Problem

Relation between \mathcal{C}^{∞} pure and full and pure and full?

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case condition
Sketch of the Proof Integrable case

Examples

Nakamura manifold
Families in dimension six

Main result

If a 2-form ω on $M^{2 n}$ is not necessarily closed but it is only non-degenerate, $\left(M^{2 n}, \omega\right)$ is called almost symplectic.

Theorem (- Tomacsini)

Let $\left(M^{2 n}, \omega\right)$ be an almost symplectic compact manifold and J be a \mathcal{C}^{∞} pure and full almost complex structure calibrated by ω. Then J is pure.
If, in addiltion, either $n=2$ or any class in $H_{j}^{1+1}\left(M^{2 n}\right)_{R}$
$\left(H_{j}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}\right.$ resp.) has a harmonic representative in $Z_{j}^{1,1}$ $\left(\mathcal{Z}_{J}^{(2,0),(0,2)}\right.$ resp.) with respect to the metric induced by ω and J, then J is pure and full.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

Remark

- In order to get the pureness of J, it is enough to assume that \checkmark is \mathcal{C}^{∞} full.
- If $n=2$, then by previous Theorem any almost complex structure J is pure and full.

Main result

If a 2-form ω on $M^{2 n}$ is not necessarily closed but it is only non-degenerate, $\left(M^{2 n}, \omega\right)$ is called almost symplectic.

Theorem (-, Tomassini)
Let $\left(M^{2 n}, \omega\right)$ be an almost symplectic compact manifold and J be a ${ }^{\infty}$ pure and full almost complex structure calibrated by ω. Then J is pure.
If, in addition, either $n=2$ or any class in $H_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}}$ $\left(H_{J}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}\right.$ resp.) has a harmonic representative in $\mathcal{Z}_{j}^{1,1}$ $\mathcal{Z}_{1}^{(2,0),(0,2)}$ resp.) with respect to the metric induced by ω and J, then J is pure and full.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Main result

If a 2-form ω on $M^{2 n}$ is not necessarily closed but it is only non-degenerate, $\left(M^{2 n}, \omega\right)$ is called almost symplectic.

Theorem (-, Tomassini)

Let $\left(M^{2 n}, \omega\right)$ be an almost symplectic compact manifold and J be a \mathcal{C}^{∞} pure and full almost complex structure calibrated by ω. Then J is pure.
If, in addition, either $n=2$ or any class in $H_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}}$ $\left(H_{J}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}\right.$ resp.) has a harmonic representative in $\mathcal{Z}_{j}^{1,1}$ $\left(\mathcal{Z}_{J}^{(2,0),(0,2)}\right.$ resp.) with respect to the metric induced by ω and J, then J is pure and full.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples

Nakamura manifold
Families in dimension six
\square

- In order to get the pureness of J, it is enough to assume that
- If $n=2$, then by previous Theorem any almost complex structure J is pure and full.

Main result

If a 2 -form ω on $M^{2 n}$ is not necessarily closed but it is only non-degenerate, $\left(M^{2 n}, \omega\right)$ is called almost symplectic.

Theorem (-, Tomassini)

Let $\left(M^{2 n}, \omega\right)$ be an almost symplectic compact manifold and J be aC ${ }^{\infty}$ pure and full almost complex structure calibrated by ω. Then J is pure.
If, in addition, either $n=2$ or any class in $H_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}}$ $\left(H_{J}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}\right.$ resp.) has a harmonic representative in $\mathcal{Z}_{j}^{1,1}$ $\left(\mathcal{Z}_{J}^{(2,0),(0,2)}\right.$ resp.) with respect to the metric induced by ω and J, then J is pure and full.

Remark

- In order to get the pureness of J, it is enough to assume that J is \mathcal{C}^{∞} full.
- If $n=2$, then by previous Theorem any almost complex structure J is pure and full.

Sketch of the proof

We start to prove that J is pure, i.e. $\pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J}=\mathcal{B}_{1,1}^{J}$.
Let $T \in \pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J} \Rightarrow T=\pi_{1,1} d S$, where S is a real
3 -current and $d\left(\pi_{1,1} d S\right)=0$.
We have to show that $T=\pi_{1,1} d S$ is a boundary, i.e. that $T(\alpha)=0$, for any closed real 2-form α.
If α is exact, then $\left(\pi_{1,1} d S\right)(\alpha)=0$.
If $[\alpha] \neq 0 \in H^{2}\left(M^{2 n}, \mathbb{R}\right)$, since J is \mathcal{C}^{∞} pure and full, we have $a=a_{1}+a_{2}+d^{\prime}$, with $a_{1} \in \mathcal{Z}_{j}^{1,1}, a_{2} \in \mathcal{Z}_{j}^{(2,0),(0,2)}$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

Then

$$
T(\alpha)=\left(\pi_{1,1} d S\right)(\alpha)=\left(\pi_{1,1} d S\right)\left(\alpha_{1}+\alpha_{2}\right)=(d S)\left(\alpha_{1}\right)=0
$$

Sketch of the proof

We start to prove that J is pure, i.e. $\pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J}=\mathcal{B}_{1,1}^{J}$. Let $T \in \pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J} \Rightarrow T=\pi_{1,1} d S$, where S is a real 3 -current and $d\left(\pi_{1,1} d S\right)=0$. We have to show that $T=\pi_{1,1} \mathrm{~d} S$ is a boundary, i.e. that $T(\alpha)=0$, for any closed real 2-form α.
If α is exact, then $\left(\pi_{1,1} d S\right)(\alpha)=0$.
If $[\alpha] \neq 0 \in H^{2}\left(M^{2 n}, \mathbb{R}\right)$, since J is \mathcal{C}^{∞} pure and full, we have $\alpha=\alpha_{1}+\alpha_{2}+d \gamma$, with $\alpha_{1} \in \mathcal{Z}_{j}^{1,1}, \alpha_{2} \in \mathcal{Z}_{j}^{(2,0),(0,2)}$.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

$$
T(\alpha)=\left(\pi_{1,1} d S\right)(\alpha)=\left(\pi_{1,1} d S\right)\left(\alpha_{1}+\alpha_{2}\right)=(d S)\left(\alpha_{1}\right)=0
$$

Sketch of the proof

We start to prove that J is pure, i.e. $\pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J}=\mathcal{B}_{1,1}^{J}$. Let $T \in \pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J} \Rightarrow T=\pi_{1,1} d S$, where S is a real 3 -current and $d\left(\pi_{1,1} d S\right)=0$.
We have to show that $T=\pi_{1,1} d S$ is a boundary, i.e. that $T(\alpha)=0$, for any closed real 2-form α.
If α is exact, then $\left(\pi_{1,1} d S\right)(\alpha)=0$.
If $[\alpha] \neq 0 \in H^{2}\left(M^{2 n}, \mathbb{R}\right)$, since J is C^{∞} pure and full, we have

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Sketch of the proof

We start to prove that J is pure, i.e. $\pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J}=\mathcal{B}_{1,1}^{J}$.
Let $T \in \pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J} \Rightarrow T=\pi_{1,1} d S$, where S is a real 3 -current and $d\left(\pi_{1,1} d S\right)=0$.
We have to show that $T=\pi_{1,1} d S$ is a boundary, i.e. that $T(\alpha)=0$, for any closed real 2-form α.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Sketch of the proof

We start to prove that J is pure, i.e. $\pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J}=\mathcal{B}_{1,1}^{J}$.
Let $T \in \pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J} \Rightarrow T=\pi_{1,1} d S$, where S is a real 3 -current and $d\left(\pi_{1,1} d S\right)=0$.
We have to show that $T=\pi_{1,1} d S$ is a boundary, i.e. that $T(\alpha)=0$, for any closed real 2-form α.
If α is exact, then $\left(\pi_{1,1} d S\right)(\alpha)=0$.
If $[\alpha] \neq 0 \in H^{2}\left(M^{2 n}, \mathbb{R}\right)$, since J is \mathcal{C}^{∞} pure and full, we have

$$
\alpha=\alpha_{1}+\alpha_{2}+d \gamma, \text { with } \alpha_{1} \in \mathcal{Z}_{j}^{1,1}, \alpha_{2} \in \mathcal{Z}_{J}^{(2,0),(0,2)}
$$

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples
Nakamura manifold
Families in dimension six

Sketch of the proof

We start to prove that J is pure, i.e. $\pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J}=\mathcal{B}_{1,1}^{J}$.
Let $T \in \pi_{1,1} \mathcal{B}_{2} \cap \mathcal{Z}_{1,1}^{J} \Rightarrow T=\pi_{1,1} d S$, where S is a real 3 -current and $d\left(\pi_{1,1} d S\right)=0$.
We have to show that $T=\pi_{1,1} d S$ is a boundary, i.e. that $T(\alpha)=0$, for any closed real 2-form α.
If α is exact, then $\left(\pi_{1,1} d S\right)(\alpha)=0$.
If $[\alpha] \neq 0 \in H^{2}\left(M^{2 n}, \mathbb{R}\right)$, since J is \mathcal{C}^{∞} pure and full, we have

$$
\alpha=\alpha_{1}+\alpha_{2}+d \gamma, \text { with } \alpha_{1} \in \mathcal{Z}_{j}^{1,1}, \alpha_{2} \in \mathcal{Z}_{J}^{(2,0),(0,2)}
$$

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples

Nakamura manifold
Families in dimension six

Then

$$
T(\alpha)=\left(\pi_{1,1} d S\right)(\alpha)=\left(\pi_{1,1} d S\right)\left(\alpha_{1}+\alpha_{2}\right)=(d S)\left(\alpha_{1}\right)=0
$$

- If $n=2$, let $[T] \in H_{2}\left(M^{4}, \mathbb{R}\right)$; then \exists a smooth closed 2 -form α such that $[T]=[\alpha]$.
Since J is $C \infty$ full, we have that $[a]=\left[a_{1}\right]+\left[a_{2}\right]$, with $\alpha_{1} \in Z_{j}^{1}$ and $\alpha_{2} \in \mathcal{Z}_{J}^{(2,0),(0,2)}$.
- If $n>2$, let $[T] \in H_{2}\left(M^{2 n}, \mathbb{R}\right)$, then \exists a smooth harmonic $(2 n-2)$-form β such that $[T]=[\beta]$.
The 2 -form $\gamma=* \beta$ defines $[\gamma] \in H^{2}\left(M^{2 n}, \mathbb{R}\right)$. By the assumption, \exists real harmonic forms $\gamma_{1} \in \Omega_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}}$ and $\gamma_{2} \in \Omega_{j}^{(20),(02)}\left(M^{2 n}\right)$ such that $[h]=\left[\gamma_{1}\right]+\left[\gamma_{2}\right]$.
The ($2 n-2$)-forms $\beta_{1}=* \gamma_{1}$ and $\beta_{2}=* \gamma_{2}$ then can be viewed as elements respectively of $\mathcal{Z}_{1,1}^{J}$ and $\mathcal{Z}_{(2,0),(0,2)}^{J} \Longrightarrow$ $[T]=\left[\beta_{1}\right]+\left[\beta_{2}\right]$.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

- If $n=2$, let $[T] \in H_{2}\left(M^{4}, \mathbb{R}\right)$; then \exists a smooth closed 2-form α such that $[T]=[\alpha]$.
Since J is \mathcal{C}^{∞} full, we have that $[\alpha]=\left[\alpha_{1}\right]+\left[\alpha_{2}\right]$, with $\alpha_{1} \in \mathcal{Z}_{j}^{1,1}$ and $\alpha_{2} \in \mathcal{Z}_{J}^{(2,0),(0,2)}$.
- If $n>2$, let $[T] \in H_{2}\left(M^{2 n}, \mathbb{R}\right)$, then \exists a smooth harmonic $(2 n-2)$-form β such that $[T]=[\beta]$.
The 2 -form $\gamma=* \beta$ defines $[\gamma] \in H^{2}\left(M^{2 n}, \mathbb{R}\right)$. By the assumption, \exists real harmonic forms $\gamma_{1} \in \Omega_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}}$ and $\gamma_{2} \in \Omega_{j}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}$ such that $[\gamma]=\left[\gamma_{1}\right]+\left[\gamma_{2}\right]$.
The $(2 n-2)$-forms $\beta_{1}=* \gamma_{1}$ and $\beta_{2}=* \gamma_{2}$ then can be viewed as elements respectively of $\mathcal{Z}_{1,1}^{J}$ and $\mathcal{Z}_{(2,0),(0,2)}^{J} \Longrightarrow$ $[T]=\left[\beta_{1}\right]+\left[\beta_{2}\right]$.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result

Sketch of the proof

Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

- If $n=2$, let $[T] \in H_{2}\left(M^{4}, \mathbb{R}\right)$; then \exists a smooth closed 2-form α such that $[T]=[\alpha]$.
Since J is \mathcal{C}^{∞} full, we have that $[\alpha]=\left[\alpha_{1}\right]+\left[\alpha_{2}\right]$, with $\alpha_{1} \in \mathcal{Z}_{j}^{1,1}$ and $\alpha_{2} \in \mathcal{Z}_{J}^{(2,0),(0,2)}$.
- If $n>2$, let $[T] \in H_{2}\left(M^{2 n}, \mathbb{R}\right)$, then \exists a smooth harmonic $(2 n-2)$-form β such that $[T]=[\beta]$.
The 2 -form $\gamma=* \beta$ defines $[\gamma] \in H^{2}\left(M^{n}, \mathbb{R}\right)$. By the assumption, \exists real harmonic forms $\gamma_{1} \in \Omega_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}}$ and $\gamma_{2} \in \Omega_{j}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}$ such that $[\gamma]=\left[\gamma_{1}\right]+\left[\gamma_{2}\right]$. The $(2 n-2)$-forms $\beta_{1}=* \gamma_{1}$ and $\beta_{2}=* \gamma_{2}$ then can be viewed as elements respectively of $\mathcal{Z}_{1,1}^{J}$ and $\mathcal{Z}_{(2,0),(0,2)}^{J} \Longrightarrow$ $[T]=\left[\beta_{1}\right]+\left[\beta_{2}\right]$.

Motivation

Tamed and calibrated almost complex structures Symplectic cones \mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

- If $n=2$, let $[T] \in H_{2}\left(M^{4}, \mathbb{R}\right)$; then \exists a smooth closed 2-form α such that $[T]=[\alpha]$.
Since J is \mathcal{C}^{∞} full, we have that $[\alpha]=\left[\alpha_{1}\right]+\left[\alpha_{2}\right]$, with $\alpha_{1} \in \mathcal{Z}_{j}^{1,1}$ and $\alpha_{2} \in \mathcal{Z}_{J}^{(2,0),(0,2)}$.
- If $n>2$, let $[T] \in H_{2}\left(M^{2 n}, \mathbb{R}\right)$, then \exists a smooth harmonic $(2 n-2)$-form β such that $[T]=[\beta]$.

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case condition
Sketch of the Proof Integrable case

Examples

Nakamura manifold
Families in dimension six

- If $n=2$, let $[T] \in H_{2}\left(M^{4}, \mathbb{R}\right)$; then \exists a smooth closed 2-form α such that $[T]=[\alpha]$.
Since J is \mathcal{C}^{∞} full, we have that $[\alpha]=\left[\alpha_{1}\right]+\left[\alpha_{2}\right]$, with $\alpha_{1} \in \mathcal{Z}_{j}^{1,1}$ and $\alpha_{2} \in \mathcal{Z}_{J}^{(2,0),(0,2)}$.
- If $n>2$, let $[T] \in H_{2}\left(M^{2 n}, \mathbb{R}\right)$, then \exists a smooth harmonic $(2 n-2)$-form β such that $[T]=[\beta]$.
The 2-form $\gamma=* \beta$ defines $[\gamma] \in H^{2}\left(M^{2 n}, \mathbb{R}\right)$. By the assumption, \exists real harmonic forms $\gamma_{1} \in \Omega_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}}$ and $\gamma_{2} \in \Omega_{J}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}$ such that $[\gamma]=\left[\gamma_{1}\right]+\left[\gamma_{2}\right]$.
The (2n-2)-forms $\beta_{1}=* \gamma_{1}$ and $\beta_{2}=* \gamma_{2}$ then can be viewed as elements respectively of $\mathcal{Z}_{1,1}^{J}$ and $\mathcal{Z}_{(2,0),(0,2)}^{J} \Longrightarrow$
- If $n=2$, let $[T] \in H_{2}\left(M^{4}, \mathbb{R}\right)$; then \exists a smooth closed 2-form α such that $[T]=[\alpha]$.
Since J is \mathcal{C}^{∞} full, we have that $[\alpha]=\left[\alpha_{1}\right]+\left[\alpha_{2}\right]$, with $\alpha_{1} \in \mathcal{Z}_{j}^{1,1}$ and $\alpha_{2} \in \mathcal{Z}_{J}^{(2,0),(0,2)}$.
- If $n>2$, let $[T] \in H_{2}\left(M^{2 n}, \mathbb{R}\right)$, then \exists a smooth harmonic $(2 n-2)$-form β such that $[T]=[\beta]$.
The 2-form $\gamma=* \beta$ defines $[\gamma] \in H^{2}\left(M^{2 n}, \mathbb{R}\right)$. By the assumption, \exists real harmonic forms $\gamma_{1} \in \Omega_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}}$ and $\gamma_{2} \in \Omega_{J}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}$ such that $[\gamma]=\left[\gamma_{1}\right]+\left[\gamma_{2}\right]$.
The ($2 n-2$)-forms $\beta_{1}=* \gamma_{1}$ and $\beta_{2}=* \gamma_{2}$ then can be viewed as elements respectively of $\mathcal{Z}_{1,1}^{J}$ and $\mathcal{Z}_{(2,0),(0,2)}^{J} \Longrightarrow$ $[T]=\left[\beta_{1}\right]+\left[\beta_{2}\right]$.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof Integrable case

Examples

Nakamura manifold
Families in dimension six

UNIVERSITA DEGLI STUDI DITORINO

Link with Hard Lefschetz condition

A symplectic manifold $\left(M^{2 n}, \omega\right)$ satisfies the Hard Lefschetz condition if :

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Problem

Find for n - 2 an example of compact symplectic manifold $\left(M^{2 n}, \omega\right)$ which satisfies Hard Lefschetz condition and with an non pure and full almost complex structure calibrated by ω.

Link with Hard Lefschetz condition

A symplectic manifold ($M^{2 n}, \omega$) satisfies the Hard Lefschetz condition if :

$$
\omega^{k}: \Omega^{n-k}\left(M^{2 n}\right) \rightarrow \Omega^{n+k}\left(M^{2 n}\right), \alpha \mapsto \omega^{k} \wedge \alpha
$$

induce isomorphisms in cohomology.
Theorem (-, Tomassini)
Let $\left(M^{2 n}, \omega\right)$ be a compact symplectic manifold which satisfies Hard Lefschetz condition and J be a C^{∞} pure and full almost complex structure calibrated by ω. Then J is pure and full.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Problem
Find for $n>2$ an example of compact symplectic manifold $\left(M^{2 n}, \omega\right)$ which satisfies Hard Lefschetz condition and with an non pure and full almost complex structure calibrated by ω.

Link with Hard Lefschetz condition

A symplectic manifold $\left(M^{2 n}, \omega\right)$ satisfies the Hard Lefschetz condition if :

$$
\omega^{k}: \Omega^{n-k}\left(M^{2 n}\right) \rightarrow \Omega^{n+k}\left(M^{2 n}\right), \alpha \mapsto \omega^{k} \wedge \alpha
$$

induce isomorphisms in cohomology.

Theorem (-, Tomassini)

Let $\left(M^{2 n}, \omega\right)$ be a compact symplectic manifold which satisfies Hard Lefschetz condition and J be a \mathcal{C}^{∞} pure and full almost complex structure calibrated by ω. Then J is pure and full.

Link with Hard Lefschetz condition

A symplectic manifold $\left(M^{2 n}, \omega\right)$ satisfies the Hard Lefschetz condition if :

$$
\omega^{k}: \Omega^{n-k}\left(M^{2 n}\right) \rightarrow \Omega^{n+k}\left(M^{2 n}\right), \alpha \mapsto \omega^{k} \wedge \alpha
$$

induce isomorphisms in cohomology.

Theorem (-, Tomassini)

Let $\left(M^{2 n}, \omega\right)$ be a compact symplectic manifold which satisfies Hard Lefschetz condition and J be a \mathcal{C}^{∞} pure and full almost complex structure calibrated by ω. Then J is pure and full.

Problem

Find for $n>2$ an example of compact symplectic manifold $\left(M^{2 n}, \omega\right)$ which satisfies Hard Lefschetz condition and with an non pure and full almost complex structure calibrated by ω.

Sketch of the Proof

- If $n=2$ the result follows by the last Theorem.
- If $n>2 J$ is pure We have to show that

$$
H_{2}\left(M^{2 n}, \mathbb{R}\right)=H_{1,1}^{J}\left(M^{2 n}\right)_{\mathbb{R}} \oplus H_{(2,0),(0,2)}^{J}\left(M^{2 n}\right)_{\mathbb{R}}
$$

Let $a=[T] \in H_{2}\left(M^{2 n}, \mathbb{R}\right)$. Then $a=[\alpha]$, where $\alpha \in \Omega^{2 n-2}\left(M^{2 n}\right)$
is d-closed.
$H L$ condition $\Rightarrow \exists b \in H^{2}\left(M^{2 n}, \mathbb{R}\right), b=[\beta]$ such that
$a=b \cup[\omega]^{n-2}$, i.e.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Sketch of the Proof

- If $n=2$ the result follows by the last Theorem.

- If $n>2 J$ is pure. We have to show that

Let $a=[T] \in H_{2}\left(M^{2 n}, \mathbb{R}\right)$. Then $a=[\alpha]$, where $\alpha \in \Omega^{2 n-2}\left(M^{2 n}\right)$ is d-closed.
$H L$ condition $\Rightarrow \exists b \in H^{2}\left(M^{2 n}, \mathbb{R}\right), b=[\beta]$ such that
$a=b \cup[\omega]^{n-2}$, i.e.

$$
\left[\beta \wedge \omega^{n-2}\right]=[\alpha]
$$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Sketch of the Proof

- If $n=2$ the result follows by the last Theorem.
- If $n>2 J$ is pure. We have to show that

$$
H_{2}\left(M^{2 n}, \mathbb{R}\right)=H_{1,1}^{J}\left(M^{2 n}\right)_{\mathbb{R}} \oplus H_{(2,0),(0,2)}^{J}\left(M^{2 n}\right)_{\mathbb{R}} .
$$

\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof

Integrable case
Examples
Nakamura manifold
Families in dimension six

Sketch of the Proof

- If $n=2$ the result follows by the last Theorem.
- If $n>2 J$ is pure. We have to show that

$$
H_{2}\left(M^{2 n}, \mathbb{R}\right)=H_{1,1}^{J}\left(M^{2 n}\right)_{\mathbb{R}} \oplus H_{(2,0),(0,2)}^{J}\left(M^{2 n}\right)_{\mathbb{R}}
$$

Let $a=[T] \in H_{2}\left(M^{2 n}, \mathbb{R}\right)$. Then $a=[\alpha]$, where $\alpha \in \Omega^{2 n-2}\left(M^{2 n}\right)$ is d-closed.
$H L$ condition $\Rightarrow \exists b \in H^{2}\left(M^{2 n}, \mathbb{R}\right), b=[\beta]$ such that

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

Sketch of the Proof

- If $n=2$ the result follows by the last Theorem.
- If $n>2 J$ is pure. We have to show that

$$
H_{2}\left(M^{2 n}, \mathbb{R}\right)=H_{1,1}^{J}\left(M^{2 n}\right)_{\mathbb{R}} \oplus H_{(2,0),(0,2)}^{J}\left(M^{2 n}\right)_{\mathbb{R}}
$$

Let $a=[T] \in H_{2}\left(M^{2 n}, \mathbb{R}\right)$. Then $a=[\alpha]$, where $\alpha \in \Omega^{2 n-2}\left(M^{2 n}\right)$ is d-closed.

HL condition $\Rightarrow \exists b \in H^{2}\left(M^{2 n}, \mathbb{R}\right), b=[\beta]$ such that $a=b \cup[\omega]^{n-2}$, i.e.

$$
\left[\beta \wedge \omega^{n-2}\right]=[\alpha] .
$$

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
J is \mathcal{C}^{∞} pure and full \Rightarrow

$$
[\beta]=[\varphi]+[\psi]
$$

$$
\begin{aligned}
& {[\varphi] \in H_{J}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}},[\psi] \in H_{j}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}} \\
& \text { Then } \\
& \qquad a=[T]=\left[\beta \wedge \omega^{n-2}\right]=\left[\varphi \wedge \omega^{n-2}\right]+\left[\psi \wedge \omega^{n-2}\right] .
\end{aligned}
$$

Since φ, ψ are real 2 -forms of type $(1,1),(2,0)+(0,2)$ respectively and ω^{n-2} is a real form of type $(n-2, n-2) \Rightarrow$

$$
a=[T]=[R]+[S], \quad R \in H_{1,1}^{J}\left(M^{2 n}\right)_{\mathbb{R}}, S \in H_{(2,0),(0,2)}^{J}\left(M^{2 n}\right)_{\mathbb{R}}
$$

Motivation

Tamed and calibrated almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

$\Longrightarrow J$ is pure and full.

J is \mathcal{C}^{∞} pure and full \Rightarrow

$$
[\beta]=[\varphi]+[\psi],
$$

$$
[\varphi] \in H_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}},[\psi] \in H_{j}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}} .
$$

$$
a=[T]=\left[\beta \wedge \omega^{n-2}\right]=\left[\varphi \wedge \omega^{n-2}\right]+\left[\psi \wedge \omega^{n-2}\right] .
$$

Since φ, ψ are real 2 -forms of type $(1,1),(2,0)+(0,2)$ respectively and ω^{n-2} is a real form of type $(n-2, n-2) \Rightarrow$

$$
a=[T]=[R]+[S], \quad R \in H_{1,1}^{J}\left(M^{2 n}\right)_{\mathbb{R}}, S \in H_{(2,0),(0,2)}^{J}\left(M^{2 n}\right)_{\mathbb{R}}
$$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof

Integrable case
Examples
Nakamura manifold
Families in dimension six

References

J is \mathcal{C}^{∞} pure and full \Rightarrow

$$
[\beta]=[\varphi]+[\psi],
$$

$[\varphi] \in H_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}},[\psi] \in H_{j}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}$.

Then

$$
a=[T]=\left[\beta \wedge \omega^{n-2}\right]=\left[\varphi \wedge \omega^{n-2}\right]+\left[\psi \wedge \omega^{n-2}\right]
$$

Since φ, ψ are real 2 -forms of type $(1,1),(2,0)+(0,2)$ respectively and ω^{n-2} is a real form of type $(n-2, n-2)=$

$$
a=[T]=[R]+[S], \quad R \in H_{1,1}^{J}\left(M^{2 n}\right)_{\mathbb{R}}, S \in H_{(2,0),(0,2)}^{J}\left(M^{2 n}\right)_{\mathbb{R}}
$$

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof

Integrable case
Examples
Nakamura manifold
Families in dimension six
J is \mathcal{C}^{∞} pure and full \Rightarrow

$$
[\beta]=[\varphi]+[\psi],
$$

$[\varphi] \in H_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}},[\psi] \in H_{J}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}$.
Then

$$
a=[T]=\left[\beta \wedge \omega^{n-2}\right]=\left[\varphi \wedge \omega^{n-2}\right]+\left[\psi \wedge \omega^{n-2}\right] .
$$

Since φ, ψ are real 2 -forms of type $(1,1),(2,0)+(0,2)$ respectively and ω^{n-2} is a real form of type $(n-2, n-2) \Rightarrow$

$$
a=[T]=[R]+[S], \quad R \in H_{1,1}^{J}\left(M^{2 n}\right)_{\mathbb{R}}, S \in H_{(2,0),(0,2)}^{J}\left(M^{2 n}\right)_{\mathbb{R}} .
$$

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
J is \mathcal{C}^{∞} pure and full \Rightarrow

$$
[\beta]=[\varphi]+[\psi],
$$

$[\varphi] \in H_{j}^{1,1}\left(M^{2 n}\right)_{\mathbb{R}},[\psi] \in H_{J}^{(2,0),(0,2)}\left(M^{2 n}\right)_{\mathbb{R}}$.
Then

$$
a=[T]=\left[\beta \wedge \omega^{n-2}\right]=\left[\varphi \wedge \omega^{n-2}\right]+\left[\psi \wedge \omega^{n-2}\right] .
$$

Since φ, ψ are real 2 -forms of type $(1,1),(2,0)+(0,2)$ respectively and ω^{n-2} is a real form of type $(n-2, n-2) \Rightarrow$

$$
a=[T]=[R]+[S], \quad R \in H_{1,1}^{J}\left(M^{2 n}\right)_{\mathbb{R}}, S \in H_{(2,0),(0,2)}^{J}\left(M^{2 n}\right)_{\mathbb{R}} .
$$

$\Longrightarrow J$ is pure and full.

Integrable case

> If J is integrable, in general it is not necessarily $\left(\mathcal{C}^{\infty}\right)$ pure and full.

> If J is an integrable almost complex structure and the Frölicher spectral sequence degenerates at E_{1}, then J is pure and full [Li, Zhang].

Theoram (-, Tomessini)

If $(M=\Gamma \backslash G, J)$ is a complex parallelizable manifold and $H^{2}(M, \mathbb{R}) \cong H^{2}(\mathfrak{g})$, then J is \mathcal{C}^{∞} full and it is pure. \Rightarrow Let (M, J) be a complex parallelizable nilmanifold. Then J is \mathcal{C}^{∞} full and it is pure.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

Integrable case

If J is integrable, in general it is not necessarily $\left(\mathcal{C}^{\infty}\right)$ pure and full.

If J is an integrable almost complex structure and the Frölicher spectral sequence degenerates at E_{1}, then J is pure and full [Li, Zhang].

Theorem (-, Tomassini)
If $(M=\Gamma \backslash G, J)$ is a complex parallelizable manifold and $H^{2}(M, \mathbb{R}) \cong H^{2}(\mathfrak{g})$, then J is \mathcal{C}^{∞} full and it is pure.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof

Integrable case

If J is integrable, in general it is not necessarily $\left(\mathcal{C}^{\infty}\right)$ pure and full.

If J is an integrable almost complex structure and the Frölicher spectral sequence degenerates at E_{1}, then J is pure and full [Li, Zhang].

Theorem (-, Tomassini)

If $(M=\Gamma \backslash G, J)$ is a complex parallelizable manifold and $H^{2}(M, \mathbb{R}) \cong H^{2}(\mathfrak{g})$, then J is \mathcal{C}^{∞} full and it is pure.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof
Integrable case

Examples

Nakamura manifold
Families in dimension six
\Rightarrow Let (M, J) be a complex parallelizable nilmanifold. Then J is \mathcal{C}^{∞} full and it is pure.

Integrable case

If J is integrable, in general it is not necessarily $\left(\mathcal{C}^{\infty}\right)$ pure and full.

If J is an integrable almost complex structure and the Frölicher spectral sequence degenerates at E_{1}, then J is pure and full [Li, Zhang].

Theorem (-, Tomassini)

If $(M=\Gamma \backslash G, J)$ is a complex parallelizable manifold and $H^{2}(M, \mathbb{R}) \cong H^{2}(\mathfrak{g})$, then J is \mathcal{C}^{∞} full and it is pure.
\Rightarrow Let (M, J) be a complex parallelizable nilmanifold. Then J is \mathcal{C}^{∞} full and it is pure.

Nakamura manifold

Let G be the solvable Lie group with structure equations

$G \cong\left(\mathbb{C}^{3}, *\right)$, with $*$ defined in terms of the coordinates $z_{j}=x_{j}+i x_{3+j}$ by
${ }^{t}\left(z_{1}, z_{2}, z_{3}\right) *^{t}\left(w_{1}, w_{2}, w_{3}\right)={ }^{t}\left(z_{1}+w_{1}, e^{-w_{1}} z_{2}+w_{2}, e^{w_{1}} z_{3}+w_{3}\right)$.

The Nakamura manifold is the compact quotient $X^{6}=\Gamma \backslash G$.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples

Nakamura manifold
Families in dimension six

UNIVERSITA
UNIVERSITA DITORINO

Nakamura manifold

Let G be the solvable Lie group with structure equations

$$
\left(0, e^{12}-e^{45},-e^{13}+e^{46}, 0, e^{15}-e^{24},-e^{16}+e^{34}\right) .
$$

> $G \cong\left(\mathbb{C}^{3}, *\right)$, with $*$ defined in terms of the coordinates $z_{j}=x_{j}+i x_{3+j}$ by
> ${ }^{t}\left(z_{1}, z_{2}, z_{3}\right) *^{t}\left(w_{1}, w_{2}, w_{3}\right)={ }^{t}\left(z_{1}+w_{1}, e^{-w_{1}} z_{2}+w_{2}, e^{w_{1}} z_{3}+w_{3}\right)$.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
References

The Nakamura manifold is the compact quotient $X^{6}=\Gamma \backslash G$.

Nakamura manifold

Let G be the solvable Lie group with structure equations

$$
\left(0, e^{12}-e^{45},-e^{13}+e^{46}, 0, e^{15}-e^{24},-e^{16}+e^{34}\right)
$$

$G \cong\left(\mathbb{C}^{3}, *\right)$, with $*$ defined in terms of the coordinates
$z_{j}=x_{j}+i x_{3+j}$ by

$$
{ }^{t}\left(z_{1}, z_{2}, z_{3}\right) *{ }^{t}\left(w_{1}, w_{2}, w_{3}\right)={ }^{t}\left(z_{1}+w_{1}, e^{-w_{1}} z_{2}+w_{2}, e^{w_{1}} z_{3}+w_{3}\right) .
$$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples

Nakamura manifold

Let G be the solvable Lie group with structure equations

$$
\left(0, e^{12}-e^{45},-e^{13}+e^{46}, 0, e^{15}-e^{24},-e^{16}+e^{34}\right)
$$

$G \cong\left(\mathbb{C}^{3}, *\right)$, with $*$ defined in terms of the coordinates
$z_{j}=x_{j}+i x_{3+j}$ by
${ }^{t}\left(z_{1}, z_{2}, z_{3}\right){ }^{t}\left(w_{1}, w_{2}, w_{3}\right)={ }^{t}\left(z_{1}+w_{1}, e^{-w_{1}} z_{2}+w_{2}, e^{w_{1}} z_{3}+w_{3}\right)$.

The Nakamura manifold is the compact quotient $X^{6}=\Gamma \backslash G$.

Motivation

Tamed and calibrated almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
References

UNIVERITAA

By de Bartolomeis-Tomassini we have

$H^{2}\left(X^{6}, \mathbb{R}\right)=\mathbb{R}<\left[e^{14}\right],\left[e^{26}-e^{35}\right],\left[e^{23}-e^{56}\right]$,
$\left[\cos \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\sin \left(2 x_{4}\right)\left(e^{26}+e^{35}\right)\right]$, $\left[\sin \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\cos \left(2 x_{4}\right)\left(e^{26}+e^{35}\right)\right]>$.

- X^{6} has a left-invariant J defined by:

$$
\eta^{1}=e^{1}+i e^{4}, \quad \eta^{2}=e^{3}+i e^{5}, \quad \eta^{3}=e^{6}+i e^{2}
$$

calibrated by $\omega=e^{14}+e^{35}+e^{62}$.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

By de Bartolomeis-Tomassini we have

$$
\begin{aligned}
H^{2}\left(X^{6}, \mathbb{R}\right)= & \mathbb{R}<\left[e^{14}\right],\left[e^{26}-e^{35}\right],\left[e^{23}-e^{56}\right], \\
& {\left[\cos \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\sin \left(2 x_{4}\right)\left(e^{26}+e^{35}\right)\right], } \\
& {\left[\sin \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\cos \left(2 x_{4}\right)\left(e^{26}+e^{35}\right)\right]>. }
\end{aligned}
$$

- X^{6} has a left-invariant J defined by:

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition

Sketch of the Proof
Integrable case

Examples

Nakamura manifold

Families in dimension six

By de Bartolomeis-Tomassini we have

$$
\begin{aligned}
H^{2}\left(X^{6}, \mathbb{R}\right)= & \mathbb{R}<\left[e^{14}\right],\left[e^{26}-e^{35}\right],\left[e^{23}-e^{56}\right], \\
& {\left[\cos \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\sin \left(2 x_{4}\right)\left(e^{26}+e^{35}\right)\right], } \\
& {\left[\sin \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\cos \left(2 x_{4}\right)\left(e^{26}+e^{35}\right)\right]>. }
\end{aligned}
$$

- X^{6} has a left-invariant J defined by:

$$
\eta^{1}=e^{1}+i e^{4}, \quad \eta^{2}=e^{3}+i e^{5}, \quad \eta^{3}=e^{6}+i e^{2}
$$

calibrated by $\omega=e^{14}+e^{35}+e^{62}$.

The harmonic forms

$$
\begin{aligned}
& e^{14} \cdot e^{26}-e^{35} \cdot \cos \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\sin \left(2 x_{4}\right)\left(e^{26}+e^{35}\right) \\
& \sin \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\cos \left(2 x_{4}\right)\left(e^{26}+e^{35}\right)
\end{aligned}
$$

are all of type $(1,1)$ and $e^{23}-e^{56}$ is of type $(2,0) \Rightarrow$ J is pure and full.

- X^{6} admits the pure and full bi-invariant complex structure J.

$$
\tilde{\eta}^{1}=e^{1}+i e^{4}, \quad \tilde{\eta}^{2}=e^{2}+i e^{5}, \quad \tilde{\eta}^{3}=e^{3}+i e^{6}
$$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

UNIVERSITA
UNIVERSITA DITORINO

The harmonic forms

$$
\begin{aligned}
& e^{14}, e^{26}-e^{35}, \cos \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\sin \left(2 x_{4}\right)\left(e^{26}+e^{35}\right), \\
& \sin \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\cos \left(2 x_{4}\right)\left(e^{26}+e^{35}\right)
\end{aligned}
$$

are all of type $(1,1)$ and $e^{23}-e^{56}$ is of type $(2,0) \Rightarrow$ J is pure and full.

- X^{6} admits the pure and full bi-invariant complex structure J:

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case

Examples

The harmonic forms

$$
\begin{aligned}
& e^{14}, e^{26}-e^{35}, \cos \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\sin \left(2 x_{4}\right)\left(e^{26}+e^{35}\right), \\
& \sin \left(2 x_{4}\right)\left(e^{23}+e^{56}\right)-\cos \left(2 x_{4}\right)\left(e^{26}+e^{35}\right)
\end{aligned}
$$

are all of type $(1,1)$ and $e^{23}-e^{56}$ is of type $(2,0) \Rightarrow$ J is pure and full.

- X^{6} admits the pure and full bi-invariant complex structure \tilde{J} :

$$
\tilde{\eta}^{1}=e^{1}+i e^{4}, \quad \tilde{\eta}^{2}=e^{2}+i e^{5}, \quad \tilde{\eta}^{3}=e^{3}+i e^{6} .
$$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples

Nakamura manifold

Families in dimension six

Families in dimension six

Consider the completely solvable Lie algebra $\mathfrak{s}=\mathfrak{s o l}(3) \oplus \mathfrak{s o l}(3)$ with structure equations

$$
\left(0,-f^{12}, f^{34}, 0, f^{15}, f^{46}\right)
$$

S admits a compact quotient $M^{6}=\Gamma \backslash S$ [Fernandez-Gray].

By Hattori's Theorem

$$
H^{2}\left(M^{6}, \mathbb{R}\right) \cong H^{*}(\mathfrak{s})=\mathbb{R}<\left[f^{14}\right],\left[f^{25}\right],\left[f^{36}\right]>
$$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
References
J_{0} defined by the $(1,0)$-forms

is almost-Kähler with respect to $\omega=f^{14}+f^{25}+f^{36}$.

Families in dimension six

Consider the completely solvable Lie algebra $\mathfrak{s}=\mathfrak{s o l}(3) \oplus \mathfrak{s o l}(3)$ with structure equations

$$
\left(0,-f^{12}, f^{34}, 0, f^{15}, f^{46}\right)
$$

S admits a compact quotient $M^{6}=\Gamma \backslash S$ [Fernandez-Gray].
By Hattori's Theorem

Motivation

Tamed and calibrated almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof Integrable case

Examples
Nakamura manifold
Families in dimension six
References
J_{0} defined by the $(1,0)$-forms

is almost-Kähler with respect to $\omega=f^{14}+f^{25}+f^{36}$.

Families in dimension six

Consider the completely solvable Lie algebra $\mathfrak{s}=\mathfrak{s o l}(3) \oplus \mathfrak{s o l}(3)$ with structure equations

$$
\left(0,-f^{12}, f^{34}, 0, f^{15}, f^{46}\right)
$$

S admits a compact quotient $M^{6}=\Gamma \backslash S$ [Fernandez-Gray].

 By Hattori's Theorem$$
H^{2}\left(M^{6}, \mathbb{R}\right) \cong H^{*}(\mathfrak{s})=\mathbb{R}<\left[f^{14}\right],\left[f^{25}\right],\left[f^{36}\right]>
$$

Motivation

Tamed and calibrated almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
References
J_{0} defined by the $(1,0)$-forms

is almost-Kähler with respect to $\omega=f^{14}+f^{25}+f^{36}$

Families in dimension six

Consider the completely solvable Lie algebra $\mathfrak{s}=\mathfrak{s o l}(3) \oplus \mathfrak{s o l}(3)$ with structure equations

$$
\left(0,-f^{12}, f^{34}, 0, f^{15}, f^{46}\right)
$$

S admits a compact quotient $M^{6}=\Gamma \backslash S$ [Fernandez-Gray]. By Hattori's Theorem

$$
H^{2}\left(M^{6}, \mathbb{R}\right) \cong H^{*}(\mathfrak{s})=\mathbb{R}<\left[f^{14}\right],\left[f^{25}\right],\left[f^{36}\right]>
$$

J_{0} defined by the $(1,0)$-forms

$$
\varphi^{1}=f^{1}+i f^{4}, \varphi^{2}=f^{2}+i f^{5}, \varphi^{3}=f^{3}+i f^{6}
$$

is almost-Kähler with respect to $\omega=f^{14}+f^{25}+f^{36}$.

Motivation

Tamed and calibrated almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full
almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
References

$\left(M^{6}, J_{0}, \omega\right)$ satisfies the Hard Lefschetz condition [Fernandez, Munoz] and $H^{2}\left(M^{6}, \mathbb{R}\right)=H_{j}^{1,1}(M)_{\mathbb{R}}$.

Define the family of almost complex structure

$$
J_{t}=\left(I+L_{t}\right) J_{0}\left(I+L_{t}\right)^{-1}
$$

with respect to the basis $\left(f^{1}, \ldots, f^{6}\right)$, where

$$
J_{0}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad L_{t}=\left(\begin{array}{cc}
0 & \| \\
t 1 & 0
\end{array}\right), \quad 6 t^{2}<1
$$

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

Then, J_{t} is a family of ω-calibrated almost complex structures.

(M^{6}, J_{0}, ω) satisfies the Hard Lefschetz condition [Fernandez, Munoz] and $H^{2}\left(M^{6}, \mathbb{R}\right)=H_{j_{0}}^{1,1}(M)_{\mathbb{R}}$.

Define the family of almost complex structure

with respect to the basis $\left(f^{1}, \ldots, f^{6}\right)$, where

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and 4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
References

Then, J_{t} is a family of ω-calibrated almost complex structures.
(M^{6}, J_{0}, ω) satisfies the Hard Lefschetz condition [Fernandez, Munoz] and $H^{2}\left(M^{6}, \mathbb{R}\right)=H_{j_{0}}^{1,1}(M)_{\mathbb{R}}$.
Define the family of almost complex structure

$$
J_{t}=\left(I+L_{t}\right) J_{0}\left(I+L_{t}\right)^{-1}
$$

with respect to the basis $\left(f^{1}, \ldots, f^{6}\right)$, where

$$
J_{0}=\left(\begin{array}{cc}
0 & -l \\
l & 0
\end{array}\right), \quad L_{t}=\left(\begin{array}{cc}
0 & t l \\
t l & 0
\end{array}\right), \quad 6 t^{2}<1 .
$$

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex structures

Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
References

Then, J_{t} is a family of ω-calibrated almost complex structures.

UNIVERSITA
DEGLISTUDI
DITORINO
DITORINO
(M^{6}, J_{0}, ω) satisfies the Hard Lefschetz condition [Fernandez, Munoz] and $H^{2}\left(M^{6}, \mathbb{R}\right)=H_{j_{0}}^{1,1}(M)_{\mathbb{R}}$.
Define the family of almost complex structure

$$
J_{t}=\left(I+L_{t}\right) J_{0}\left(I+L_{t}\right)^{-1}
$$

with respect to the basis $\left(f^{1}, \ldots, f^{6}\right)$, where

$$
J_{0}=\left(\begin{array}{cc}
0 & -l \\
l & 0
\end{array}\right), \quad L_{t}=\left(\begin{array}{cc}
0 & t l \\
t l & 0
\end{array}\right), \quad 6 t^{2}<1 .
$$

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
References

Then, J_{t} is a family of ω-calibrated almost complex structures.
\Longrightarrow Any J_{t} is \mathcal{C}^{∞} pure.

A basis of $(1,0)$ forms for J_{t} is

$$
\begin{aligned}
& \varphi_{t}^{1}=f^{1}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{1}+\frac{1+t^{2}}{1-t^{2}} f^{4}\right) \\
& \varphi_{t}^{2}=f^{2}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{2}+\frac{1+t^{2}}{1-t^{2}} f^{5}\right) \\
& \varphi_{t}^{3}=f^{3}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{3}+\frac{1+t^{2}}{1-t^{2}} f^{6}\right)
\end{aligned}
$$

Then J_{t} is also \mathcal{C}^{∞} full.
J_{t} is actually pure and full, since $\varphi_{t}^{1} \wedge \bar{\varphi}_{t}^{1}, \varphi_{t}^{2} \wedge \bar{\varphi}_{t}^{2}, \varphi_{t}^{3} \wedge \bar{\varphi}_{t}^{3}$ are harmonic.

The family \tilde{J}_{t} associated to the basis of $(1,0)$-forms

$$
\tilde{\varphi}_{t}^{1}=f^{1}+i\left(-2 t f^{2}+f^{4}\right), \tilde{\varphi}_{t}^{2}=f^{2}+i f^{5}, \tilde{\varphi}_{t}^{3}=f^{3}+i f^{6}
$$

is a family of pure and full ω-tamed almost complex structures.

Motivation

Tamed and calibrated almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

$$
\begin{aligned}
& \Longrightarrow \text { Any } J_{t} \text { is } \mathcal{C}^{\infty} \text { pure. } \\
& \text { A basis of }(1,0) \text {-forms for } J_{t} \text { is } \\
& \qquad \varphi_{t}^{1}=f^{1}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{1}+\frac{1+t^{2}}{1-t^{2}} f^{4}\right) \\
& \varphi_{t}^{2}=f^{2}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{2}+\frac{1+t^{2}}{1-t^{2}} f^{5}\right) \\
& \varphi_{t}^{3}=f^{3}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{3}+\frac{1+t^{2}}{1-t^{2}} f^{6}\right)
\end{aligned}
$$

Then J_{t} is also \mathcal{C}^{∞} full.
J_{t} is actually pure and full, since $\varphi_{t}^{1} \wedge \bar{\varphi}_{t}^{1}, \varphi_{t}^{2} \wedge \bar{\varphi}_{t}^{2}, \varphi_{t}^{3} \wedge \bar{\varphi}_{t}^{3}$ are harmonic.

The family \tilde{J}_{t} associated to the basis of $(1,0)$-forms

$$
\tilde{\varphi}_{t}^{1}=f^{1}+i\left(-2 t f^{2}+f^{4}\right), \tilde{\varphi}_{t}^{2}=f^{2}+i f^{5}, \tilde{\varphi}_{t}^{3}=f^{3}+i f^{6}
$$

is a family of pure and full ω-tamed almost complex structures.

Motivation

Tamed and calibrated almost complex structures

Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures

Main result

Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

\Longrightarrow Any J_{t} is \mathcal{C}^{∞} pure.

A basis of $(1,0)$-forms for J_{t} is

$$
\begin{aligned}
& \varphi_{t}^{1}=f^{1}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{1}+\frac{1+t^{2}}{1-t^{2}} 4^{4}\right), \\
& \varphi_{t}^{2}=f^{2}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{2}+\frac{1+t^{2}}{1-t^{2}}{ }^{5}\right), \\
& \varphi_{t}^{3}=f^{3}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{3}+\frac{1+t^{2}}{1-t^{2}}{ }^{6}\right) .
\end{aligned}
$$

Then J_{t} is also \mathcal{C}^{∞} full.

harmonic.

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
References

The family \tilde{J}_{t} associated to the basis of $(1,0)$-forms

\Longrightarrow Any J_{t} is \mathcal{C}^{∞} pure.
A basis of $(1,0)$-forms for J_{t} is

$$
\begin{aligned}
& \left.\varphi_{t}^{1}=f^{1}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{1}+\frac{1+t^{2}}{1-t^{2}}\right)^{4}\right), \\
& \varphi_{t}^{2}=f^{2}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{2}+\frac{1+t^{2}}{1-t^{2}}{ }^{5}\right), \\
& \varphi_{t}^{3}=f^{3}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{3}+\frac{1+t^{2}}{1-t^{2}} 2^{6}\right) .
\end{aligned}
$$

Then J_{t} is also \mathcal{C}^{∞} full.
J_{t} is actually pure and full, since $\varphi_{t}^{1} \wedge \bar{\varphi}_{t}^{1}, \varphi_{t}^{2} \wedge \bar{\varphi}_{t}^{2}, \varphi_{t}^{3} \wedge \bar{\varphi}_{t}^{3}$ are harmonic.

The family J_{t} associated to the basis of $(1,0)$-forms

Motivation

Tamed and calibrated almost complex structures Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six
References

$$
\hat{r}_{i}=f^{1}+i\left(-2 t f^{2}+f^{4}\right), \hat{r}_{i}^{2}=f^{2}+i f^{5}, \hat{r}_{i}^{3}=f^{3}+i f^{6}
$$

\Longrightarrow Any J_{t} is \mathcal{C}^{∞} pure.
A basis of $(1,0)$-forms for J_{t} is

$$
\begin{aligned}
& \varphi_{t}^{1}=f^{1}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{1}+\frac{1+t^{2}}{1-t^{2}}{ }^{4}\right), \\
& \varphi_{t}^{2}=f^{2}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{2}+\frac{1+t^{2}}{1-t^{2}}{ }^{5}\right), \\
& \varphi_{t}^{3}=f^{3}+i\left(\frac{2 t}{\left(1-t^{2}\right)} f^{3}+\frac{1+t^{2}}{1-t^{2}} 2^{6}\right) .
\end{aligned}
$$

Then J_{t} is also \mathcal{C}^{∞} full.
J_{t} is actually pure and full, since $\varphi_{t}^{1} \wedge \bar{\varphi}_{t}^{1}, \varphi_{t}^{2} \wedge \bar{\varphi}_{t}^{2}, \varphi_{t}^{3} \wedge \bar{\varphi}_{t}^{3}$ are harmonic.

The family \tilde{J}_{t} associated to the basis of (1,0)-forms

$$
\tilde{\varphi}_{t}^{1}=f^{1}+i\left(-2 t f^{2}+f^{4}\right), \tilde{\varphi}_{t}^{2}=f^{2}+i f^{5}, \tilde{\varphi}_{t}^{3}=f^{3}+i f^{6}
$$

is a family of pure and full ω-tamed almost complex structures.

Motivation

Tamed and calibrated almost complex structures
Symplectic cones
\mathcal{C}^{∞} pure and full almost complex
structures
Calibrated and
4-dimensional case
Example of non \mathcal{C}^{∞} pure almost complex structure

Pure and full almost complex structures
Main result
Sketch of the proof
Link with Hard Lefschetz condition
Sketch of the Proof
Integrable case
Examples
Nakamura manifold
Families in dimension six

References

T. Draghici, T.J. Li, W. Zhang, Symplectic forms and cohomology of almost complex 4-manifolds, preprint arXiv: 0812.3680, to appear in Int. Math. Res. Not..
A. Fino, A. Tomassini, On some cohomological properties of almost complex manifolds, preprint arXiv: 0807.1800, to appear in J. of Geom. Anal..
T. J. Li, W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, preprint arXiv:0708.2520.

