Split G_{2} geometries on solution space of 7 th order ODEs

Michał Godliński
Polish Academy of Sciences

Dirac operators and special geometries, 26 September 2009

Based on a work of M.Dunajski, MG and P.Nurowski, in preparation

Idea

$$
\begin{aligned}
& \qquad y_{n}=F\left(x, y, y_{1}, \ldots, y_{n-1}\right), \quad n \geq 3 \\
& \text { We admit contact transformations of variables }\left(x, y, \ldots, y_{n}\right)
\end{aligned}
$$

Idea

$$
y_{n}=F\left(x, y, y_{1}, \ldots, y_{n-1}\right), \quad n \geq 3 .
$$

We admit contact transformations of variables $\left(x, y, \ldots, y_{n}\right)$

$$
y=f\left(x ; c_{1}, \ldots, c_{n}\right)
$$

Space of solutions: M^{n} parameterized by $\left(c_{i}\right)$.

$$
y_{n}=F\left(x, y, y_{1}, \ldots, y_{n-1}\right), \quad n \geq 3
$$

We admit contact transformations of variables $\left(x, y, \ldots, y_{n}\right)$

$$
y=f\left(x ; c_{1}, \ldots, c_{n}\right)
$$

Space of solutions: M^{n} parameterized by $\left(c_{i}\right)$.
A point $y_{0} \in M^{n}:$ a solution $y=y_{0}(x)$.
Vectors tangent at y_{0} : solutions of the linerization around y_{0}.

$$
y_{n}=F\left(x, y, y_{1}, \ldots, y_{n-1}\right), \quad n \geq 3
$$

We admit contact transformations of variables $\left(x, y, \ldots, y_{n}\right)$

$$
y=f\left(x ; c_{1}, \ldots, c_{n}\right)
$$

Space of solutions: M^{n} parameterized by $\left(c_{i}\right)$.
A point $y_{0} \in M^{n}:$ a solution $y=y_{0}(x)$.
Vectors tangent at y_{0} : solutions of the linerization around y_{0}.

$$
y(x)=y_{0}(x)+\delta(x), \quad \delta_{n}=\partial_{y_{n-1}} F \cdot \delta_{n-1}+\ldots+\partial_{y} F \cdot \delta
$$

$$
y_{n}=F\left(x, y, y_{1}, \ldots, y_{n-1}\right), \quad n \geq 3
$$

We admit contact transformations of variables $\left(x, y, \ldots, y_{n}\right)$

$$
y=f\left(x ; c_{1}, \ldots, c_{n}\right)
$$

Space of solutions: M^{n} parameterized by $\left(c_{i}\right)$.
A point $y_{0} \in M^{n}$: a solution $y=y_{0}(x)$.
Vectors tangent at y_{0} : solutions of the linerization around y_{0}.

$$
y(x)=y_{0}(x)+\delta(x), \quad \delta_{n}=\partial_{y_{n-1}} F \cdot \delta_{n-1}+\ldots+\partial_{y} F \cdot \delta
$$

The linearization is trivializable if it may be transformed into $\delta_{n}(x)=0$.

Idea

What happens to $T_{y_{0}} M^{7}$ if the linearization is trivializable?

Tangent vectors $\leftrightarrow n-1$ st degree polynomials in x

Idea

What happens to $T_{y_{0}} M^{7}$ if the linearization is trivializable?
Tangent vectors $\leftrightarrow n-1$ st degree polynomials in x $\leftrightarrow n-1$ st degree homogeneous polynomials in t and $s,(x=t / s)$.

Idea

What happens to $T_{y_{0}} M^{7}$ if the linearization is trivializable?
Tangent vectors $\leftrightarrow n-1$ st degree polynomials in x
$\leftrightarrow n-1$ st degree homogeneous polynomials in t and $s,(x=t / s)$.
On $T_{y_{0}} M^{n}$ acts the group of linear transformations of t and s. V^{i} - i-dimensional irreducible representation of $G L(2, \mathbb{R})$.

$$
T_{y_{0}} M^{n}=S^{n-1} V^{2}=V^{n}
$$

Idea

Definition

$G L(2, \mathbb{R})$ geometry on M^{n} is a reduction of the frame bundle $F M^{n}$ to its $G L(2, \mathbb{R})$-subbundle, where $G L(2, \mathbb{R}) \subset G L(n, \mathbb{R})$ acts irreducibly.

Idea

Definition

$G L(2, \mathbb{R})$ geometry on M^{n} is a reduction of the frame bundle $F M^{n}$ to its $G L(2, \mathbb{R})$-subbundle, where $G L(2, \mathbb{R}) \subset G L(n, \mathbb{R})$ acts irreducibly.

Corollary

An ODE admits a $G L(2, \mathbb{R})$ geometry on its solution space iff the linearizations around its solutions are all trivial.

Idea

Definition

$G L(2, \mathbb{R})$ geometry on M^{n} is a reduction of the frame bundle $F M^{n}$ to its $G L(2, \mathbb{R})$-subbundle, where $G L(2, \mathbb{R}) \subset G L(n, \mathbb{R})$ acts irreducibly.

Corollary

An ODE admits a $G L(2, \mathbb{R})$ geometry on its solution space iff the linearizations around its solutions are all trivial.

Corollary

A 7-dimensional $G L(2, \mathbb{R})$ geometry uniquely defines a conformal split G_{2} geometry, since

$$
G L(2, \mathbb{R}) \subset \mathbb{R}_{+} \times \tilde{G}_{2} \subset C O(3,4)
$$

Idea

Definition

$G L(2, \mathbb{R})$ geometry on M^{n} is a reduction of the frame bundle $F M^{n}$ to its $G L(2, \mathbb{R})$-subbundle, where $G L(2, \mathbb{R}) \subset G L(n, \mathbb{R})$ acts irreducibly.

Corollary

An ODE admits a $G L(2, \mathbb{R})$ geometry on its solution space iff the linearizations around its solutions are all trivial.

Corollary

A 7-dimensional $G L(2, \mathbb{R})$ geometry uniquely defines a conformal split G_{2} geometry, since

$$
G L(2, \mathbb{R}) \subset \mathbb{R}_{+} \times \tilde{G}_{2} \subset C O(3,4)
$$

Wünschmann, Cartan, Chern, Bryant, Eastwood, Doubrov, Dunajski, Nurowski, Tod, MG,...

Jet space J^{6}

Graph of a function $x \mapsto(x, f(x))$ in the $x y$-space lifts to $x \mapsto\left(x, f(x), f^{\prime}(x), \ldots, f^{(6)}(x)\right)$.
J^{6} - the space where the lifted curves live.
$\left(x, y, y_{1}, y_{2}, \ldots, y_{6}\right)$ - local coordinates in $\mathcal{J}^{6}, \operatorname{dim} J^{6}=8$.

Jet space J^{6}

Graph of a function $x \mapsto(x, f(x))$ in the $x y$-space lifts to $x \mapsto\left(x, f(x), f^{\prime}(x), \ldots, f^{(6)}(x)\right)$.
J^{6} - the space where the lifted curves live.

$$
\left(x, y, y_{1}, y_{2}, \ldots, y_{6}\right)-\text { local coordinates in } \mathcal{J}^{6}, \operatorname{dim} J^{6}=8
$$

Geometry of J^{6} - contact distribution C spanned by all lifted curves. C has rank 2 and it is totally non-integrable

Contact transformations \equiv transformations preserving C.

J^{6} and space of solutions

Fix a 7th order ODE $y_{7}=F\left(x, y, y_{1}, \ldots, y_{6}\right)$.
Family of its solutions lift to a congruence in J^{6}
The lifts: $x \mapsto\left(x, f(x), f^{\prime}(x), \ldots, f^{(6)}(x)\right)$
One solution through any point in J^{6}.

J^{6} and space of solutions

Fix a 7 th order $\mathrm{ODE}_{y_{7}}=F\left(x, y, y_{1}, \ldots, y_{6}\right)$.
Family of its solutions lift to a congruence in J^{6}
The lifts: $x \mapsto\left(x, f(x), f^{\prime}(x), \ldots, f^{(6)}(x)\right)$ One solution through any point in J^{6}.

Contact geometry of 7th order ODEs

J^{6} equipped with
i) the contact distribution C ,
ii) the congruence of solutions (in C).

J^{6} and space of solutions

Fix a 7 th order ODE $y_{7}=F\left(x, y, y_{1}, \ldots, y_{6}\right)$.
Family of its solutions lift to a congruence in J^{6}
The lifts: $x \mapsto\left(x, f(x), f^{\prime}(x), \ldots, f^{(6)}(x)\right)$ One solution through any point in J^{6}.

Contact geometry of 7th order ODEs

J^{6} equipped with
i) the contact distribution C ,
ii) the congruence of solutions (in C).
J^{6} is a line bundle over the solution space M^{7}

Main trick

```
P
\downarrow
J6
```


Main trick

$$
\begin{gathered}
P, \Omega \\
\downarrow \\
J^{6}
\end{gathered}
$$

Main trick

Main trick

$$
\begin{array}{ccc}
\mathbb{R} \times(\mathbb{R} \ltimes \mathbb{R}) & \rightarrow & P, \Omega \\
& & \downarrow \\
& J^{6} \\
& \downarrow \\
& & M^{7}
\end{array}
$$

Main trick

$$
\begin{array}{ccc}
\mathbb{R} \times(\mathbb{R} \ltimes \mathbb{R}) & \rightarrow & P, \Omega \\
& \downarrow \\
& M^{7}
\end{array}
$$

Main trick

Dirac operators and special geometries, 26 Se

Main trick

Dirac operators and special geometries, 26 Se

Main trick

$$
\begin{array}{ccc}
\mathbb{R} \times(\mathbb{R} \ltimes \mathbb{R}) & \rightarrow & P, \Omega \\
& \downarrow \\
& J^{6}
\end{array}
$$

Main trick

Ω is a $\mathfrak{g l}(2, \mathbb{R}) \oplus \cdot \mathbb{R}^{7}$-valued Cartan connection. Why? It is a deformation of the trivial case $y_{7}=0$, where $P=G L(2, \mathbb{R}) \ltimes \mathbb{R}^{7}, J^{6}$ is a homogeneous space and Ω is the Maurer-Cartan 1-form, $\mathrm{d} \Omega+\Omega \wedge \Omega=0$

Main trick

Ω is a $\mathfrak{g l}(2, \mathbb{R}) \oplus \cdot \mathbb{R}^{7}$-valued Cartan connection. Why? It is a deformation of the trivial case $y_{7}=0$, where $P=G L(2, \mathbb{R}) \ltimes \mathbb{R}^{7}, J^{6}$ is a homogeneous space and Ω is the Maurer-Cartan 1-form, $\mathrm{d} \Omega+\Omega \wedge \Omega=0$ In general $K:=d \Omega+\Omega \wedge \Omega \neq 0$ contains invariants.

Construction of Ω : Linear conditions on K, Tanaka-Morimoto theory

Main trick

$$
\begin{gathered}
\begin{array}{cc}
G L(2, \mathbb{R}) \quad & P, \Omega \\
\downarrow \\
M^{7}
\end{array} \\
\text { How to construct } G L(2, \mathbb{R}) \text { geometry? }
\end{gathered}
$$

Main trick

How to construct $G L(2, \mathbb{R})$ geometry?

$$
\left.R_{u}^{*} \Omega=\operatorname{ad} u^{-1} \Omega, u \in G L(2, \mathbb{R}) \Longleftrightarrow A^{*}\right\lrcorner K=0, A \in \mathfrak{g l l}(2, \mathbb{R})
$$

$$
\begin{gathered}
\Omega=\underbrace{\Gamma}_{\mathfrak{g l l}(2, \mathbb{R})}+\underbrace{\theta}_{\mathbb{R}^{7}} \\
\mathrm{~d} \theta^{i}+\Gamma^{i}{ }_{j} \wedge \theta^{j}=\frac{1}{2}{T^{i}}^{k}{ }_{k l} \theta^{k} \wedge \theta^{\prime}, \\
\mathrm{d} \Gamma^{i}{ }_{j}+\Gamma^{i}{ }_{k} \wedge \Gamma^{k}{ }_{j}=\frac{1}{2} R^{i}{ }_{j k l} \theta^{k} \wedge \theta^{\prime} .
\end{gathered}
$$

Torsion

$$
\Lambda^{2}\left(V^{7}\right) \otimes V^{7}=\Lambda^{3} V^{7} \oplus S^{(2,1)} V^{7} .
$$

Torsion

$$
\begin{gathered}
\Lambda^{2}\left(V^{7}\right) \otimes V^{7}=\Lambda^{3} V^{7} \oplus S^{(2,1)} V^{7} \\
\Lambda^{3} V^{7}=V^{1} \oplus V^{5} \oplus V^{7} \oplus V^{9} \oplus V^{13} \\
S^{(2,1)} V^{7}=V^{3} \oplus 2 V^{5} \oplus 2 V^{7} \oplus 2 V^{9} \oplus 2 V^{11} \oplus V^{13} \oplus V^{15} \oplus V^{17}
\end{gathered}
$$

Torsion

$$
\begin{gathered}
\Lambda^{2}\left(V^{7}\right) \otimes V^{7}=\Lambda^{3} V^{7} \oplus S^{(2,1)} V^{7} \\
\Lambda^{3} V^{7}=V^{1} \oplus V^{5} \oplus V^{7} \oplus V^{9} \oplus V^{13} \\
S^{(2,1)} V^{7}=V^{3} \oplus 2 V^{5} \oplus 2 V^{7} \oplus 2 V^{9} \oplus 2 V^{11} \oplus V^{13} \oplus V^{15} \oplus V^{17} \\
T=T^{(1)}+T^{(3)}+T^{(5)} .
\end{gathered}
$$

Torsion

$$
\begin{gathered}
\Lambda^{2}\left(V^{7}\right) \otimes V^{7}=\Lambda^{3} V^{7} \oplus S^{(2,1)} V^{7} \\
\Lambda^{3} V^{7}=V^{1} \oplus V^{5} \oplus V^{7} \oplus V^{9} \oplus V^{13} . \\
S^{(2,1)} V^{7}=V^{3} \oplus 2 V^{5} \oplus 2 V^{7} \oplus 2 V^{9} \oplus 2 V^{11} \oplus V^{13} \oplus V^{15} \oplus V^{17} \\
T=T^{(1)}+T^{(3)}+T^{(5)} .
\end{gathered}
$$

$T^{(5)}$ lies 'askew'. May we get 'more antisymmetric' torsion?

Torsion

$$
\begin{gathered}
\Lambda^{2}\left(V^{7}\right) \otimes V^{7}=\Lambda^{3} V^{7} \oplus S^{(2,1)} V^{7} \\
\Lambda^{3} V^{7}=V^{1} \oplus V^{5} \oplus V^{7} \oplus V^{9} \oplus V^{13} \\
S^{(2,1)} V^{7}=V^{3} \oplus 2 V^{5} \oplus 2 V^{7} \oplus 2 V^{9} \oplus 2 V^{11} \oplus V^{13} \oplus V^{15} \oplus V^{17} \\
T=T^{(1)}+T^{(3)}+T^{(5)} .
\end{gathered}
$$

$T^{(5)}$ lies 'askew'. May we get 'more antisymmetric' torsion?

This is a unique connection with torsion without blue components.

Towards \tilde{G}_{2} geometries

$$
\begin{gathered}
\mathrm{d} \phi=\lambda * \phi+\frac{3}{4} \tau_{4} \wedge \phi+* \tau_{3}, \\
\mathrm{~d} * \phi=\tau_{4} \wedge * \phi-\tau_{2} \wedge \phi
\end{gathered}
$$

$$
\begin{array}{ll}
\mathcal{X}_{1}=V^{1}, & \lambda \sim T^{(1)} \\
\mathcal{X}_{2}=V^{3} \oplus V^{11}, & \tau_{2} \sim T^{(3)} \\
\mathcal{X}_{3}=V^{5} \oplus V^{9} \oplus V^{13}, & \tau_{3} \sim T^{(5)} . \\
\mathcal{X}_{4}=V^{7}, & \tau_{4}=\frac{4}{7} \operatorname{Tr} \Gamma .
\end{array}
$$

Fernandez-Gray classes, torsion and contact invariants.

$$
\begin{array}{lllll}
T^{(5)}=0 & \Leftrightarrow & \text { no } \mathcal{X}_{3} & \Leftrightarrow & F_{66}=0 \\
T^{(3)}=0 & \Leftrightarrow & \text { no } \mathcal{X}_{2} & \Leftrightarrow & 21 \mathcal{D} F_{66}+14 F_{65}+15 F_{6} F_{66}=0 \\
T^{(1)}=0 & \Leftrightarrow & \text { no } \mathcal{X}_{1} & \Leftrightarrow & \ldots
\end{array}
$$

Fernandez-Gray classes, torsion and contact invariants.

$$
\begin{array}{lllll}
T^{(5)}=0 & \Leftrightarrow & \text { no } \mathcal{X}_{3} & \Leftrightarrow & F_{66}=0 \\
T^{(3)}=0 & \Leftrightarrow & \text { no } \mathcal{X}_{2} & \Leftrightarrow & 21 \mathcal{D} F_{66}+14 F_{65}+15 F_{6} F_{66}=0 \\
T^{(1)}=0 & \Leftrightarrow & \text { no } \mathcal{X}_{1} & \Leftrightarrow & \ldots
\end{array}
$$

Fernandez-Gray classes, torsion and contact invariants.

$$
\begin{array}{lllll}
T^{(5)}=0 & \Leftrightarrow & \text { no } \mathcal{X}_{3} & \Leftrightarrow & F_{66}=0 \\
T^{(3)}=0 & \Leftrightarrow & \text { no } \mathcal{X}_{2} & \Leftrightarrow & 21 \mathcal{D} F_{66}+14 F_{65}+15 F_{6} F_{66}=0 \\
T^{(1)}=0 & \Leftrightarrow & \text { no } \mathcal{X}_{1} & \Leftrightarrow & \ldots
\end{array}
$$

The same for

$$
\mathrm{d} \tau_{4}=\mathrm{d} \tau_{4}^{(3)}+\mathrm{d} \tau_{4}^{(7)}+\mathrm{d} \tau_{4}^{(11)}
$$

In particular

$$
\mathrm{d} \tau_{4}^{(11)}=0 \quad \Leftrightarrow \quad F_{666}=0
$$

Only three conformal geometries of class $\mathcal{X}_{1}+\mathcal{X}_{2}+\mathcal{X}_{4}$.

Only three conformal geometries of class $\mathcal{X}_{1}+\mathcal{X}_{2}+\mathcal{X}_{4}$.

1. Holonomy \tilde{G}_{2} - the flat case of $y_{7}=0$.

Only three conformal geometries of class $\mathcal{X}_{1}+\mathcal{X}_{2}+\mathcal{X}_{4}$.

1. Holonomy \tilde{G}_{2} - the flat case of $y_{7}=0$.
2. Class $\mathcal{X}_{1}+\mathcal{X}_{4}$ which contains the nearly-paralel geometry of $S O(3,2) / S O(2,1)$

$$
y_{7}=7 \frac{y_{6} y_{4}}{y_{3}}+\frac{49}{10} \frac{y_{5}^{2}}{y_{3}}-28 \frac{y_{5} y_{4}^{2}}{y_{3}^{2}}+\frac{35}{2} \frac{y_{4}^{4}}{y_{3}^{3}} .
$$

Only three conformal geometries of class $\mathcal{X}_{1}+\mathcal{X}_{2}+\mathcal{X}_{4}$.

1. Holonomy \tilde{G}_{2} - the flat case of $y_{7}=0$.
2. Class $\mathcal{X}_{1}+\mathcal{X}_{4}$ which contains the nearly-paralel geometry of $S O(3,2) / S O(2,1)$

$$
y_{7}=7 \frac{y_{6} y_{4}}{y_{3}}+\frac{49}{10} \frac{y_{5}^{2}}{y_{3}}-28 \frac{y_{5} y_{4}^{2}}{y_{3}^{2}}+\frac{35}{2} \frac{y_{4}^{4}}{y_{3}^{3}} .
$$

3. Class $\mathcal{X}_{2}+\mathcal{X}_{4}$ which contains an almost parallel geometry with at least 8 symmetries.

$$
y_{7}=\frac{21}{5} \frac{y_{6} y_{5}}{y_{4}}-\frac{84}{25} \frac{y_{5}^{3}}{y_{4}^{2}} .
$$

