Conformal geometry of differential equations

Paweł Nurowski
Instytut Fizyki Teoretycznej
Uniwersytet Warszawski

Castle Rauischholzhausen
26 September, 2009

The problem

The problem

Given a differential equation,

The problem

Given a differential equation, e.g. ODEs, say

$$
y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)
$$

The problem

Given a differential equation, e.g. ODEs, say

$$
y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right) \quad \& \quad \bar{y}^{\prime \prime \prime}=\bar{F}\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right),
$$

The problem

Given a differential equation, e.g. ODEs, say

$$
y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right) \quad \& \quad \bar{y}^{\prime \prime \prime}=\bar{F}\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right),
$$

determine if there exists a change of variables, e.g.

$$
\begin{aligned}
& x \rightarrow \bar{x}=\bar{x}(x, y) \\
& y \rightarrow \bar{y}=\bar{y}(x, y),
\end{aligned}
$$

The problem

Given a differential equation, e.g. ODEs, say

$$
y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right) \quad \& \quad \bar{y}^{\prime \prime \prime}=\bar{F}\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right),
$$

determine if there exists a change of variables, e.g.

$$
\begin{aligned}
& x \rightarrow \bar{x}=\bar{x}(x, y) \\
& y \rightarrow \bar{y}=\bar{y}(x, y),
\end{aligned}
$$

which transforms one equation into the other.

The problem

Given a differential equation, e.g. ODEs, say

$$
y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right) \quad \& \quad \bar{y}^{\prime \prime \prime}=\bar{F}\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right)
$$

determine if there exists a change of variables, e.g.

$$
\begin{aligned}
& x \rightarrow \bar{x}=\bar{x}(x, y) \\
& y \rightarrow \bar{y}=\bar{y}(x, y),
\end{aligned}
$$

which transforms one equation into the other.
Transformations mixing independent and dependent variables, as above are called point transformations.

We will be also interested in this problem for contact transformations of variables. These are more general than the point ones. They can mix $x \mathrm{~s}, y \mathrm{~s}$, and y^{\prime} s, provided that \bar{y}^{\prime} transforms as the first derivative.

We will be also interested in this problem for contact transformations of variables. These are more general than the point ones. They can mix $x \mathrm{~s}, y \mathrm{~s}$, and $y^{\prime} \mathrm{s}$, provided that \bar{y}^{\prime} transforms as the first derivative. Explicitly:

$$
\begin{aligned}
& x \rightarrow \bar{x}=\bar{x}\left(x, y, y^{\prime}\right) \\
& y \rightarrow \bar{y}=\bar{y}\left(x, y, y^{\prime}\right) \\
& y^{\prime} \rightarrow \bar{y}^{\prime}=\bar{y}^{\prime}\left(x, y, y^{\prime}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& \bar{y}_{y^{\prime}}-\bar{y}^{\prime} \bar{x}_{y^{\prime}}=0 \\
& \bar{y}^{\prime} \bar{x}_{x}-\bar{y}_{x}=y^{\prime}\left(\bar{y}_{y}-\bar{y}^{\prime} \bar{x}_{y}\right) .
\end{aligned}
$$

We will be also interested in this problem for contact transformations of variables. These are more general than the point ones. They can mix $x \mathrm{~s}, y \mathrm{~s}$, and $y^{\prime} \mathrm{s}$, provided that \bar{y}^{\prime} transforms as the first derivative. Explicitly:

$$
\begin{aligned}
& x \rightarrow \bar{x}=\bar{x}\left(x, y, y^{\prime}\right) \\
& y \rightarrow \bar{y}=\bar{y}\left(x, y, y^{\prime}\right) \\
& y^{\prime} \rightarrow \bar{y}^{\prime}=\bar{y}^{\prime}\left(x, y, y^{\prime}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& \bar{y}_{y^{\prime}}-\bar{y}^{\prime} \bar{x}_{y^{\prime}}=0 \\
& \bar{y}^{\prime} \bar{x}_{x}-\bar{y}_{x}=y^{\prime}\left(\bar{y}_{y}-\bar{y}^{\prime} \bar{x}_{y}\right) .
\end{aligned}
$$

The key question: HOW TO CONSTRUCT INVARIANTS?

- classical subject: Lie,, ... Engel, Wünschmann, ..., Tresse, Cartan, Chern,..., Tanaka,... Bryant,

The key question: HOW TO CONSTRUCT INVARIANTS?

- classical subject: Lie,, ... Engel, Wünschmann, ..., Tresse, Cartan, Chern,.... Tanaka,... Bryant,
- nowadays: solution is achieved in terms of a Cartan connection with a Cartan geometry appropriate for a given problem

The key question: HOW TO CONSTRUCT INVARIANTS?

- classical subject: Lie,, ... Engel, Wünschmann, Tresse, Cartan, Chern,.... Tanaka,... Bryant,
- nowadays: solution is achieved in terms of a Cartan connection with a Cartan geometry appropriate for a given problem
- motivated by the works of Newman, Fritelli and Kozameh, and my experience with CR geometry, especially in its Fefferman aspect,

The key question: HOW TO CONSTRUCT INVARIANTS?

- classical subject: Lie, Engel, Wünschmann, Tresse, Cartan, Chern,..., Tanaka,... Bryant,
- nowadays: solution is achieved in terms of a Cartan connection with a Cartan geometry appropriate for a given problem
- motivated by the works of Newman, Fritelli and Kozameh, and my experience with CR geometry, especially in its Fefferman aspect, I was aksing if there are classes of (systems) of ODEs/PDEs considered modulo point/contact transformations whose differential geometry is equivalent to some less exotic geometries, such as (pseudo)Riemannian?

The key question: HOW TO CONSTRUCT INVARIANTS?

- classical subject: Lie, Engel, Wünschmann, ..., Tresse, Cartan, Chern,..., Tanaka,... Bryant,
- nowadays: solution is achieved in terms of a Cartan connection with a Cartan geometry appropriate for a given problem
- motivated by the works of Newman, Fritelli and Kozameh, and my experience with CR geometry, especially in its Fefferman aspect, I was aksing if there are classes of (systems) of ODEs/PDEs considered modulo point/contact transformations whose differential geometry is equivalent to some less exotic geometries, such as (pseudo)Riemannian?... perhaps conformal (pseudo)Riemannian?

The key question: HOW TO CONSTRUCT INVARIANTS?

- classical subject: Lie, Engel, Wünschmann, ..., Tresse, Cartan, Chern,..., Tanaka,... Bryant,
- nowadays: solution is achieved in terms of a Cartan connection with a Cartan geometry appropriate for a given problem
- motivated by the works of Newman, Fritelli and Kozameh, and my experience with CR geometry, especially in its Fefferman aspect, I was aksing if there are classes of (systems) of ODEs/PDEs considered modulo point/contact transformations whose differential geometry is equivalent to some less exotic geometries, such as (pseudo)Riemannian?... perhaps conformal (pseudo)Riemannian?... perhaps special conformal, e.g. Weyl?

The first example

The first example

- Wünschmann K, (1905) "Über Beruhrungsbedingungen bei Differentialgleichungen", Dissertation, Greifswald:

The first example

- Wünschmann K, (1905) "Über Beruhrungsbedingungen bei

Differentialgleichungen", Dissertation, Greifswald:
\star Consider third order ODE: $y^{\prime \prime \prime}=0$, with the solution space \mathbb{R}^{3} parametrized by $\left(a_{0}, a_{1}, a_{2}\right)$, and the general solution

$$
y=a_{0}+2 a_{1} x+a_{2} x^{2}
$$

The first example

- Wünschmann K, (1905) "Über Beruhrungsbedingungen bei Differentialgleichungen", Dissertation, Greifswald:
\star Consider third order ODE: $y^{\prime \prime \prime}=0$, with the solution space \mathbb{R}^{3} parametrized by $\left(a_{0}, a_{1}, a_{2}\right)$, and the general solution

$$
y=a_{0}+2 a_{1} x+a_{2} x^{2}
$$

\star Take a neighbouring point $\left(a_{0}, a_{1}, a_{2}\right)+\left(\mathrm{d} a_{0}, \mathrm{~d} a_{1}, \mathrm{~d} a_{2}\right)$ in \mathbb{R}^{3},

The first example

- Wünschmann K, (1905) "Über Beruhrungsbedingungen bei Differentialgleichungen", Dissertation, Greifswald:
\star Consider third order ODE: $y^{\prime \prime \prime}=0$, with the solution space \mathbb{R}^{3} parametrized by $\left(a_{0}, a_{1}, a_{2}\right)$, and the general solution

$$
y=a_{0}+2 a_{1} x+a_{2} x^{2} .
$$

\star Take a neighbouring point $\left(a_{0}, a_{1}, a_{2}\right)+\left(\mathrm{d} a_{0}, \mathrm{~d} a_{1}, \mathrm{~d} a_{2}\right)$ in \mathbb{R}^{3},

$$
y+\mathrm{d} y=a_{0}+\mathrm{d} a_{0}+2\left(a_{1}+\mathrm{d} a_{1}\right) x+\left(a_{2}+\mathrm{d} a_{2}\right) x^{2}
$$

The first example

- Wünschmann K, (1905) "Über Beruhrungsbedingungen bei

Differentialgleichungen", Dissertation, Greifswald:
\star Consider third order ODE: $y^{\prime \prime \prime}=0$, with the solution space \mathbb{R}^{3} parametrized by $\left(a_{0}, a_{1}, a_{2}\right)$, and the general solution

$$
y=a_{0}+2 a_{1} x+a_{2} x^{2}
$$

\star Take a neighbouring point $\left(a_{0}, a_{1}, a_{2}\right)+\left(\mathrm{d} a_{0}, \mathrm{~d} a_{1}, \mathrm{~d} a_{2}\right)$ in \mathbb{R}^{3},

$$
y+\mathrm{d} y=a_{0}+\mathrm{d} a_{0}+2\left(a_{1}+\mathrm{d} a_{1}\right) x+\left(a_{2}+\mathrm{d} a_{2}\right) x^{2}
$$

\star When the graphs of these two solutions are tangent to each other at some point $(x, y(x))$ in the $x y$ plane?

The first example

- Wünschmann K, (1905) "Über Beruhrungsbedingungen bei

Differentialgleichungen", Dissertation, Greifswald:
\star Consider third order ODE: $y^{\prime \prime \prime}=0$, with the solution space \mathbb{R}^{3} parametrized by $\left(a_{0}, a_{1}, a_{2}\right)$, and the general solution

$$
y=a_{0}+2 a_{1} x+a_{2} x^{2}
$$

\star Take a neighbouring point $\left(a_{0}, a_{1}, a_{2}\right)+\left(\mathrm{d} a_{0}, \mathrm{~d} a_{1}, \mathrm{~d} a_{2}\right)$ in \mathbb{R}^{3},

$$
y+\mathrm{d} y=a_{0}+\mathrm{d} a_{0}+2\left(a_{1}+\mathrm{d} a_{1}\right) x+\left(a_{2}+\mathrm{d} a_{2}\right) x^{2}
$$

\star When the graphs of these two solutions are tangent to each other at some point $(x, y(x))$ in the $x y$ plane?
\star The answer: if and only if the displacement vector $\left(\mathrm{d} a_{0}, \mathrm{~d} a_{1}, \mathrm{~d} a_{2}\right)$ satisfies

The first example

- Wünschmann K, (1905) "Über Beruhrungsbedingungen bei

Differentialgleichungen", Dissertation, Greifswald:
\star Consider third order ODE: $y^{\prime \prime \prime}=0$, with the solution space \mathbb{R}^{3} parametrized by $\left(a_{0}, a_{1}, a_{2}\right)$, and the general solution

$$
y=a_{0}+2 a_{1} x+a_{2} x^{2}
$$

\star Take a neighbouring point $\left(a_{0}, a_{1}, a_{2}\right)+\left(\mathrm{d} a_{0}, \mathrm{~d} a_{1}, \mathrm{~d} a_{2}\right)$ in \mathbb{R}^{3},

$$
y+\mathrm{d} y=a_{0}+\mathrm{d} a_{0}+2\left(a_{1}+\mathrm{d} a_{1}\right) x+\left(a_{2}+\mathrm{d} a_{2}\right) x^{2}
$$

\star When the graphs of these two solutions are tangent to each other at some point $(x, y(x))$ in the $x y$ plane?
\star The answer: if and only if the displacement vector ($\mathrm{d} a_{0}, \mathrm{~d} a_{1}, \mathrm{~d} a_{2}$) satisfies

$$
\mathrm{d} a_{0} \mathrm{~d} a_{2}-\left(\mathrm{d} a_{1}\right)^{2}=0
$$

\star Indeed the tangency of the two graphs at x means that

$$
\begin{gathered}
\mathrm{d} y(x)=\mathrm{d} a_{0}+2 \mathrm{~d} a_{1} x+\mathrm{d} a_{2} x^{2}=0 \\
\mathrm{~d} y^{\prime}(x)=2 \mathrm{~d} a_{1}+2 \mathrm{~d} a_{2} x=0
\end{gathered}
$$

simultaneously,
\star Indeed the tangency of the two graphs at x means that

$$
\begin{gathered}
\mathrm{d} y(x)=\mathrm{d} a_{0}+2 \mathrm{~d} a_{1} x+\mathrm{d} a_{2} x^{2}=0 \\
\mathrm{~d} y^{\prime}(x)=2 \mathrm{~d} a_{1}+2 \mathrm{~d} a_{2} x=0
\end{gathered}
$$

simultaneously, and this has a solution for x if and only if

$$
\mathrm{d} a_{0} \mathrm{~d} a_{2}-\left(\mathrm{d} a_{1}\right)^{2}=0
$$

\star Indeed the tangency of the two graphs at x means that

$$
\begin{gathered}
\mathrm{d} y(x)=\mathrm{d} a_{0}+2 \mathrm{~d} a_{1} x+\mathrm{d} a_{2} x^{2}=0 \\
\mathrm{~d} y^{\prime}(x)=2 \mathrm{~d} a_{1}+2 \mathrm{~d} a_{2} x=0
\end{gathered}
$$

simultaneously, and this has a solution for x if and only if

$$
\mathrm{d} a_{0} \mathrm{~d} a_{2}-\left(\mathrm{d} a_{1}\right)^{2}=0
$$

\star Thus the solution space \mathbb{R}^{3} of the equation $y^{\prime \prime \prime}=0$, with the solutions parametrized by $\left(a_{0}, a_{1}, a_{2}\right)$, is naturally equipped with a conformal Lorentzian metric

$$
g=\mathrm{d} a_{0} \mathrm{~d} a_{2}-\left(\mathrm{d} a_{1}\right)^{2}
$$

\star Indeed the tangency of the two graphs at x means that

$$
\begin{gathered}
\mathrm{d} y(x)=\mathrm{d} a_{0}+2 \mathrm{~d} a_{1} x+\mathrm{d} a_{2} x^{2}=0 \\
\mathrm{~d} y^{\prime}(x)=2 \mathrm{~d} a_{1}+2 \mathrm{~d} a_{2} x=0
\end{gathered}
$$

simultaneously, and this has a solution for x if and only if

$$
\mathrm{d} a_{0} \mathrm{~d} a_{2}-\left(\mathrm{d} a_{1}\right)^{2}=0
$$

\star Thus the solution space \mathbb{R}^{3} of the equation $y^{\prime \prime \prime}=0$, with the solutions parametrized by $\left(a_{0}, a_{1}, a_{2}\right)$, is naturally equipped with a conformal Lorentzian metric

$$
g=\mathrm{d} a_{0} \mathrm{~d} a_{2}-\left(\mathrm{d} a_{1}\right)^{2} .
$$

\star In this metric two neighbouring solutions are null separated iff they are tangent at some point.
\star Indeed the tangency of the two graphs at x means that

$$
\begin{gathered}
\mathrm{d} y(x)=\mathrm{d} a_{0}+2 \mathrm{~d} a_{1} x+\mathrm{d} a_{2} x^{2}=0 \\
\mathrm{~d} y^{\prime}(x)=2 \mathrm{~d} a_{1}+2 \mathrm{~d} a_{2} x=0
\end{gathered}
$$

simultaneously, and this has a solution for x if and only if

$$
\mathrm{d} a_{0} \mathrm{~d} a_{2}-\left(\mathrm{d} a_{1}\right)^{2}=0
$$

\star Thus the solution space \mathbb{R}^{3} of the equation $y^{\prime \prime \prime}=0$, with the solutions parametrized by $\left(a_{0}, a_{1}, a_{2}\right)$, is naturally equipped with a conformal Lorentzian metric

$$
g=\mathrm{d} a_{0} \mathrm{~d} a_{2}-\left(\mathrm{d} a_{1}\right)^{2} .
$$

\star In this metric two neighbouring solutions are null separated iff they are tangent at some point.

* What shall one assume about a third order ODE to have a natural conformal Lorentzian metric on its (3-dimensional) solution space?
* Writing a general 3rd order ODE as

$$
\begin{equation*}
y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right), \tag{*}
\end{equation*}
$$

* Writing a general 3rd order ODE as

$$
\begin{equation*}
y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right), \tag{*}
\end{equation*}
$$

and denoting by \mathcal{D} the total differential, $\mathcal{D}=\partial_{x}+p \partial_{y}+q \partial_{p}+F \partial_{q}$, where $p=y^{\prime}, q=y^{\prime \prime}$,

* Writing a general 3rd order ODE as

$$
\begin{equation*}
y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right), \tag{*}
\end{equation*}
$$

and denoting by \mathcal{D} the total differential, $\mathcal{D}=\partial_{x}+p \partial_{y}+q \partial_{p}+F \partial_{q}$, where $p=y^{\prime}, q=y^{\prime \prime}$. Wünschmann found that the solution space of $(*)$ is naturally equipped with a conformal Lorentzian metric iff

$$
\begin{equation*}
F_{y}+\left(\mathcal{D}-\frac{2}{3} F_{q}\right) \underbrace{\left(\frac{1}{6} \mathcal{D} F_{q}-\frac{1}{9} F_{q}^{2}-\frac{1}{2} F_{p}\right)}_{K} \equiv 0 . \tag{W}
\end{equation*}
$$

* Writing a general 3rd order ODE as

$$
\begin{equation*}
y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right), \tag{*}
\end{equation*}
$$

and denoting by \mathcal{D} the total differential, $\mathcal{D}=\partial_{x}+p \partial_{y}+q \partial_{p}+F \partial_{q}$, where $p=y^{\prime}, q=y^{\prime \prime}$. Wünschmann found that the solution space of $(*)$ is naturally equipped with a conformal Lorentzian metric iff

$$
\begin{equation*}
F_{y}+\left(\mathcal{D}-\frac{2}{3} F_{q}\right) \underbrace{\left(\frac{1}{6} \mathcal{D} F_{q}-\frac{1}{9} F_{q}^{2}-\frac{1}{2} F_{p}\right)}_{K} \equiv 0 . \tag{W}
\end{equation*}
$$

\star The metric reads:

$$
g=[\mathrm{d} y-p \mathrm{~d} x]\left[\mathrm{d} q-\frac{1}{3} F_{q} \mathrm{~d} p+K \mathrm{~d} y+\left(\frac{1}{3} q F_{q}-F-p K\right) \mathrm{d} x\right]-[\mathrm{d} p-q \mathrm{~d} x]^{2}
$$

* Writing a general 3rd order ODE as

$$
\begin{equation*}
y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right), \tag{*}
\end{equation*}
$$

and denoting by \mathcal{D} the total differential, $\mathcal{D}=\partial_{x}+p \partial_{y}+q \partial_{p}+F \partial_{q}$, where $p=y^{\prime}, q=y^{\prime \prime}$. Wünschmann found that the solution space of $(*)$ is naturally equipped with a conformal Lorentzian metric iff

$$
\begin{equation*}
F_{y}+\left(\mathcal{D}-\frac{2}{3} F_{q}\right) \underbrace{\left(\frac{1}{6} \mathcal{D} F_{q}-\frac{1}{9} F_{q}^{2}-\frac{1}{2} F_{p}\right)}_{K} \equiv 0 . \tag{W}
\end{equation*}
$$

\star The metric reads:

$$
g=[\mathrm{d} y-p \mathrm{~d} x]\left[\mathrm{d} q-\frac{1}{3} F_{q} \mathrm{~d} p+K \mathrm{~d} y+\left(\frac{1}{3} q F_{q}-F-p K\right) \mathrm{d} x\right]-[\mathrm{d} p-q \mathrm{~d} x]^{2}
$$

^ Condition (W) is invariant with respect to contact transformations of variables and contact transformations of the variables result in a conformal change of the metric.
^ Condition (W) is invariant with respect to contact transformations of variables and contact transformations of the variables result in a conformal change of the metric.

* Wünschman: There is a one-to-one correspondence between equivalence classes of 3rd order ODEs satisfying (W) considered modulo contact transformations of variables and 3-dimensional Lorentzian conformal geometries.
^ Condition (W) is invariant with respect to contact transformations of variables and contact transformations of the variables result in a conformal change of the metric.
* Wünschman: There is a one-to-one correspondence between equivalence classes of 3rd order ODEs satisfying (W) considered modulo contact transformations of variables and 3-dimensional Lorentzian conformal geometries.
* In particular: all contact invariants of such classes of equations are expressible in terms of the conformal invariants of the associated conformal Lorentzian metrics.
- Chern S S (1940) "The geometry of the differential equations $y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)^{\prime \prime}$ Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:
- Chern S S (1940) "The geometry of the differential equations $y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)^{\prime \prime}$ Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:
* Solved the equivalence problem for third order ODEs considered modulo point transformation of variables.
- Chern S S (1940) "The geometry of the differential equations $y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)^{\prime \prime}$ Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:
\star Solved the equivalence problem for third order ODEs considered modulo point transformation of variables.
* In case when the ODE $y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ satisfies Wünschmann condition, he constructed a natural principal fiber bundle $P \rightarrow S$ over its solution space S, with a certain $\mathfrak{s o}(2,3)$-valued Cartan connection ω.
- Chern S S (1940) "The geometry of the differential equations $y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)^{\prime \prime}$ Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:
\star Solved the equivalence problem for third order ODEs considered modulo point transformation of variables.
\star In case when the ODE $y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ satisfies Wünschmann condition, he constructed a natural principal fiber bundle $P \rightarrow S$ over its solution space S, with a certain $\mathfrak{s o}(2,3)$-valued Cartan connection ω.
\star He showed that the curvature $R=\mathrm{d} \omega+\omega \wedge \omega$ of ω encodes all the contact invariants of the ODE.
- Chern S S (1940) "The geometry of the differential equations $y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)^{\prime \prime}$ Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:
\star Solved the equivalence problem for third order ODEs considered modulo point transformation of variables.
\star In case when the ODE $y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ satisfies Wünschmann condition, he constructed a natural principal fiber bundle $P \rightarrow S$ over its solution space S, with a certain $\mathfrak{s o}(2,3)$-valued Cartan connection ω.
\star He showed that the curvature $R=\mathrm{d} \omega+\omega \wedge \omega$ of ω encodes all the contact invariants of the ODE.
\star Since $\mathbf{S O}(2,3)$ is a conformal group for the 3-dimensional Lorentzian metrics, ω may be identified with the Cartan normal conformal connection associated with the conformal class $[g]$.

Second example

Second example

- Lie S (1924) "Klassifikation und Integration von gewohnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten III" Gesammelte Abhandlungen vol 5 (Leipzig: Teubner):

Second example

- Lie S (1924) "Klassifikation und Integration von gewohnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten III' Gesammelte Abhandlungen vol 5 (Leipzig: Teubner):
* Considered second order ODE $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ modulo point transformations of variables: $x \rightarrow \bar{x}=\bar{x}(x, y), y \rightarrow \bar{y}=\bar{y}(x, y)$.

Second example

- Lie S (1924) "Klassifikation und Integration von gewohnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten III' Gesammelte Abhandlungen vol 5 (Leipzig: Teubner):
\star Considered second order ODE $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ modulo point transformations of variables: $x \rightarrow \bar{x}=\bar{x}(x, y), y \rightarrow \bar{y}=\bar{y}(x, y)$.
\star He knew that vansishing or not of each of:

$$
w_{1}=D^{2} Q_{p p}-4 D Q_{p y}-D Q_{p p} Q_{p}+4 Q_{p} Q_{p y}-3 Q_{p p} Q_{y}+6 Q_{y y}
$$

$$
\begin{aligned}
& \text { or } \\
& \qquad w_{2}=Q_{p p p p},
\end{aligned}
$$

where $p=y^{\prime}$ and $D=\partial_{x}+p \partial_{y}+Q \partial_{p}$, is a point invariant property of the ODE.

- Cartan E (1924) "Varietes a connexion projective" Bull. Soc. Math. LII 205-41:
- Cartan E (1924) "Varietes a connexion projective" Bull. Soc. Math. LII 205-41:
\star Solved the equivalence problem for ODEs $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ considered modulo point transformation of variables,
- Cartan E (1924) "Varietes a connexion projective" Bull. Soc. Math. LII 205-41:
\star Solved the equivalence problem for ODEs $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ considered modulo point transformation of variables, building a principal fiber bundle $P \rightarrow J$ over the space parametrized by $\left(x, y, p=y^{\prime}\right)$.
- Cartan E (1924) "Varietes a connexion projective" Bull. Soc. Math. LII 205-41:
\star Solved the equivalence problem for ODEs $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ considered modulo point transformation of variables, building a principal fiber bundle $P \rightarrow J$ over the space parametrized by $\left(x, y, p=y^{\prime}\right)$. He also built a Cartan connection ω, with values in the Lie algebra $\mathfrak{s l}(3, \mathbb{R})$, whose curvature $R=\mathrm{d} \omega+\omega \wedge \omega$ was:
- Cartan E (1924) "Varietes a connexion projective" Bull. Soc. Math. LII 205-41:
\star Solved the equivalence problem for ODEs $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ considered modulo point transformation of variables, building a principal fiber bundle $P \rightarrow J$ over the space parametrized by $\left(x, y, p=y^{\prime}\right)$. He also built a Cartan connection ω, with values in the Lie algebra $\mathfrak{s l}(3, \mathbb{R})$, whose curvature $R=\mathrm{d} \omega+\omega \wedge \omega$ was:

$$
R=\left(\begin{array}{ccc}
0 & w_{2} & * \\
0 & 0 & w_{1} \\
0 & 0 & 0
\end{array}\right) \in \mathfrak{s l}(3, \mathbb{R})
$$

- Cartan E (1924) "Varietes a connexion projective" Bull. Soc. Math. LII 205-41:
\star Solved the equivalence problem for ODEs $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ considered modulo point transformation of variables, building a principal fiber bundle $P \rightarrow J$ over the space parametrized by $\left(x, y, p=y^{\prime}\right)$. He also built a Cartan connection ω, with values in the Lie algebra $\mathfrak{s l}(3, \mathbb{R})$, whose curvature $R=\mathrm{d} \omega+\omega \wedge \omega$ was:

$$
R=\left(\begin{array}{ccc}
0 & w_{2} & * \\
0 & 0 & w_{1} \\
0 & 0 & 0
\end{array}\right) \in \mathfrak{s l}(3, \mathbb{R})
$$

\star Since $\mathfrak{s l}(3, \mathbb{R})$ is naturally included in $\mathfrak{s l}(4, \mathbb{R})$, and this in turn is isomorphic to $\mathfrak{s o}(3,3), \mathfrak{s l}(4, \mathbb{R})=\mathfrak{s o}(3,3)$,

- Cartan E (1924) "Varietes a connexion projective" Bull. Soc. Math. LII 205-41:
\star Solved the equivalence problem for ODEs $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ considered modulo point transformation of variables, building a principal fiber bundle $P \rightarrow J$ over the space parametrized by $\left(x, y, p=y^{\prime}\right)$. He also built a Cartan connection ω, with values in the Lie algebra $\mathfrak{s l}(3, \mathbb{R})$, whose curvature $R=\mathrm{d} \omega+\omega \wedge \omega$ was:

$$
R=\left(\begin{array}{ccc}
0 & w_{2} & * \\
0 & 0 & w_{1} \\
0 & 0 & 0
\end{array}\right) \in \mathfrak{s l}(3, \mathbb{R})
$$

\star Since $\mathfrak{s l}(3, \mathbb{R})$ is naturally included in $\mathfrak{s l}(4, \mathbb{R})$, and this in turn is isomorphic to $\mathfrak{s o}(3,3), \mathfrak{s l}(4, \mathbb{R})=\mathfrak{s o}(3,3)$, i.e. a conformal algebra for metrics of signature $(2,2)$ in four dimensions, we ask the following question:

- Is it possible to describe the Lie/Cartan point invariants w_{1}, w_{2}, of a second order ODE $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ in terms of the conformal invariants of a split signature conformal metric in four dimensions?
- Is it possible to describe the Lie/Cartan point invariants w_{1}, w_{2}, of a second order ODE $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ in terms of the conformal invariants of a split signature conformal metric in four dimensions? (PN + Sparling GAJ: (2003) "Three-dimensional Cauchy-Riemann structures and second-order ordinary differential equations" C.Q.Grav. 20 4995-5016)
- Is it possible to describe the Lie/Cartan point invariants w_{1}, w_{2}, of a second order ODE $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ in terms of the conformal invariants of a split signature conformal metric in four dimensions? (PN + Sparling GAJ: (2003) "Three-dimensional Cauchy-Riemann structures and second-order ordinary differential equations" C.Q.Grav. 20 4995-5016)
* Given 2nd order ODE: $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ consider a parametrization of the first jet space J^{1} by $\left(x, y, p=y^{\prime}\right)$.
- Is it possible to describe the Lie/Cartan point invariants w_{1}, w_{2}, of a second order ODE $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ in terms of the conformal invariants of a split signature conformal metric in four dimensions? (PN + Sparling GAJ: (2003) "Three-dimensional Cauchy-Riemann structures and second-order ordinary differential equations" C.Q.Grav. 20 4995-5016)
* Given 2nd order ODE: $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ consider a parametrization of the first jet space J^{1} by $\left(x, y, p=y^{\prime}\right)$.
\star on $J^{1} \times \mathbb{R}$ consider a metric

$$
\begin{equation*}
g=2\left[(\mathrm{~d} p-Q \mathrm{~d} x) \mathrm{d} x-(\mathrm{d} y-p \mathrm{~d} x)\left(\mathrm{d} r+\frac{2}{3} Q_{p} \mathrm{~d} x+\frac{1}{6} Q_{p p}(\mathrm{~d} y-p \mathrm{~d} x)\right)\right] \tag{F}
\end{equation*}
$$

where r is a coordinate along \mathbb{R} in $J^{1} \times \mathbb{R}$.

Theorem (PN+Sparling GAJ):

* If ODE $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ undergoes a point transformation of variables then the metric (F) transforms conformally.

Theorem (PN+Sparling GAJ):

* If ODE $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ undergoes a point transformation of variables then the metric (F) transforms conformally.
^ All the point invariants of a point equivalence class of ODEs $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ are expressible in terms of the conformal invariants of the associated conformal class of metrics (F).

Theorem (PN+Sparling GAJ):

* If ODE $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ undergoes a point transformation of variables then the metric (F) transforms conformally.
\star All the point invariants of a point equivalence class of ODEs $y^{\prime \prime}=Q\left(x, y, y^{\prime}\right)$ are expressible in terms of the conformal invariants of the associated conformal class of metrics (F).
\star The metrics (F) are very special among all the split signature metrics on 4 -manifolds. Their Weyl tensor C has algebraic type (N, N) in the Cartan-Petrov-Penrose classification. Both, the selfdual C^{+}and the antiselfdual C^{-}, parts of C are expressible in terms of only one component.
$\star C^{+}$is proportional to

$$
w_{1}=D^{2} Q_{p p}-4 D Q_{p y}-D Q_{p p} Q_{p}+4 Q_{p} Q_{p y}-3 Q_{p p} Q_{y}+6 Q_{y y}
$$

$\star C^{+}$is proportional to

$$
w_{1}=D^{2} Q_{p p}-4 D Q_{p y}-D Q_{p p} Q_{p}+4 Q_{p} Q_{p y}-3 Q_{p p} Q_{y}+6 Q_{y y}
$$

and C^{-}is proportional to

$$
w_{2}=Q_{p p p p} .
$$

$\star C^{+}$is proportional to

$$
w_{1}=D^{2} Q_{p p}-4 D Q_{p y}-D Q_{p p} Q_{p}+4 Q_{p} Q_{p y}-3 Q_{p p} Q_{y}+6 Q_{y y}
$$

and C^{-}is proportional to

$$
w_{2}=Q_{p p p p} .
$$

* Cartan normal conformal connection associated with any conformal class [g] of metrics (F) is reduced to to the Cartan $\mathfrak{s l}(3, \mathbb{R})$ connection naturally defined on the Cartan bundle $P \rightarrow J^{1}$.

What's interesting in $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$?

What's interesting in $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$?

- Hilbert D (1912) "Über den Begriff der Klasse von Differentialgleichungen" Mathem. Annalen Bd. 73, 95-108:

What's interesting in $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$?

- Hilbert D (1912) "Über den Begriff der Klasse von Differentialgleichungen" Mathem. Annalen Bd. 73, 95-108:
\star considered equations of the form $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ for two real functions $y=y(x)$ and $z=z(x)$.

What's interesting in $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$?

- Hilbert D (1912) "Über den Begriff der Klasse von Differentialgleichungen" Mathem. Annalen Bd. 73, 95-108:
\star considered equations of the form $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ for two real functions $y=y(x)$ and $z=z(x)$.
\star He observed that, the general solution to the equation $z^{\prime}=y^{\prime \prime 2}$ can not be written in an integral free form

$$
\begin{aligned}
& x=x\left(t, w(t), w^{\prime}(t), \ldots w^{(k)}(t)\right), \\
& y=y\left(t, w(t), w^{\prime}(t), \ldots w^{(k)}(t)\right), \\
& z=z\left(t, w(t), w^{\prime}(t), \ldots w^{(k)}(t)\right) .
\end{aligned}
$$

Aside: the situation in one order lower

Aside: the situation in one order lower

 Hilbert's example deals with $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$.
Aside: the situation in one order lower

 Hilbert's example deals with $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$. Consider an equation $z^{\prime}=\left(y^{\prime}\right)^{2}$, where $y=y(x)$ and $z=z(x)$.
Aside: the situation in one order lower

 Hilbert's example deals with $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$. Consider an equation $z^{\prime}=\left(y^{\prime}\right)^{2}$, where $y=y(x)$ and $z=z(x)$. Check, that its general solution may be written in the integral-free form:$$
\begin{gathered}
x=\frac{1}{2} w^{\prime \prime}(t) \\
y=\frac{1}{2} t w^{\prime \prime}(t)-\frac{1}{2} w^{\prime}(t) \\
z=\frac{1}{2} t^{2} w^{\prime \prime}(t)-t w^{\prime}(t)+w(t),
\end{gathered}
$$

where $w=w(t)$ is an arbitray sufficiently smooth real function.

Aside: the situation in one order lower

Hilbert's example deals with $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$.
Consider an equation $z^{\prime}=\left(y^{\prime}\right)^{2}$, where $y=y(x)$ and $z=z(x)$.
Check, that its general solution may be written in the integral-free form:

$$
\begin{gathered}
x=\frac{1}{2} w^{\prime \prime}(t) \\
y=\frac{1}{2} t w^{\prime \prime}(t)-\frac{1}{2} w^{\prime}(t) \\
z=\frac{1}{2} t^{2} w^{\prime \prime}(t)-t w^{\prime}(t)+w(t),
\end{gathered}
$$

where $w=w(t)$ is an arbitray sufficiently smooth real function.
G. Monge knew that every equation of the form $z^{\prime}=F\left(x, y, y^{\prime}, z\right)$ has this property.

Aside: the situation in one order lower

Hilbert's example deals with $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$.
Consider an equation $z^{\prime}=\left(y^{\prime}\right)^{2}$, where $y=y(x)$ and $z=z(x)$.
Check, that its general solution may be written in the integral-free form:

$$
\begin{gathered}
x=\frac{1}{2} w^{\prime \prime}(t) \\
y=\frac{1}{2} t w^{\prime \prime}(t)-\frac{1}{2} w^{\prime}(t) \\
z=\frac{1}{2} t^{2} w^{\prime \prime}(t)-t w^{\prime}(t)+w(t),
\end{gathered}
$$

where $w=w(t)$ is an arbitray sufficiently smooth real function.
G. Monge knew that every equation of the form $z^{\prime}=F\left(x, y, y^{\prime}, z\right)$ has this property.

The situation is quite different for $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$, as it was shown by Hilbert on the example of $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$.

- Cartan E (1910) "Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du second ordre" Ann. Sc. Norm. Sup. 27 109-192:
- Cartan E (1910) "Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du second ordre" Ann. Sc. Norm. Sup. 27 109-192:
^ solved an equivalence problem for equations

$$
\begin{equation*}
z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right) \quad \text { with } \quad F_{y^{\prime \prime} y^{\prime \prime}} \neq 0 \tag{H}
\end{equation*}
$$

considered modulo contact transformation of variables, by constructing a 14-dimensional Cartan bundle $P \rightarrow J$ over the 5 -dimensional space J parametrized by $\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$.

- Cartan E (1910) "Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du second ordre" Ann. Sc. Norm. Sup. 27 109-192:
* solved an equivalence problem for equations

$$
\begin{equation*}
z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right) \quad \text { with } \quad F_{y^{\prime \prime} y^{\prime \prime}} \neq 0 \tag{H}
\end{equation*}
$$

considered modulo contact transformation of variables, by constructing a 14-dimensional Cartan bundle $P \rightarrow J$ over the 5 -dimensional space J parametrized by $\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$. This bundle is equipped with a Cartan connection whose curvature gives all the local invariants of the equation.

- Cartan E (1910) "Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du second ordre" Ann. Sc. Norm. Sup. 27 109-192:
\star solved an equivalence problem for equations

$$
\begin{equation*}
z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right) \quad \text { with } \quad F_{y^{\prime \prime} y^{\prime \prime}} \neq 0 \tag{H}
\end{equation*}
$$

considered modulo contact transformation of variables, by constructing a 14-dimensional Cartan bundle $P \rightarrow J$ over the 5 -dimensional space J parametrized by $\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$. This bundle is equipped with a Cartan connection whose curvature gives all the local invariants of the equation. The connection has values in the Lie algebra of the nocompact form of the exceptional group G_{2} and is flat iff the equation is equivalent to the Hilbert's equation $z^{\prime}=y^{\prime \prime 2}$;

- Cartan E (1910) "Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du second ordre" Ann. Sc. Norm. Sup. 27 109-192:
\star solved an equivalence problem for equations

$$
\begin{equation*}
z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right) \quad \text { with } \quad F_{y^{\prime \prime} y^{\prime \prime}} \neq 0 \tag{H}
\end{equation*}
$$

considered modulo contact transformation of variables, by constructing a 14-dimensional Cartan bundle $P \rightarrow J$ over the 5 -dimensional space J parametrized by $\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$. This bundle is equipped with a Cartan connection whose curvature gives all the local invariants of the equation. The connection has values in the Lie algebra of the nocompact form of the exceptional group G_{2} and is flat iff the equation is equivalent to the Hilbert's equation $z^{\prime}=y^{\prime / 2}$; in such case the equation has a symmetry group G_{2}.

- PN (2003) "Differential equations and conformal structures" J. Geom. Phys 55 19-49:
- PN (2003) "Differential equations and conformal structures" J. Geom. Phys 55 19-49:
\star Since G_{2} naturally seats in $\mathrm{SO}(3,4)$, which is a conformal group for signature $(+,+,+,-,-)$ conformal metrics in dimension 5 , is it possible to understand Cartan's invariants in terms of inavraints of some 5-dimensional conformal metrics?
- PN (2003) "Differential equations and conformal structures" J. Geom. Phys 55 19-49:
* Since G_{2} naturally seats in $\mathrm{SO}(3,4)$, which is a conformal group for signature (,,,,+++--) conformal metrics in dimension 5 , is it possible to understand Cartan's invariants in terms of inavraints of some 5 -dimensional conformal metrics?

This leads to:

- PN (2003) "Differential equations and conformal structures" J. Geom. Phys 55 19-49:
* Since G_{2} naturally seats in $\mathrm{SO}(3,4)$, which is a conformal group for signature (,,,,+++--) conformal metrics in dimension 5 , is it possible to understand Cartan's invariants in terms of inavraints of some 5 -dimensional conformal metrics?

This leads to:
The third example

Cartan's construction

Cartan's construction

- Each equation (H) may be represented by forms

$$
\begin{gathered}
\omega^{1}=\mathrm{d} z-F(x, y, p, q, z) \mathrm{d} x \\
\omega^{2}=\mathrm{d} y-p \mathrm{~d} x \\
\omega^{3}=\mathrm{d} p-q \mathrm{~d} x
\end{gathered}
$$

on a 5-dimensional manifold J parametrized by $\left(x, y, p=y^{\prime}, q=y^{\prime \prime}, z\right)$.

Cartan's construction

- Each equation (H) may be represented by forms

$$
\begin{gathered}
\omega^{1}=\mathrm{d} z-F(x, y, p, q, z) \mathrm{d} x \\
\omega^{2}=\mathrm{d} y-p \mathrm{~d} x \\
\omega^{3}=\mathrm{d} p-q \mathrm{~d} x
\end{gathered}
$$

on a 5 -dimensional manifold J parametrized by $\left(x, y, p=y^{\prime}, q=y^{\prime \prime}, z\right)$.

- every solution to the equation is a curve $\gamma(t)=(x(t), y(t), p(t), q(t), z(t))$ in J on which the forms $\left(\omega^{1}, \omega^{2}, \omega^{3}\right)$ simultaneously vanish.

Cartan's construction

- Each equation (H) may be represented by forms

$$
\begin{gathered}
\omega^{1}=\mathrm{d} z-F(x, y, p, q, z) \mathrm{d} x \\
\omega^{2}=\mathrm{d} y-p \mathrm{~d} x \\
\omega^{3}=\mathrm{d} p-q \mathrm{~d} x
\end{gathered}
$$

on a 5 -dimensional manifold J parametrized by $\left(x, y, p=y^{\prime}, q=y^{\prime \prime}, z\right)$.

- every solution to the equation is a curve $\gamma(t)=(x(t), y(t), p(t), q(t), z(t))$ in J on which the forms $\left(\omega^{1}, \omega^{2}, \omega^{3}\right)$ simultaneously vanish.
- Transformation that transforms solutions to solution may mix the forms $\left(\omega^{1}, \omega^{2}, \omega^{3}\right)$ among themselves, thus:

Definition
Two equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ and $\bar{z}^{\prime}=\bar{F}\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}, \bar{z}\right)$ represented by the respective forms

$$
\omega^{1}=\mathrm{d} z-F(x, y, p, q, z) \mathrm{d} x, \quad \omega^{2}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{3}=\mathrm{d} p-q \mathrm{~d} x
$$

Definition
Two equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ and $\bar{z}^{\prime}=\bar{F}\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}, \bar{z}\right)$ represented by the respective forms

$$
\begin{array}{ll}
\omega^{1}=\mathrm{d} z-F(x, y, p, q, z) \mathrm{d} x, & \omega^{2}=\mathrm{d} y-p \mathrm{~d} x, \\
\bar{\omega}^{1}=\mathrm{d} \bar{z}-\bar{F}(\bar{x}, \bar{y}, \bar{p}, \bar{q}, \bar{z}) \mathrm{d} \bar{x}, & \bar{\omega}^{2}=\mathrm{d} p-q \mathrm{~d} x \\
\bar{p} \mathrm{~d} \bar{x}, & \bar{\omega}^{3}=\mathrm{d} \bar{p}-\bar{q} \mathrm{~d} \bar{x}
\end{array}
$$

Definition
Two equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ and $\bar{z}^{\prime}=\bar{F}\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}, \bar{z}\right)$ represented by the respective forms

$$
\begin{array}{ll}
\omega^{1}=\mathrm{d} z-F(x, y, p, q, z) \mathrm{d} x, & \omega^{2}=\mathrm{d} y-p \mathrm{~d} x, \\
\bar{\omega}^{1}=\mathrm{d} \bar{z}-\bar{F}(\bar{x}, \bar{y}, \bar{p}, \bar{q}, \bar{z}) \mathrm{d} \bar{x}, & \bar{\omega}^{3}=\mathrm{d} p-q \mathrm{~d} x
\end{array}
$$

are (locally) equivalent iff there exists a (local) diffeomorphism
$\phi:(x, y, p, q, z) \rightarrow(\bar{x}, \bar{y}, \bar{p}, \bar{q}, \bar{z})$ such that

Definition
Two equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ and $\bar{z}^{\prime}=\bar{F}\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}, \bar{z}\right)$ represented by the respective forms

$$
\begin{array}{ll}
\omega^{1}=\mathrm{d} z-F(x, y, p, q, z) \mathrm{d} x, & \omega^{2}=\mathrm{d} y-p \mathrm{~d} x, \\
\bar{\omega}^{1}=\mathrm{d} \bar{z}-\bar{F}(\bar{x}, \bar{y}, \bar{p}, \bar{q}, \bar{z}) \mathrm{d} \bar{x}, & \bar{\omega}^{3}=\mathrm{d} p-q \mathrm{~d} x \\
\mathrm{~d} \bar{y}-\bar{p} \mathrm{~d} \bar{x}, & \bar{\omega}^{3}=\mathrm{d} \bar{p}-\bar{q} \mathrm{~d} \bar{x}
\end{array}
$$

are (locally) equivalent iff there exists a (local) diffeomorphism
$\phi:(x, y, p, q, z) \rightarrow(\bar{x}, \bar{y}, \bar{p}, \bar{q}, \bar{z})$ such that

$$
\phi^{*}\left(\begin{array}{c}
\bar{\omega}^{1} \\
\bar{\omega}^{2} \\
\bar{\omega}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha & \beta & \gamma \\
\delta & \epsilon & \lambda \\
\kappa & \mu & \nu
\end{array}\right)\left(\begin{array}{c}
\omega^{1} \\
\omega^{2} \\
\omega^{3}
\end{array}\right)
$$

Solution for the equivalence problem for eqs.

$$
z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)
$$

Theorem

Solution for the equivalence problem for eqs.

$$
z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)
$$

Theorem

- There are two main branches of nonequivalent equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$. They are distinguished by vanishing or not of the relative invariant $F_{q q}, q=y^{\prime \prime}$.

Solution for the equivalence problem for eqs.

$$
z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)
$$

Theorem

- There are two main branches of nonequivalent equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$. They are distinguished by vanishing or not of the relative invariant $F_{q q}, q=y^{\prime \prime}$.
- If $F_{q q} \equiv 0$ then such equations have integral-free solutions.

Solution for the equivalence problem for eqs.

$$
z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)
$$

Theorem

- There are two main branches of nonequivalent equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$. They are distinguished by vanishing or not of the relative invariant $F_{q q}, q=y^{\prime \prime}$.
- If $F_{q q} \equiv 0$ then such equations have integral-free solutions.
- There are nonequivalent equations among the equations having $F_{q q} \neq 0$. All these equations are beyond the class of equations with integral-free solutions.

Equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ with $F_{y^{\prime \prime} y^{\prime \prime}} \neq 0$

Given $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ take its corresponding forms

$$
\omega^{1}=\mathrm{d} z-F(x, y, p, q, z) \mathrm{d} x, \quad \omega^{2}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{3}=\mathrm{d} p-q \mathrm{~d} x ;
$$

and suplement them with $\omega^{4}=\mathrm{d} q$ and $\omega^{5}=\mathrm{d} x$.

Equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ with $F_{y^{\prime \prime} y^{\prime \prime}} \neq 0$

Given $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ take its corresponding forms

$$
\omega^{1}=\mathrm{d} z-F(x, y, p, q, z) \mathrm{d} x, \quad \omega^{2}=\mathrm{d} y-p \mathrm{~d} x, \quad \omega^{3}=\mathrm{d} p-q \mathrm{~d} x ;
$$

and suplement them with $\omega^{4}=\mathrm{d} q$ and $\omega^{5}=\mathrm{d} x$. Define

$$
\left(\begin{array}{l}
\theta^{1} \\
\theta^{2} \\
\theta^{3} \\
\theta^{4} \\
\theta^{5}
\end{array}\right)=\left(\begin{array}{ccccc}
s_{1} & s_{2} & s_{3} & 0 & 0 \\
s_{4} & s_{5} & s_{6} & 0 & 0 \\
s_{7} & s_{8} & s_{9} & 0 & 0 \\
s_{10} & s_{11} & s_{12} & s_{13} & s_{14} \\
s_{15} & s_{16} & s_{17} & s_{18} & s_{19}
\end{array}\right)\left(\begin{array}{c}
\omega^{1} \\
\omega^{2} \\
\omega^{3} \\
\omega^{4} \\
\omega^{5}
\end{array}\right)
$$

Theorem

Theorem
An equivalence class of equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ with $F_{y^{\prime \prime} y^{\prime \prime}} \neq 0$ uniquely defines a 14-dimensional manifold $P \rightarrow J$ and

Theorem

An equivalence class of equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ with $F_{y^{\prime \prime} y^{\prime \prime}} \neq 0$ uniquely defines a 14-dimensional manifold $P \rightarrow J$ and a preferred coframe $\left(\theta^{1}, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{7}, \Omega_{8}, \Omega_{9}\right)$ on it such that

Theorem

An equivalence class of equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ with $F_{y^{\prime \prime} y^{\prime \prime}} \neq 0$ uniquely defines a 14-dimensional manifold $P \rightarrow J$ and a preferred coframe $\left(\theta^{1}, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{7}, \Omega_{8}, \Omega_{9}\right)$ on it such that

$$
\begin{aligned}
\mathrm{d} \theta^{1} & =\theta^{1} \wedge\left(2 \Omega_{1}+\Omega_{4}\right)+\theta^{2} \wedge \Omega_{2}+\theta^{3} \wedge \theta^{4} \\
\mathrm{~d} \theta^{2} & =\theta^{1} \wedge \Omega_{3}+\theta^{2} \wedge\left(\Omega_{1}+2 \Omega_{4}\right)+\theta^{3} \wedge \theta^{5} \\
\mathrm{~d} \theta^{3} & =\theta^{1} \wedge \Omega_{5}+\theta^{2} \wedge \Omega_{6}+\theta^{3} \wedge\left(\Omega_{1}+\Omega_{4}\right)+\theta^{4} \wedge \theta^{5} \\
\mathrm{~d} \theta^{4} & =\theta^{1} \wedge \Omega_{7}+\frac{4}{3} \theta^{3} \wedge \Omega_{6}+\theta^{4} \wedge \Omega_{1}+\theta^{5} \wedge \Omega_{2} \\
\mathrm{~d} \theta^{5} & =\theta^{2} \wedge \Omega_{7}-\frac{4}{3} \theta^{3} \wedge \Omega_{5}+\theta^{4} \wedge \Omega_{3}+\theta^{5} \wedge \Omega_{4} .
\end{aligned}
$$

Theorem

An equivalence class of equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ with $F_{y^{\prime \prime} y^{\prime \prime}} \neq 0$ uniquely defines a 14-dimensional manifold $P \rightarrow J$ and a preferred coframe $\left(\theta^{1}, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{7}, \Omega_{8}, \Omega_{9}\right)$ on it such that

$$
\begin{aligned}
\mathrm{d} \theta^{1} & =\theta^{1} \wedge\left(2 \Omega_{1}+\Omega_{4}\right)+\theta^{2} \wedge \Omega_{2}+\theta^{3} \wedge \theta^{4} \\
\mathrm{~d} \theta^{2} & =\theta^{1} \wedge \Omega_{3}+\theta^{2} \wedge\left(\Omega_{1}+2 \Omega_{4}\right)+\theta^{3} \wedge \theta^{5} \\
\mathrm{~d} \theta^{3} & =\theta^{1} \wedge \Omega_{5}+\theta^{2} \wedge \Omega_{6}+\theta^{3} \wedge\left(\Omega_{1}+\Omega_{4}\right)+\theta^{4} \wedge \theta^{5} \\
\mathrm{~d} \theta^{4} & =\theta^{1} \wedge \Omega_{7}+\frac{4}{3} \theta^{3} \wedge \Omega_{6}+\theta^{4} \wedge \Omega_{1}+\theta^{5} \wedge \Omega_{2} \\
\mathrm{~d} \theta^{5} & =\theta^{2} \wedge \Omega_{7}-\frac{4}{3} \theta^{3} \wedge \Omega_{5}+\theta^{4} \wedge \Omega_{3}+\theta^{5} \wedge \Omega_{4} .
\end{aligned}
$$

We also have formulae for the differentials of the forms $\Omega_{\mu}, \mu=1,2, \ldots, 9$.

Theorem

An equivalence class of equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ with $F_{y^{\prime \prime} y^{\prime \prime}} \neq 0$ uniquely defines a 14-dimensional manifold $P \rightarrow J$ and a preferred coframe $\left(\theta^{1}, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{7}, \Omega_{8}, \Omega_{9}\right)$ on it such that

$$
\begin{aligned}
\mathrm{d} \theta^{1} & =\theta^{1} \wedge\left(2 \Omega_{1}+\Omega_{4}\right)+\theta^{2} \wedge \Omega_{2}+\theta^{3} \wedge \theta^{4} \\
\mathrm{~d} \theta^{2} & =\theta^{1} \wedge \Omega_{3}+\theta^{2} \wedge\left(\Omega_{1}+2 \Omega_{4}\right)+\theta^{3} \wedge \theta^{5} \\
\mathrm{~d} \theta^{3} & =\theta^{1} \wedge \Omega_{5}+\theta^{2} \wedge \Omega_{6}+\theta^{3} \wedge\left(\Omega_{1}+\Omega_{4}\right)+\theta^{4} \wedge \theta^{5} \\
\mathrm{~d} \theta^{4} & =\theta^{1} \wedge \Omega_{7}+\frac{4}{3} \theta^{3} \wedge \Omega_{6}+\theta^{4} \wedge \Omega_{1}+\theta^{5} \wedge \Omega_{2} \\
\mathrm{~d} \theta^{5} & =\theta^{2} \wedge \Omega_{7}-\frac{4}{3} \theta^{3} \wedge \Omega_{5}+\theta^{4} \wedge \Omega_{3}+\theta^{5} \wedge \Omega_{4} .
\end{aligned}
$$

We also have formulae for the differentials of the forms $\Omega_{\mu}, \mu=1,2, \ldots, 9$.
Together with these expressions the system provides all the local invariants for the equivalence class of equations satisfying $F_{q q} \neq 0$.

Theorem

An equivalence class of equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ with $F_{y^{\prime \prime} y^{\prime \prime}} \neq 0$ uniquely defines a 14-dimensional manifold $P \rightarrow J$ and a preferred coframe $\left(\theta^{1}, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{7}, \Omega_{8}, \Omega_{9}\right)$ on it such that

$$
\begin{aligned}
\mathrm{d} \theta^{1} & =\theta^{1} \wedge\left(2 \Omega_{1}+\Omega_{4}\right)+\theta^{2} \wedge \Omega_{2}+\theta^{3} \wedge \theta^{4} \\
\mathrm{~d} \theta^{2} & =\theta^{1} \wedge \Omega_{3}+\theta^{2} \wedge\left(\Omega_{1}+2 \Omega_{4}\right)+\theta^{3} \wedge \theta^{5} \\
\mathrm{~d} \theta^{3} & =\theta^{1} \wedge \Omega_{5}+\theta^{2} \wedge \Omega_{6}+\theta^{3} \wedge\left(\Omega_{1}+\Omega_{4}\right)+\theta^{4} \wedge \theta^{5} \\
\mathrm{~d} \theta^{4} & =\theta^{1} \wedge \Omega_{7}+\frac{4}{3} \theta^{3} \wedge \Omega_{6}+\theta^{4} \wedge \Omega_{1}+\theta^{5} \wedge \Omega_{2} \\
\mathrm{~d} \theta^{5} & =\theta^{2} \wedge \Omega_{7}-\frac{4}{3} \theta^{3} \wedge \Omega_{5}+\theta^{4} \wedge \Omega_{3}+\theta^{5} \wedge \Omega_{4} .
\end{aligned}
$$

We also have formulae for the differentials of the forms $\Omega_{\mu}, \mu=1,2, \ldots, 9$.
Together with these expressions the system provides all the local invariants for the equivalence class of equations satisfying $F_{q q} \neq 0$.
We pass to the interpretetion in terms of Cartan connection:
P is a principal fibre bundle over J with the 9 -dimensional parabolic subgroup H of G_{2} as its structure group.
P is a principal fibre bundle over J with the 9 -dimensional parabolic subgroup H of G_{2} as its structure group.

On this fibre bundle the following matrix of 1 -forms:
$\omega=\left(\begin{array}{ccccccc}-\Omega_{1}-\Omega_{4} & -\Omega_{8} & -\Omega_{9} & -\frac{1}{\sqrt{3}} \Omega_{7} & \frac{1}{3} \Omega_{5} & \frac{1}{3} \Omega_{6} & 0 \\ \theta^{1} & \Omega_{1} & \Omega_{2} & \frac{1}{\sqrt{3}} \theta^{4} & -\frac{1}{3} \theta^{3} & 0 & \frac{1}{3} \Omega_{6} \\ \theta^{2} & \Omega_{3} & \Omega_{4} & \frac{1}{\sqrt{3}} \theta^{5} & 0 & -\frac{1}{3} \theta^{3} & -\frac{1}{3} \Omega_{5} \\ \frac{2}{\sqrt{3}} \theta^{3} & \frac{2}{\sqrt{3}} \Omega_{5} & \frac{2}{\sqrt{3}} \Omega_{6} & 0 & \frac{1}{\sqrt{3}} \theta^{5} & -\frac{1}{\sqrt{3}} \theta^{4} & -\frac{1}{\sqrt{3}} \Omega_{7} \\ \theta^{4} & \Omega_{7} & 0 & \frac{2}{\sqrt{3}} \Omega_{6} & -\Omega_{4} & \Omega_{2} & \Omega_{9} \\ \theta^{5} & 0 & \Omega_{7} & -\frac{2}{\sqrt{3}} \Omega_{5} & \Omega_{3} & -\Omega_{1} & -\Omega_{8} \\ 0 & \theta^{5} & -\theta^{4} & \frac{2}{\sqrt{3}} \theta^{3} & -\theta^{2} & \theta^{1} & \Omega_{1}+\Omega_{4}\end{array}\right)$,
is a Cartan connection with values in the Lie algebra of G_{2}.

The curvature of this connection $R=\mathrm{d} \omega+\omega \wedge \omega$ 'measures' how much a given equivalence class of equations is 'distorted' from the flat Hilbert case corresponding to $F=q^{2}$.

(3,2)-signature conformal metric

- PN (2003) "Differential equations and conformal structures" J. Geom. Phys 55 19-49:

(3, 2)-signature conformal metric

- PN (2003) "Differential equations and conformal structures" J. Geom. Phys 55 19-49:

Given an equivalence class of equation $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ consider its corresponding bundle P with the coframe $\left(\theta^{1}, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{7}, \Omega_{8}, \Omega_{9}\right)$.

(3, 2)-signature conformal metric

- PN (2003) "Differential equations and conformal structures" J. Geom. Phys 55 19-49:

Given an equivalence class of equation $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ consider its corresponding bundle P with the coframe ($\theta^{1}, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{7}, \Omega_{8}, \Omega_{9}$). Define a bilinear form

$$
\tilde{g}=2 \theta^{1} \theta^{5}-2 \theta^{2} \theta^{4}+\frac{4}{3} \theta^{3} \theta^{3}
$$

$(3,2)$-signature conformal metric

- PN (2003) "Differential equations and conformal structures" J. Geom. Phys 55 19-49:

Given an equivalence class of equation $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ consider its corresponding bundle P with the coframe ($\theta^{1}, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{7}, \Omega_{8}, \Omega_{9}$). Define a bilinear form

$$
\tilde{g}=2 \theta^{1} \theta^{5}-2 \theta^{2} \theta^{4}+\frac{4}{3} \theta^{3} \theta^{3}
$$

This form is degenerate on P and has signature ($3,2,0,0,0,0,0,0,0,0,0$).

(3, 2)-signature conformal metric

- PN (2003) "Differential equations and conformal structures" J. Geom. Phys 55 19-49:

Given an equivalence class of equation $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ consider its corresponding bundle P with the coframe ($\theta^{1}, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}, \Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}, \Omega_{5}, \Omega_{6}, \Omega_{7}, \Omega_{8}, \Omega_{9}$). Define a bilinear form

$$
\tilde{g}=2 \theta^{1} \theta^{5}-2 \theta^{2} \theta^{4}+\frac{4}{3} \theta^{3} \theta^{3}
$$

This form is degenerate on P and has signature $(3,2,0,0,0,0,0,0,0,0,0)$.
The 9 degenerate directions generate the vertical space of P.

Theorem

Theorem

- The bilinear forms \tilde{g} transforms conformally when Lie transported along any of the vertical directions.

Theorem

- The bilinear forms \tilde{g} transforms conformally when Lie transported along any of the vertical directions.
- It descends to a well defined conformal class $\left[g_{F}\right]$ of $(3,2)$-signature metrics g_{F} on the 5 -dimensional space J on which the equation $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ is defined.

Theorem

- The bilinear forms \tilde{g} transforms conformally when Lie transported along any of the vertical directions.
- It descends to a well defined conformal class $\left[g_{F}\right]$ of $(3,2)$-signature metrics g_{F} on the 5 -dimensional space J on which the equation $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ is defined.
- The Cartan normal conformal connection associated with the conformal class $\left[g_{F}\right]$ yields invariant information about the equivalence class of the equation.

Theorem

- The bilinear forms \tilde{g} transforms conformally when Lie transported along any of the vertical directions.
- It descends to a well defined conformal class $\left[g_{F}\right]$ of $(3,2)$-signature metrics g_{F} on the 5 -dimensional space J on which the equation $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ is defined.
- The Cartan normal conformal connection associated with the conformal class $\left[g_{F}\right]$ yields invariant information about the equivalence class of the equation.
- This $\mathfrak{s o}(4,3)$-valued connection is reduced to a subalgebra $\mathfrak{g}_{2} \subset \mathfrak{s o}(4,3)$ and may be identified with the Cartan \mathfrak{g}_{2} connection ω on P.

Corollary

Corollary
Conformal holonomy of metrics $\left[g_{F}\right]$ is included in the exceptional group $G_{2(2)}$.

Corollary

Conformal holonomy of metrics $\left[g_{F}\right]$ is included in the exceptional group $G_{2(2)}$.
If $\left[g_{F}\right]$ includes and Einstein metric then this holonomy is a proper subgroup of $G_{2(2)}$

Corollary

Conformal holonomy of metrics $\left[g_{F}\right]$ is included in the exceptional group $G_{2(2)}$.
If $\left[g_{F}\right]$ includes and Einstein metric then this holonomy is a proper subgroup of $G_{2(2)}$

Questions:

Corollary

Conformal holonomy of metrics $\left[g_{F}\right]$ is included in the exceptional group $G_{2(2)}$.
If $\left[g_{F}\right]$ includes and Einstein metric then this holonomy is a proper subgroup of $G_{2(2)}$

Questions:

- are there conformal classes $\left[g_{F}\right]$ which do not include Einstein metric?

Corollary

Conformal holonomy of metrics $\left[g_{F}\right]$ is included in the exceptional group $G_{2(2)}$.
If $\left[g_{F}\right]$ includes and Einstein metric then this holonomy is a proper subgroup of $G_{2(2)}$

Questions:

- are there conformal classes $\left[g_{F}\right]$ which do not include Einstein metric?
- given F can one explicitely calculate the Fefferman-Graham ambient metric \hat{g} for the conformal class $\left[g_{F}\right]$?

Corollary

Conformal holonomy of metrics $\left[g_{F}\right]$ is included in the exceptional group $G_{2(2)}$.
If $\left[g_{F}\right]$ includes and Einstein metric then this holonomy is a proper subgroup of $G_{2(2)}$

Questions:

- are there conformal classes $\left[g_{F}\right]$ which do not include Einstein metric?
- given F can one explicitely calculate the Fefferman-Graham ambient metric \hat{g} for the conformal class $\left[g_{F}\right]$?
- how the conformal holonomy of $\left[g_{F}\right]$ is related to the (pseudo)Riemannian holonomy of \hat{g} ?

Corollary

Conformal holonomy of metrics $\left[g_{F}\right]$ is included in the exceptional group $G_{2(2)}$.
If $\left[g_{F}\right]$ includes and Einstein metric then this holonomy is a proper subgroup of $G_{2(2)}$

Questions:

- are there conformal classes $\left[g_{F}\right]$ which do not include Einstein metric?
- given F can one explicitely calculate the Fefferman-Graham ambient metric \hat{g} for the conformal class $\left[g_{F}\right]$?
- how the conformal holonomy of $\left[g_{F}\right]$ is related to the (pseudo)Riemannian holonomy of \hat{g} ?

Fefferman-Graham ambient metrics

Given a conformal class of metrics $[g]$ on M and given a representative $g \in[g]$, Fefferman and Graham define a metric \hat{g} on $R_{+} \times I \times M$, which encodes the conformal properties of $[g]$, and which is Ricci flat.

Fefferman-Graham ambient metrics

Given a conformal class of metrics $[g]$ on M and given a representative $g \in[g]$, Fefferman and Graham define a metric \hat{g} on $R_{+} \times I \times M$, which encodes the conformal properties of $[g]$, and which is Ricci flat. It is locally given by:

$$
\hat{g}=2 \mathrm{~d}(\rho t) \mathrm{d} t+t^{2}\left(g+2 \rho P+\rho^{2} \mu_{2}+\rho^{3} \mu_{3}+\rho^{4} \mu_{4}+\ldots\right)
$$

where $\left.t \in \mathbb{R}_{+}, \rho \in I=\right]-\epsilon, \epsilon\left[, P\right.$ is the Schouten tensor for g, and μ_{i} are symmetric 2 -tensors on M, with leading terms of order $2 i, i=2,3, \ldots$, in the derivatives of g.

Fefferman-Graham ambient metrics

Given a conformal class of metrics $[g]$ on M and given a representative $g \in[g]$, Fefferman and Graham define a metric \hat{g} on $R_{+} \times I \times M$, which encodes the conformal properties of $[g]$, and which is Ricci flat. It is locally given by:

$$
\hat{g}=2 \mathrm{~d}(\rho t) \mathrm{d} t+t^{2}\left(g+2 \rho P+\rho^{2} \mu_{2}+\rho^{3} \mu_{3}+\rho^{4} \mu_{4}+\ldots\right)
$$

where $\left.t \in \mathbb{R}_{+}, \rho \in I=\right]-\epsilon, \epsilon\left[, P\right.$ is the Schouten tensor for g, and μ_{i} are symmetric 2 -tensors on M, with leading terms of order $2 i, i=2,3, \ldots$, in the derivatives of g.

If the dimension of M is odd and g is real analytic, \hat{g} is real analytic in ρ and is uniquely determined by the condition $\operatorname{Ric}(\hat{g}) \equiv 0$. It is then called Feferman-Graham ambient metric fpr [g].

Fefferman-Graham ambient metrics

Given a conformal class of metrics $[g]$ on M and given a representative $g \in[g]$, Fefferman and Graham define a metric \hat{g} on $R_{+} \times I \times M$, which encodes the conformal properties of $[g]$, and which is Ricci flat. It is locally given by:

$$
\hat{g}=2 \mathrm{~d}(\rho t) \mathrm{d} t+t^{2}\left(g+2 \rho P+\rho^{2} \mu_{2}+\rho^{3} \mu_{3}+\rho^{4} \mu_{4}+\ldots\right)
$$

where $\left.t \in \mathbb{R}_{+}, \rho \in I=\right]-\epsilon, \epsilon\left[, P\right.$ is the Schouten tensor for g, and μ_{i} are symmetric 2 -tensors on M, with leading terms of order $2 i, i=2,3, \ldots$, in the derivatives of g.

If the dimension of M is odd and g is real analytic, \hat{g} is real analytic in ρ and is uniquely determined by the condition $\operatorname{Ric}(\hat{g}) \equiv 0$. It is then called Feferman-Graham ambient metric fpr $[g]$. Sad thing: Ambient metrics are very hard to be computed if $[g]$ does not contain an Einstein metric in the class.

PN (2008) Conformal structures with explicit ambient metrics and conformal G2 holonomy, IMA Volumes in Mathematics and its Applications, 144 515-526 (2008):

Theorem

PN (2008) Conformal structures with explicit ambient metrics and conformal G2 holonomy, IMA Volumes in Mathematics and its Applications, 144 515-526 (2008):

Theorem There exist equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ for which (1) the $(3,2)$-signature conformal classes $\left[g_{F}\right]$ does not contain any Einstein metric g_{F}, and (2) for which there are representatives g_{F} such that the ambient metric defined by $\left[g_{F}\right]$ truncates at the second order, i.e.

$$
\hat{g}_{F}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(g_{F}+2 \rho P+\rho^{2} \mu_{2}\right) .
$$

PN (2008) Conformal structures with explicit ambient metrics and conformal G2 holonomy, IMA Volumes in Mathematics and its Applications, 144 515-526 (2008):

Theorem There exist equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ for which (1) the $(3,2)$-signature conformal classes $\left[g_{F}\right]$ does not contain any Einstein metric g_{F}, and (2) for which there are representatives g_{F} such that the ambient metric defined by $\left[g_{F}\right]$ truncates at the second order, i.e.

$$
\hat{g}_{F}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(g_{F}+2 \rho P+\rho^{2} \mu_{2}\right)
$$

An example of such equation is given by $F=\left(y^{\prime \prime}\right)^{2}+s_{1} y^{\prime}+s_{2}\left(y^{\prime}\right)^{2}+s_{3}\left(y^{\prime}\right)^{3}+s_{4}\left(y^{\prime}\right)^{4}+s_{5}\left(y^{\prime}\right)^{5}+s_{6}\left(y^{\prime}\right)^{6}$, where $s_{4}+5 s_{5} y^{\prime}+15 s_{6}\left(y^{\prime}\right)^{2} \neq 0$.

PN (2008) Conformal structures with explicit ambient metrics and conformal G2 holonomy, IMA Volumes in Mathematics and its Applications, 144 515-526 (2008):

Theorem There exist equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ for which (1) the $(3,2)$-signature conformal classes $\left[g_{F}\right]$ does not contain any Einstein metric g_{F}, and (2) for which there are representatives g_{F} such that the ambient metric defined by $\left[g_{F}\right]$ truncates at the second order, i.e.

$$
\hat{g}_{F}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(g_{F}+2 \rho P+\rho^{2} \mu_{2}\right)
$$

An example of such equation is given by $F=\left(y^{\prime \prime}\right)^{2}+s_{1} y^{\prime}+s_{2}\left(y^{\prime}\right)^{2}+s_{3}\left(y^{\prime}\right)^{3}+s_{4}\left(y^{\prime}\right)^{4}+s_{5}\left(y^{\prime}\right)^{5}+s_{6}\left(y^{\prime}\right)^{6}$, where $s_{4}+5 s_{5} y^{\prime}+15 s_{6}\left(y^{\prime}\right)^{2} \neq 0$.

For such F one can compute \hat{g}_{F} explicitely

PN (2008) Conformal structures with explicit ambient metrics and conformal G2 holonomy, IMA Volumes in Mathematics and its Applications, 144 515-526 (2008):

Theorem There exist equations $z^{\prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$ for which (1) the $(3,2)$-signature conformal classes $\left[g_{F}\right]$ does not contain any Einstein metric g_{F}, and (2) for which there are representatives g_{F} such that the ambient metric defined by $\left[g_{F}\right]$ truncates at the second order, i.e.

$$
\hat{g}_{F}=2 \mathrm{~d} t \mathrm{~d}(\rho t)+t^{2}\left(g_{F}+2 \rho P+\rho^{2} \mu_{2}\right) .
$$

An example of such equation is given by $F=\left(y^{\prime \prime}\right)^{2}+s_{1} y^{\prime}+s_{2}\left(y^{\prime}\right)^{2}+s_{3}\left(y^{\prime}\right)^{3}+s_{4}\left(y^{\prime}\right)^{4}+s_{5}\left(y^{\prime}\right)^{5}+s_{6}\left(y^{\prime}\right)^{6}$, where $s_{4}+5 s_{5} y^{\prime}+15 s_{6}\left(y^{\prime}\right)^{2} \neq 0$.

For such F one can compute \hat{g}_{F} explicitely (but the explicit formula is not very enlightening).

Theorem (Th. Leistner + PN)

Theorem (Th. Leistner + PN)
Let

$$
F=\left(y^{\prime \prime}\right)^{2}+s_{1} y^{\prime}+s_{2}\left(y^{\prime}\right)^{2}+s_{3}\left(y^{\prime}\right)^{3}+s_{4}\left(y^{\prime}\right)^{4}+s_{5}\left(y^{\prime}\right)^{5}+s_{6}\left(y^{\prime}\right)^{6}
$$

with at least one of s_{4}, s_{5}, or s_{6} non zero, and let $\left[g_{F}\right]$ be the conformal class defined by the metric g_{F} as on the previous slide. Then the holonomy of the ambient metric for $\left[g_{F}\right]$ is equal to $G_{2(2)} \subset S O(4,3)$.

Theorem (Th. Leistner + PN)
Let

$$
F=\left(y^{\prime \prime}\right)^{2}+s_{1} y^{\prime}+s_{2}\left(y^{\prime}\right)^{2}+s_{3}\left(y^{\prime}\right)^{3}+s_{4}\left(y^{\prime}\right)^{4}+s_{5}\left(y^{\prime}\right)^{5}+s_{6}\left(y^{\prime}\right)^{6}
$$

with at least one of s_{4}, s_{5}, or s_{6} non zero, and let $\left[g_{F}\right]$ be the conformal class defined by the metric g_{F} as on the previous slide. Then the holonomy of the ambient metric for $\left[g_{F}\right]$ is equal to $G_{2(2)} \subset S O(4,3)$.

In particular this metric is Ricci flat and admits a covariantly constant spinor.

Next example (if time permits)

Next example (if time permits)

- A 5-dimensional Riemannian manifold M^{5} equipped with a metric g and a tensor field Υ such that :

Next example (if time permits)

- A 5-dimensional Riemannian manifold M^{5} equipped with a metric g and a tensor field Υ such that :
i) $\Upsilon_{i j k}=\Upsilon_{(i j k),} \quad$ (symmetry)

Next example (if time permits)

- A 5-dimensional Riemannian manifold M^{5} equipped with a metric g and a tensor field Υ such that :
i) $\Upsilon_{i j k}=\Upsilon_{(i j k)}$,
(symmetry)
ii) $\Upsilon_{i j j}=0$,
(trace-free)

Next example (if time permits)

- A 5-dimensional Riemannian manifold M^{5} equipped with a metric g and a tensor field Υ such that :
$\begin{array}{lc}\text { i) } \Upsilon_{i j k}=\Upsilon_{(i j k),} \quad \text { (symmetry) } \\ \text { ii) } \Upsilon_{i j j}=0, & \text { (trace-free) } \\ \text { iii) } \Upsilon_{j k i} \Upsilon_{l m i}+\Upsilon_{l j i} \Upsilon_{k m i}+\Upsilon_{k l i} \Upsilon_{j m i}=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m},\end{array}$

Next example (if time permits)

- A 5 -dimensional Riemannian manifold M^{5} equipped with a metric g and a tensor field Υ such that :
i) $\Upsilon_{i j k}=\Upsilon_{(i j k)}, \quad$ (symmetry)
ii) $\Upsilon_{i j j}=0$, (trace-free)
iii) $\Upsilon_{j k i} \Upsilon_{l m i}+\Upsilon_{l j i} \Upsilon_{k m i}+\Upsilon_{k l i} \Upsilon_{j m i}=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$, is called an irreducible $\mathbf{S O}(3)$ structure in dimension five.

Next example (if time permits)

- A 5 -dimensional Riemannian manifold M^{5} equipped with a metric g and a tensor field Υ such that :
i) $\Upsilon_{i j k}=\Upsilon_{(i j k)}, \quad$ (symmetry)
ii) $\Upsilon_{i j j}=0, \quad$ (trace-free)
iii) $\Upsilon_{j k i} \Upsilon_{l m i}+\Upsilon_{l j i} \Upsilon_{k m i}+\Upsilon_{k l i} \Upsilon_{j m i}=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$, is called an irreducible $\mathbf{S O}(3)$ structure in dimension five.
- An irreducible $\mathbf{S O}(3)$ structure $\left(M^{5}, g, \Upsilon\right)$ is called nearly integrable if Υ is a Killing tensor for g :

$$
\nabla{ }_{X}^{L C} \Upsilon(X, X, X)=0, \quad \forall X \in T M^{5} .
$$

- Nearly integrable $\mathbf{S O}(3)$ structures have a property that their Levi-Civita connection $\stackrel{L C}{\Gamma}$ uniquely decomposes onto
- Nearly integrable $\mathbf{S O}(3)$ structures have a property that their Levi-Civita connection $\stackrel{L C}{\Gamma}$ uniquely decomposes onto

$$
{ }^{L C}=\Gamma+\frac{1}{2} T,
$$

where Γ is an $\mathfrak{s o}(3)$-valued 1 -form on M^{5} and T is a 3 -form on M^{5}.

- Nearly integrable $\mathbf{S O}(3)$ structures have a property that their Levi-Civita connection Γ uniquely decomposes onto

$$
\stackrel{L C}{\Gamma}=\Gamma+\frac{1}{2} T,
$$

where Γ is an $\mathfrak{s o}(3)$-valued 1 -form on M^{5} and T is a 3 -form on M^{5}.

- We interpret Γ as an $\mathfrak{s o}(3)$-valued metric connection on M^{5} and T as its totally skew symmetric torsion.
- Nearly integrable $\mathbf{S O}(3)$ structures have a property that their Levi-Civita connection ${ }^{L C}$ uniquely decomposes onto

$$
\stackrel{L C}{\Gamma}=\Gamma+\frac{1}{2} T,
$$

where Γ is an $\mathfrak{s o}(3)$-valued 1 -form on M^{5} and T is a 3 -form on M^{5}.

- We interpret Γ as an $\mathfrak{s o}(3)$-valued metric connection on M^{5} and T as its totally skew symmetric torsion.
- Thus, nearly integrable $\mathbf{S O}(3)$ structures provide low-dimensional examples of Riemannian geometries which can be described in terms of a unique metric connection (Γ) with totally skew symmetric torsion (T).
- Nearly integrable $\mathbf{S O}(3)$ structures have a property that their Levi-Civita connection $\stackrel{L C}{\Gamma}$ uniquely decomposes onto

$$
{ }_{\Gamma}^{L C}=\Gamma+\frac{1}{2} T,
$$

where Γ is an $\mathfrak{s o}(3)$-valued 1 -form on M^{5} and T is a 3 -form on M^{5}.

- We interpret Γ as an $\mathfrak{s o}(3)$-valued metric connection on M^{5} and T as its totally skew symmetric torsion.
- Thus, nearly integrable $\mathbf{S O}(3)$ structures provide low-dimensional examples of Riemannian geometries which can be described in terms of a unique metric connection (Γ) with totally skew symmetric torsion (T).
- This sort of geometries are studied extensively by the string theorists.
- We have examples of such geometries. All our examples admit transitive symmetry group (which may be of dimension 8, 6 and 5)
- We have examples of such geometries. All our examples admit transitive symmetry group (which may be of dimension 8,6 and 5)
- We do not know if nonhomogeneous examples exist.
- We have examples of such geometries. All our examples admit transitive symmetry group (which may be of dimension 8, 6 and 5)
- We do not know if nonhomogeneous examples exist.
- Perhaps these structures are so rigid that they must be homogeneous.

Does Υ with properties (i)-(ii) exists in other signatures of the metric?

Does Υ with properties (i)-(ii) exists in other signatures of the metric?

- Coefficients a_{i} of a 4 th order polynomial

$$
w_{4}(x, y)=a_{0} x^{4}+4 a_{1} x^{3} y+6 a_{2} x^{2} y^{2}+4 a_{3} x y^{3}+a_{4} y^{4}
$$

Does Υ with properties (i)-(ii) exists in other signatures of the metric?

- Coefficients a_{i} of a 4 th order polynomial

$$
w_{4}(x, y)=a_{0} x^{4}+4 a_{1} x^{3} y+6 a_{2} x^{2} y^{2}+4 a_{3} x y^{3}+a_{4} y^{4}
$$

form a carier space for the 5 -dimensional irreducible representation of the $\mathbf{G L}(2, \mathbb{R})$ group;

Does Υ with properties (i)-(ii) exists in other signatures of the metric?

- Coefficients a_{i} of a 4th order polynomial

$$
w_{4}(x, y)=a_{0} x^{4}+4 a_{1} x^{3} y+6 a_{2} x^{2} y^{2}+4 a_{3} x y^{3}+a_{4} y^{4}
$$

form a carier space for the 5 -dimensional irreducible representation of the $\mathbf{G L}(2, \mathbb{R})$ group; this is induced on \mathbb{R}^{5} by the defining action of $\mathbf{G L}(2, \mathbb{R})$ on $(x, y) \in \mathbb{R}^{2}$.

Does Υ with properties (i)-(ii) exists in other signatures of the metric?

- Coefficients a_{i} of a 4th order polynomial

$$
w_{4}(x, y)=a_{0} x^{4}+4 a_{1} x^{3} y+6 a_{2} x^{2} y^{2}+4 a_{3} x y^{3}+a_{4} y^{4}
$$

form a carier space for the 5 -dimensional irreducible representation of the $\mathbf{G L}(2, \mathbb{R})$ group; this is induced on \mathbb{R}^{5} by the defining action of $\mathbf{G L}(2, \mathbb{R})$ on $(x, y) \in \mathbb{R}^{2}$.

- A polynomial I, in variables a_{i}, is called an algebraic invariant of $w_{4}(x, y)$ if it changes according to

$$
I \rightarrow I^{\prime}=(\operatorname{det} b)^{p} I, \quad b \in \mathbf{G} \mathbf{L}(2, \mathbb{R})
$$

under the action of this 5 -dimensional representation on $a_{i} s$.

- The lowest order invariants of $w_{4}(x, y)$ are:

$$
\begin{gathered}
I_{2}=3 a_{2}^{2}-4 a_{1} a_{3}+a_{0} a_{4} \\
I_{3}=a_{2}^{3}-2 a_{1} a_{2} a_{3}+a_{0} a_{3}^{2}-a_{0} a_{2} a_{4}+a_{1}^{2} a_{4} .
\end{gathered}
$$

- The lowest order invariants of $w_{4}(x, y)$ are:

$$
\begin{gathered}
I_{2}=3 a_{2}^{2}-4 a_{1} a_{3}+a_{0} a_{4} \\
I_{3}=a_{2}^{3}-2 a_{1} a_{2} a_{3}+a_{0} a_{3}^{2}-a_{0} a_{2} a_{4}+a_{1}^{2} a_{4}
\end{gathered}
$$

- Defining $\Upsilon_{i j k}$ and $g_{i j}$ via

$$
\begin{gathered}
\Upsilon_{i j k} a_{i} a_{j} a_{k}=3 \sqrt{3} I_{3} \\
g_{i j} a_{i} a_{j}=I_{2},
\end{gathered}
$$

one can check that the so defined $g_{i j}$ and $\Upsilon_{i j k}$ satisfy the desidered relations i)-iii).

- Now the metric $g_{i j}$ has signature $(2,3)$.
- Now the metric $g_{i j}$ has signature $(2,3)$.
- A simoultaneous stabilizer of Υ and g is $\mathbf{S L}(2, \mathbb{R}) \subset \mathbf{S O}(3,2) \subset \mathbf{G L}(5, \mathbb{R})$.
- Now the metric $g_{i j}$ has signature $(2,3)$.
- A simoultaneous stabilizer of Υ and g is

$$
\mathbf{S L}(2, \mathbb{R}) \subset \mathbf{S O}(3,2) \subset \mathbf{G L}(5, \mathbb{R})
$$

- Since the notion of an ivariant is conformal, it is reasonable to consider a conformal geometry in \mathbb{R}^{5} associated with a class of pairs $[(g, \Upsilon)]$ such that:
- Now the metric $g_{i j}$ has signature $(2,3)$.
- A simoultaneous stabilizer of Υ and g is

$$
\mathbf{S L}(2, \mathbb{R}) \subset \mathbf{S O}(3,2) \subset \mathbf{G L}(5, \mathbb{R})
$$

- Since the notion of an ivariant is conformal, it is reasonable to consider a conformal geometry in \mathbb{R}^{5} associated with a class of pairs $[(g, \Upsilon)]$ such that:
$\star g$ is a $(3,2)$ signature metric; Υ is a rank three totally symmetric tensor
- Now the metric $g_{i j}$ has signature $(2,3)$.
- A simoultaneous stabilizer of Υ and g is

$$
\mathbf{S L}(2, \mathbb{R}) \subset \mathbf{S O}(3,2) \subset \mathbf{G L}(5, \mathbb{R})
$$

- Since the notion of an ivariant is conformal, it is reasonable to consider a conformal geometry in \mathbb{R}^{5} associated with a class of pairs $[(g, \Upsilon)]$ such that:
$\star g$ is a $(3,2)$ signature metric; Υ is a rank three totally symmetric tensor $\star g^{i j} \Upsilon_{i j k}=0$,
- Now the metric $g_{i j}$ has signature $(2,3)$.
- A simoultaneous stabilizer of Υ and g is

$$
\mathbf{S L}(2, \mathbb{R}) \subset \mathbf{S O}(3,2) \subset \mathbf{G L}(5, \mathbb{R})
$$

- Since the notion of an ivariant is conformal, it is reasonable to consider a conformal geometry in \mathbb{R}^{5} associated with a class of pairs $[(g, \Upsilon)]$ such that:

$$
\begin{aligned}
& \star g \text { is a }(3,2) \text { signature metric; } \Upsilon \text { is a rank three totally symmetric tensor } \\
& \star g^{i j} \Upsilon_{i j k}=0, \\
& \star g^{a b}\left(\Upsilon_{j k a} \Upsilon_{l m b}+\Upsilon_{l j a} \Upsilon_{k m b}+\Upsilon_{k l a} \Upsilon_{j m b}\right)=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m},
\end{aligned}
$$

- Now the metric $g_{i j}$ has signature $(2,3)$.
- A simoultaneous stabilizer of Υ and g is

$$
\mathbf{S L}(2, \mathbb{R}) \subset \mathbf{S O}(3,2) \subset \mathbf{G L}(5, \mathbb{R})
$$

- Since the notion of an ivariant is conformal, it is reasonable to consider a conformal geometry in \mathbb{R}^{5} associated with a class of pairs $[(g, \Upsilon)]$ such that:
$\star g$ is a $(3,2)$ signature metric; Υ is a rank three totally symmetric tensor
$\star g^{i j} \Upsilon_{i j k}=0$,
$\star g^{a b}\left(\Upsilon_{j k a} \Upsilon_{l m b}+\Upsilon_{l j a} \Upsilon_{k m b}+\Upsilon_{k l a} \Upsilon_{j m b}\right)=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$,
$\star(g, \Upsilon) \sim\left(g^{\prime}, \Upsilon^{\prime}\right) \Leftrightarrow g^{\prime}=\mathrm{e}^{2 \phi} g, \quad \Upsilon^{\prime}=\mathrm{e}^{3 \phi} \Upsilon$.
- Now the metric $g_{i j}$ has signature $(2,3)$.
- A simoultaneous stabilizer of Υ and g is

$$
\mathbf{S L}(2, \mathbb{R}) \subset \mathbf{S O}(3,2) \subset \mathbf{G L}(5, \mathbb{R})
$$

- Since the notion of an ivariant is conformal, it is reasonable to consider a conformal geometry in \mathbb{R}^{5} associated with a class of pairs $[(g, \Upsilon)]$ such that:
$\star g$ is a $(3,2)$ signature metric; Υ is a rank three totally symmetric tensor
$\star g^{i j} \Upsilon_{i j k}=0$,
$\star g^{a b}\left(\Upsilon_{j k a} \Upsilon_{l m b}+\Upsilon_{l j a} \Upsilon_{k m b}+\Upsilon_{k l a} \Upsilon_{j m b}\right)=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$, $\star(g, \Upsilon) \sim\left(g^{\prime}, \Upsilon^{\prime}\right) \Leftrightarrow g^{\prime}=\mathrm{e}^{2 \phi} g, \quad \Upsilon^{\prime}=\mathrm{e}^{3 \phi} \Upsilon$.
- The stabilizer of the conformal class $[(g, \Upsilon)]$ is the irreducible $\mathbf{G L}(2, \mathbb{R})$ in dimension five.

Irreducible $\mathrm{GL}(2, \mathbb{R})$ geometry in dimension 5

Irreducible $\mathbf{G L}(2, \mathbb{R})$ geometry in dimension 5

A 5-dimensional manifold M^{5} equipped with a class of triples $[(g, \Upsilon, A)]$ such that:

Irreducible $\mathrm{GL}(2, \mathbb{R})$ geometry in dimension 5

A 5-dimensional manifold M^{5} equipped with a class of triples $[(g, \Upsilon, A)]$ such that:

- g is a $(3,2)$ signature metric; Υ is a rank three totally symmetric traceless tensor field; A is a 1 -form on M^{5}

Irreducible $\mathrm{GL}(2, \mathbb{R})$ geometry in dimension 5

A 5-dimensional manifold M^{5} equipped with a class of triples $[(g, \Upsilon, A)]$ such that:

- g is a $(3,2)$ signature metric; Υ is a rank three totally symmetric traceless tensor field; A is a 1 -form on M^{5}
- $g^{a b}\left(\Upsilon_{j k a} \Upsilon_{l m b}+\Upsilon_{l j a} \Upsilon_{k m b}+\Upsilon_{k l a} \Upsilon_{j m b}\right)=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$,

Irreducible $\mathrm{GL}(2, \mathbb{R})$ geometry in dimension 5

A 5-dimensional manifold M^{5} equipped with a class of triples $[(g, \Upsilon, A)]$ such that:

- g is a $(3,2)$ signature metric; Υ is a rank three totally symmetric traceless tensor field; A is a 1 -form on M^{5}
- $g^{a b}\left(\Upsilon_{j k a} \Upsilon_{l m b}+\Upsilon_{l j a} \Upsilon_{k m b}+\Upsilon_{k l a} \Upsilon_{j m b}\right)=g_{j k} g_{l m}+g_{l j} g_{k m}+g_{k l} g_{j m}$,
- $(g, \Upsilon, A) \sim\left(g^{\prime}, \Upsilon^{\prime}, A^{\prime}\right) \Leftrightarrow\left(g^{\prime}=\mathrm{e}^{2 \phi} g, \Upsilon^{\prime}=\mathrm{e}^{3 \phi} \Upsilon, A^{\prime}=A-2 \mathrm{~d} \phi\right)$,
is called an irreducible $\mathbf{G L}(2, \mathbb{R})$ structure in dimension five.

Nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structures in dimension 5

Nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structures in dimension 5

- Given $\left(M^{5},[(g, \Upsilon, A)]\right)$ and forgetting about Υ we have a Weyl geometry $[(g, A)]$ on M^{5}.

Nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structures in dimension 5

- Given ($\left.M^{5},[(g, \Upsilon, A)]\right)$ and forgetting about Υ we have a Weyl geometry $[(g, A)]$ on M^{5}. This defines a unique Weyl connection $\stackrel{W}{\nabla}$ which is torsionless and satisfies

$$
\stackrel{W}{V}_{X} g+A(X) g=0 .
$$

Nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structures in dimension 5

- Given ($\left.M^{5},[(g, \Upsilon, A)]\right)$ and forgetting about Υ we have a Weyl geometry $[(g, A)]$ on M^{5}. This defines a unique Weyl connection $\stackrel{W}{\nabla}$ which is torsionless and satisfies

$$
\stackrel{W}{\nabla}_{X} g+A(X) g=0 .
$$

- An irreducible $\mathbf{G L}(2, \mathbb{R})$ structure $\left(M^{5},[(g, \Upsilon, A)]\right)$ is called nearly integrable iff tensor Υ is a conformal Killing tensor for $\stackrel{W}{\nabla}$:

$$
\stackrel{W}{V}_{X} \Upsilon(X, X, X)+\frac{1}{2} A(X) \Upsilon(X, X, X)=0, \quad \forall X \in \mathrm{~T} M^{5} .
$$

Characteristic connection

Characteristic connection

- Every nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structure in dimension five uniquely defines a $\mathfrak{g l}(2, \mathbb{R})$-valued connection, called characteristic connection, which has totally skew symmetric torsion.

Characteristic connection

- Every nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structure in dimension five uniquely defines a $\mathfrak{g l}(2, \mathbb{R})$-valued connection, called characteristic connection, which has totally skew symmetric torsion.
- This connection is partially characterized by:

$$
\nabla_{X} g+A(X) g=0, \quad \nabla_{X} \Upsilon+\frac{3}{2} A(X) \Upsilon=0
$$

Characteristic connection

- Every nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structure in dimension five uniquely defines a $\mathfrak{g l}(2, \mathbb{R})$-valued connection, called characteristic connection, which has totally skew symmetric torsion.
- This connection is partially characterized by:

$$
\nabla_{X} g+A(X) g=0, \quad \nabla_{X} \Upsilon+\frac{3}{2} A(X) \Upsilon=0
$$

- To achieve the uniqueness one requires the that torsion T of ∇, considered as an element of $\bigotimes^{3} \mathrm{~T}^{*} M^{5}$, seats in a 10 -dimensional subspace $\bigwedge^{3} \mathrm{~T}^{*} M^{5}$.
- In terms of the connection 1 -forms of the Weyl connection ${ }_{\Gamma}^{\Gamma}$, and the characteristic connection Γ, we have

$$
\stackrel{W}{\Gamma}=\Gamma+\frac{1}{2} T,
$$

$$
\text { where } \stackrel{W}{\Gamma} \in \mathfrak{c o}(3,2) \otimes \mathrm{T}^{*} M^{5}, \Gamma \in \mathfrak{g l}(2, \mathbb{R}) \otimes \mathrm{T}^{*} M^{5} \text { and } T \in \bigwedge^{3} \mathrm{~T}^{*} M^{5} .
$$

- In terms of the connection 1 -forms of the Weyl connection $\stackrel{W}{\Gamma}$, and the characteristic connection Γ, we have

$$
\stackrel{W}{\Gamma}=\Gamma+\frac{1}{2} T
$$

where $\stackrel{W}{\Gamma} \in \mathfrak{c o}(3,2) \otimes \mathrm{T}^{*} M^{5}, \Gamma \in \mathfrak{g l}(2, \mathbb{R}) \otimes \mathrm{T}^{*} M^{5}$ and $T \in \bigwedge^{3} \mathrm{~T}^{*} M^{5}$.

- The converse is also true: if an irreducible $\mathbf{G L}(2, \mathbb{R})$ structure in dimension five admits a connection ∇ satisfying

$$
\nabla_{X} g+A(X) g=0, \quad \nabla_{X} \Upsilon+\frac{3}{2} A(X) \Upsilon=0,
$$

and having totally skew symmetric torsion $T \in \bigwedge^{3} \mathrm{~T}^{*} M^{5}$ then it is nearly integrable.

Classification of torsion

Classification of torsion

- Group $\mathbf{G L}(2, \mathbb{R})$ acts reducibly on the 10-dimensional space of 3-forms $\bigwedge^{3} \mathbb{R}^{5}$

Classification of torsion

- Group $\mathbf{G L}(2, \mathbb{R})$ acts reducibly on the 10 -dimensional space of 3 -forms $\Lambda^{3} \mathbb{R}^{5}$.
- The $\mathbf{G L}(2, \mathbb{R})$ irreducible components are:

$$
\Lambda^{3} \mathbb{R}^{5}=\Lambda_{3} \oplus \Lambda_{7}
$$

and have respective dimensions three $\left(\bigwedge_{3}\right)$ and seven $\left(\bigwedge_{7}\right)$.

Classification of torsion

- Group $\mathbf{G L}(2, \mathbb{R})$ acts reducibly on the 10 -dimensional space of 3 -forms $\Lambda^{3} \mathbb{R}^{5}$.
- The $\mathbf{G L}(2, \mathbb{R})$ irreducible components are:

$$
\Lambda^{3} \mathbb{R}^{5}=\Lambda_{3} \oplus \Lambda_{7}
$$

and have respective dimensions three $\left(\bigwedge_{3}\right)$ and seven $\left(\bigwedge_{7}\right)$.

- Can we produce examples of the nearly integrable $\mathbf{G L}(2, \mathbb{R})$ geometries in dimension five?

Classification of torsion

- Group $\mathrm{GL}(2, \mathbb{R})$ acts reducibly on the 10 -dimensional space of 3 -forms $\Lambda^{3} \mathbb{R}^{5}$.
- The $\mathbf{G L}(2, \mathbb{R})$ irreducible components are:

$$
\Lambda^{3} \mathbb{R}^{5}=\Lambda_{3} \oplus \Lambda_{7}
$$

and have respective dimensions three $\left(\bigwedge_{3}\right)$ and seven $\left(\bigwedge_{7}\right)$.

- Can we produce examples of the nearly integrable $\mathbf{G L}(2, \mathbb{R})$ geometries in dimension five? Can we produce examples with 'pure' torsion in \bigwedge_{3} or \bigwedge_{7} ?

Classification of torsion

- Group $\mathbf{G L}(2, \mathbb{R})$ acts reducibly on the 10 -dimensional space of 3 -forms $\Lambda^{3} \mathbb{R}^{5}$.
- The $\mathbf{G L}(2, \mathbb{R})$ irreducible components are:

$$
\Lambda^{3} \mathbb{R}^{5}=\Lambda_{3} \oplus \Lambda_{7}
$$

and have respective dimensions three $\left(\bigwedge_{3}\right)$ and seven $\left(\bigwedge_{7}\right)$.

- Can we produce examples of the nearly integrable $\mathbf{G L}(2, \mathbb{R})$ geometries in dimension five? Can we produce examples with 'pure' torsion in Λ_{3} or Λ_{7} ? Can we produce nonhomogeneous examples?

A well known fact

A well known fact

- Ordinary differential equation $y^{(5)}=0$ has $\mathbf{G L}(2, \mathbb{R}) \times_{\rho} \mathbb{R}^{5}$ as its group of contact symmetries. Here $\rho: \mathbf{G L}(2, \mathbb{R}) \rightarrow \mathbf{G L}(5, \mathbb{R})$ is the 5 -dimensional irreducible representation of $\mathrm{GL}(2, \mathbb{R})$.

A well known fact

- Ordinary differential equation $y^{(5)}=0$ has $\mathbf{G L}(2, \mathbb{R}) \times_{\rho} \mathbb{R}^{5}$ as its group of contact symmetries. Here $\rho: \mathbf{G L}(2, \mathbb{R}) \rightarrow \mathbf{G L}(5, \mathbb{R})$ is the 5 -dimensional irreducible representation of $\mathbf{G L}(2, \mathbb{R})$.
- This, in particular, means that $y^{(5)}=0$ may be described in terms of a flat $\mathfrak{g l}(2, \mathbb{R})$-valued connection on the principal fibre bundle $\mathrm{GL}(2, \mathbb{R}) \rightarrow P \rightarrow M^{5}$ over the solution space M^{5} of the ODE.

A well known fact

- Ordinary differential equation $y^{(5)}=0$ has $\mathbf{G L}(2, \mathbb{R}) \times_{\rho} \mathbb{R}^{5}$ as its group of contact symmetries. Here $\rho: \mathbf{G L}(2, \mathbb{R}) \rightarrow \mathbf{G L}(5, \mathbb{R})$ is the 5-dimensional irreducible representation of $\mathbf{G L}(2, \mathbb{R})$.
- This, in particular, means that $y^{(5)}=0$ may be described in terms of a flat $\mathfrak{g l}(2, \mathbb{R})$-valued connection on the principal fibre bundle $\mathrm{GL}(2, \mathbb{R}) \rightarrow P \rightarrow M^{5}$ over the solution space M^{5} of the ODE. As a consequence the solution space M^{5} is equipped with a nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structure whose characteristic connection is flat and has no torsion.

A well known fact

- Ordinary differential equation $y^{(5)}=0$ has $\mathbf{G L}(2, \mathbb{R}) \times_{\rho} \mathbb{R}^{5}$ as its group of contact symmetries. Here $\rho: \mathbf{G L}(2, \mathbb{R}) \rightarrow \mathbf{G L}(5, \mathbb{R})$ is the 5-dimensional irreducible representation of $\mathbf{G L}(2, \mathbb{R})$.
- This, in particular, means that $y^{(5)}=0$ may be described in terms of a flat $\mathfrak{g l}(2, \mathbb{R})$-valued connection on the principal fibre bundle $\mathrm{GL}(2, \mathbb{R}) \rightarrow P \rightarrow M^{5}$ over the solution space M^{5} of the ODE. As a consequence the solution space M^{5} is equipped with a nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structure whose characteristic connection is flat and has no torsion.
- What about more complicated 5th order ODEs?

Theorem

Theorem

- Consider a 5th order ODE $y^{(5)}=F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{(3)}, y^{(4)}\right)$ modulo contact transformation of the variables.

Theorem

- Consider a 5th order ODE $y^{(5)}=F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{(3)}, y^{(4)}\right)$ modulo contact transformation of the variables.
- Let $D=\partial_{x}+y^{\prime} \partial_{y}+y^{\prime \prime} \partial_{y^{\prime}}+y^{(3)} \partial_{y^{\prime \prime}}+y^{(4)} \partial_{y^{(3)}}+F \partial_{y^{(4)}}$.

Theorem

- Consider a 5th order ODE $y^{(5)}=F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{(3)}, y^{(4)}\right)$ modulo contact transformation of the variables.
- Let $D=\partial_{x}+y^{\prime} \partial_{y}+y^{\prime \prime} \partial_{y^{\prime}}+y^{(3)} \partial_{y^{\prime \prime}}+y^{(4)} \partial_{y^{(3)}}+F \partial_{y^{(4)}}$.
- Suppose that the equation satsifies three, contact invariant conditions:

Theorem

- Consider a 5th order ODE $y^{(5)}=F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{(3)}, y^{(4)}\right)$ modulo contact transformation of the variables.
- Let $D=\partial_{x}+y^{\prime} \partial_{y}+y^{\prime \prime} \partial_{y^{\prime}}+y^{(3)} \partial_{y^{\prime \prime}}+y^{(4)} \partial_{y^{(3)}}+F \partial_{y^{(4)}}$.
- Suppose that the equation satsifies three, contact invariant conditions:

$$
50 D^{2} F_{4}-75 D F_{3}+50 F_{2}-60 F_{4} D F_{4}+30 F_{3} F_{4}+8 F_{4}^{3}=0
$$

Theorem

- Consider a 5th order ODE $y^{(5)}=F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{(3)}, y^{(4)}\right)$ modulo contact transformation of the variables.
- Let $D=\partial_{x}+y^{\prime} \partial_{y}+y^{\prime \prime} \partial_{y^{\prime}}+y^{(3)} \partial_{y^{\prime \prime}}+y^{(4)} \partial_{y^{(3)}}+F \partial_{y^{(4)}}$.
- Suppose that the equation satsifies three, contact invariant conditions:

$$
\begin{gathered}
50 D^{2} F_{4}-75 D F_{3}+50 F_{2}-60 F_{4} D F_{4}+30 F_{3} F_{4}+8 F_{4}^{3}=0 \\
375 D^{2} F_{3}-1000 D F_{2}+350 D F_{4}^{2}+1250 F_{1}-650 F_{3} D F_{4}+200 F_{3}^{2}- \\
150 F_{4} D F_{3}+200 F_{2} F_{4}-140 F_{4}^{2} D F_{4}+130 F_{3} F_{4}^{2}+14 F_{4}^{4}=0
\end{gathered}
$$

$$
\begin{gathered}
1250 D^{2} F_{2}-6250 D F_{1}+1750 D F_{3} D F_{4}-2750 F_{2} D F_{4}- \\
875 F_{3} D F_{3}+1250 F_{2} F_{3}-500 F_{4} D F_{2}+700\left(D F_{4}\right)^{2} F_{4}+ \\
1250 F_{1} F_{4}-1050 F_{3} F_{4} D F_{4}+350 F_{3}^{2} F_{4}-350 F_{4}^{2} D F_{3}+ \\
550 F_{2} F_{4}^{2}-280 F_{4}^{3} D F_{4}+210 F_{3} F_{4}^{3}+28 F_{4}^{5}+18750 F_{y}=0
\end{gathered}
$$

$$
\begin{gathered}
1250 D^{2} F_{2}-6250 D F_{1}+1750 D F_{3} D F_{4}-2750 F_{2} D F_{4}- \\
875 F_{3} D F_{3}+1250 F_{2} F_{3}-500 F_{4} D F_{2}+700\left(D F_{4}\right)^{2} F_{4}+ \\
1250 F_{1} F_{4}-1050 F_{3} F_{4} D F_{4}+350 F_{3}^{2} F_{4}-350 F_{4}^{2} D F_{3}+ \\
550 F_{2} F_{4}^{2}-280 F_{4}^{3} D F_{4}+210 F_{3} F_{4}^{3}+28 F_{4}^{5}+18750 F_{y}=0
\end{gathered}
$$

- Then the 5 -dimensional solution space of the equation is naturally equipped with a nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structure.

$$
\begin{gathered}
1250 D^{2} F_{2}-6250 D F_{1}+1750 D F_{3} D F_{4}-2750 F_{2} D F_{4}- \\
875 F_{3} D F_{3}+1250 F_{2} F_{3}-500 F_{4} D F_{2}+700\left(D F_{4}\right)^{2} F_{4}+ \\
1250 F_{1} F_{4}-1050 F_{3} F_{4} D F_{4}+350 F_{3}^{2} F_{4}-350 F_{4}^{2} D F_{3}+ \\
550 F_{2} F_{4}^{2}-280 F_{4}^{3} D F_{4}+210 F_{3} F_{4}^{3}+28 F_{4}^{5}+18750 F_{y}=0
\end{gathered}
$$

- Then the 5 -dimensional solution space of the equation is naturally equipped with a nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structure.
- Every nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structure obtained in this way has torsion of its characteristic connection of the 'pure' type $T \in \bigwedge_{3}$.

$$
\begin{gathered}
1250 D^{2} F_{2}-6250 D F_{1}+1750 D F_{3} D F_{4}-2750 F_{2} D F_{4}- \\
875 F_{3} D F_{3}+1250 F_{2} F_{3}-500 F_{4} D F_{2}+700\left(D F_{4}\right)^{2} F_{4}+ \\
1250 F_{1} F_{4}-1050 F_{3} F_{4} D F_{4}+350 F_{3}^{2} F_{4}-350 F_{4}^{2} D F_{3}+ \\
550 F_{2} F_{4}^{2}-280 F_{4}^{3} D F_{4}+210 F_{3} F_{4}^{3}+28 F_{4}^{5}+18750 F_{y}=0,
\end{gathered}
$$

- Then the 5 -dimensional solution space of the equation is naturally equipped with a nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structure.
- Every nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structure obtained in this way has torsion of its characteristic connection of the 'pure' type $T \in \bigwedge_{3}$.
- We call the three conditions on F the Wünschmann-like conditions.

Examples of F satisfying the Wünschmann-like conditions

The three differential equations

$$
y^{(5)}=c\left(\frac{5 y^{(3) 3}\left(5-27 c y^{\prime \prime 2}\right)}{9\left(1+c y^{\prime \prime 2}\right)^{2}}+10 \frac{y^{\prime \prime} y^{(3)} y^{(4)}}{1+c y^{\prime \prime 2}}\right),
$$

with $c=+1,0,-1$, represent the only three contact nonequivalent classes of Wünschmann-like ODEs having the corresponding nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structures ($M^{5},[g, \Upsilon, A]$) with the characteristic connection with vanishing torsion.

In all three cases the holonomy of the Weyl connection ${ }_{\Gamma}^{W}$ of structures $\left(M^{5},[g, \Upsilon, A]\right)$ is reduced to the $\mathbf{G L}(2, \mathbb{R})$. For all the three cases the Maxwell 2 -form $\mathrm{d} A \equiv 0$. The corresponding Weyl structure is flat for $c=0$. If $c= \pm 1$, then in the conformal class $[g]$ there is an Einstein metric of positive $(c=+1)$ or negative $(c=-1)$ Ricci scalar. In case $c=1$ the manifold M^{5} can be identified with the homogeneous space $\mathbf{S U}(1,2) / \mathbf{S L}(2, \mathbb{R})$ with an Einstein g descending from the Killing form on $\mathbf{S U}(1,2)$. Similarly in $c=-1$ case the manifold M^{5} can be identified with the homogeneous space $\mathbf{S L}(3, \mathbb{R}) / \mathbf{S L}(2, \mathbb{R})$ with an Einstein g descending from the Killing form on $\mathbf{S L}(3, \mathbb{R})$. In both cases with $c \neq 0$ the metric g is not conformally flat.

$$
F=\frac{5 y_{4}^{2}}{4 y_{3}}, \quad F=\frac{5 y_{4}^{2}}{3 y_{3}} .
$$

The corresponding structures have 7-dimensional symmetry group.

$$
F=\frac{5 y_{4}^{2}}{4 y_{3}}, \quad F=\frac{5 y_{4}^{2}}{3 y_{3}} .
$$

The corresponding structures have 7 -dimensional symmetry group.

$$
\begin{gathered}
F=\frac{5\left(8 y_{3}^{3}-12 y_{2} y_{3} y_{4}+3 y_{1} y_{4}^{2}\right)}{6\left(2 y_{1} y_{3}-3 y_{2}^{2}\right)}, \\
F=\frac{5 y_{4}^{2}}{3 y_{3}} \pm y_{3}^{5 / 3},
\end{gathered}
$$

represent four nonequivalent nearly integrable $\mathbf{G L}(2, \mathbb{R})$ structures corresponding to the different signs in the second expression and to the different signs of the denominator in the first expression. These structures have 6 -dimensional symmety group.

$$
\begin{aligned}
& \qquad F=\frac{1}{9\left(y_{1}^{2}+y_{2}\right)^{2}} \times \\
& \left(5 w\left(y_{1}^{6}+3 y_{1}^{4} y_{2}+9 y_{1}^{2} y_{2}^{2}-9 y_{2}^{3}-4 y_{1}^{3} y_{3}+12 y_{1} y_{2} y_{3}+4 y_{3}^{2}-3 y_{4}\left(y_{1}^{2}+y_{2}\right)\right)+\right. \\
& 45 y_{4}\left(y_{1}^{2}+y_{2}\right)\left(2 y_{1} y_{2}+y_{3}\right)-4 y_{1}^{9}-18 y_{1}^{7} y_{2}-54 y_{1}^{5} y_{2}^{2}-90 y_{1}^{3} y_{2}^{3}+270 y_{1} y_{2}^{4}+ \\
& \left.15 y_{1}^{6} y_{3}+45 y_{1}^{4} y_{2} y_{3}-405 y_{1}^{2} y_{2}^{2} y_{3}+45 y_{2}^{3} y_{3}+60 y_{1}^{3} y_{3}^{2}-180 y_{1} y_{2} y_{3}^{2}-40 y_{3}^{3}\right), \\
& \text { where } \\
& w^{2}=y_{1}^{6}+3 y_{1}^{4} y_{2}+9 y_{1}^{2} y_{2}^{2}-9 y_{2}^{3}-4 y_{1}^{3} y_{3}+12 y_{1} y_{2} y_{3}+4 y_{3}^{2}-3 y_{1}^{2} y_{4}-3 y_{2} y_{4} .
\end{aligned}
$$

This again has 6-dimensional symmetry group.

Nonhomogeneous example

Nonhomogeneous example

An ansatz

$$
F=\left(y_{3}\right)^{5 / 3} q\left(\frac{y_{4}^{3}}{y_{3}^{4}}\right)
$$

Nonhomogeneous example

An ansatz

$$
F=\left(y_{3}\right)^{5 / 3} q\left(\frac{y_{4}^{3}}{y_{3}^{4}}\right)
$$

reduces Wünschmann-like conditions to a single ODE

$$
90 z^{4 / 3}\left(3 q-4 z^{2 / 3}\right) \frac{\mathrm{d}^{2} q}{\mathrm{~d} z^{2}}-54 z^{4 / 3}\left(\frac{\mathrm{~d} q}{\mathrm{~d} z}\right)^{2}+30 z^{1 / 3}\left(6 q-5 z^{2 / 3}\right) \frac{\mathrm{d} q}{\mathrm{~d} z}-25 q=0
$$

in which $z=\frac{y_{4}^{3}}{y_{3}^{4}}$.

Nonhomogeneous example

An ansatz

$$
F=\left(y_{3}\right)^{5 / 3} q\left(\frac{y_{4}^{3}}{y_{3}^{4}}\right)
$$

reduces Wünschmann-like conditions to a single ODE

$$
90 z^{4 / 3}\left(3 q-4 z^{2 / 3}\right) \frac{\mathrm{d}^{2} q}{\mathrm{~d} z^{2}}-54 z^{4 / 3}\left(\frac{\mathrm{~d} q}{\mathrm{~d} z}\right)^{2}+30 z^{1 / 3}\left(6 q-5 z^{2 / 3}\right) \frac{\mathrm{d} q}{\mathrm{~d} z}-25 q=0
$$

in which $z=\frac{y_{4}^{3}}{y_{3}^{4}}$.
This equation may be solved explicitely giving example of ODEs having its nearly integrable structure being nonhomogeneous.

What about other orders of ODEs?

What about other orders of ODEs?

- If a 3 rd order ODE $y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ satisfies the Wünschmann condition

$$
\begin{gathered}
9 D^{2} F_{2}-18 F_{2} D F_{2}-27 D F_{1}+4 F_{2}^{3}-18 F_{1} F_{2}+54 F_{y}=0, \\
D=\partial_{x}+y_{1} \partial_{y}+y_{2} \partial_{y_{1}}+F \partial_{y_{2}},
\end{gathered}
$$

What about other orders of ODEs?

- If a 3 rd order ODE $y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ satisfies the Wünschmann condition

$$
\begin{gathered}
9 D^{2} F_{2}-18 F_{2} D F_{2}-27 D F_{1}+4 F_{2}^{3}-18 F_{1} F_{2}+54 F_{y}=0, \\
D=\partial_{x}+y_{1} \partial_{y}+y_{2} \partial_{y_{1}}+F \partial_{y_{2}},
\end{gathered}
$$

then it defines a Lorentzian conformal structure on the 3 -dimensional space of its solutions.

What about other orders of ODEs?

- If a 3 rd order ODE $y^{\prime \prime \prime}=F\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ satisfies the Wünschmann condition

$$
\begin{gathered}
9 D^{2} F_{2}-18 F_{2} D F_{2}-27 D F_{1}+4 F_{2}^{3}-18 F_{1} F_{2}+54 F_{y}=0, \\
D=\partial_{x}+y_{1} \partial_{y}+y_{2} \partial_{y_{1}}+F \partial_{y_{2}},
\end{gathered}
$$

then it defines a Lorentzian conformal structure on the 3 -dimensional space of its solutions.

- This conformal structure in dimension three is related to the quadratic $\mathrm{GL}(2, \mathbb{R})$ invariant $\Delta=a_{0} a_{2}-a_{1}^{2}$ of $w_{2}(x, y)=a_{0} x^{2}+2 a_{1} x y+a_{2} y^{2}$.
- If a 4 th order ODE $y^{(4)}=F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)$ satisfies the Wünschmann-like conditions

$$
4 D^{2} F_{3}-8 D F_{2}+8 F_{1}-6 D F_{3} F_{3}+4 F_{2} F_{3}+F_{3}^{3}=0
$$

- If a 4 th order ODE $y^{(4)}=F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)$ satisfies the Wünschmann-like conditions

$$
\begin{gathered}
4 D^{2} F_{3}-8 D F_{2}+8 F_{1}-6 D F_{3} F_{3}+4 F_{2} F_{3}+F_{3}^{3}=0 \\
160 D^{2} F_{2}-640 D F_{1}+144\left(D F_{3}\right)^{2}-352 D F_{3} F_{2}+144 F_{2}^{2}- \\
80 D F_{2} F_{3}+160 F_{1} F_{3}-72 D F_{3} F_{3}^{2}+88 F_{2} F_{3}^{2}+9 F_{3}^{4}+16000 F_{y}=0,
\end{gathered}
$$

- If a 4 th order ODE $y^{(4)}=F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)$ satisfies the Wünschmann-like conditions

$$
\begin{gathered}
4 D^{2} F_{3}-8 D F_{2}+8 F_{1}-6 D F_{3} F_{3}+4 F_{2} F_{3}+F_{3}^{3}=0 \\
160 D^{2} F_{2}-640 D F_{1}+144\left(D F_{3}\right)^{2}-352 D F_{3} F_{2}+144 F_{2}^{2}- \\
80 D F_{2} F_{3}+160 F_{1} F_{3}-72 D F_{3} F_{3}^{2}+88 F_{2} F_{3}^{2}+9 F_{3}^{4}+16000 F_{y}=0, \\
D=\partial_{x}+y_{1} \partial_{y}+y_{2} \partial_{y_{1}}+y_{3} \partial_{y_{2}}+F \partial_{y_{3}}
\end{gathered}
$$

- If a 4th order ODE $y^{(4)}=F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)$ satisfies the Wünschmann-like conditions

$$
\begin{gathered}
4 D^{2} F_{3}-8 D F_{2}+8 F_{1}-6 D F_{3} F_{3}+4 F_{2} F_{3}+F_{3}^{3}=0, \\
160 D^{2} F_{2}-640 D F_{1}+144\left(D F_{3}\right)^{2}-352 D F_{3} F_{2}+144 F_{2}^{2}- \\
80 D F_{2} F_{3}+160 F_{1} F_{3}-72 D F_{3} F_{3}^{2}+88 F_{2} F_{3}^{2}+9 F_{3}^{4}+16000 F_{y}=0, \\
D=\partial_{x}+y_{1} \partial_{y}+y_{2} \partial_{y_{1}}+y_{3} \partial_{y_{2}}+F \partial_{y_{3}},
\end{gathered}
$$

then it defines an irreducible $\mathbf{G L}(2, \mathbb{R})$ structure on the 4 -dimensional space M^{4} of its solutions.

- This $\mathbf{G L}(2, \mathbb{R})$ structure in dimension four may be understood in terms of a conformal Weyl-like structure associated with the quartic $\mathbf{G L}(2, \mathbb{R})$ invariant

$$
I_{4}=-3 a_{1}^{2} a_{2}^{2}+4_{0} a_{2}^{3}+4 a_{1}^{3} a_{3}-6 a_{0} a_{1} a_{2} a_{3}+a_{0}^{2} a_{3}^{2}
$$

of

$$
w_{3}(x, y)=a_{0} x^{3}+3 a_{1} x^{2} y+3 a_{2} x y^{2}+a_{3} y^{3}
$$

and a certain 1-form A on M^{4}.

- In order n we have ($n-2$)-Wünschmann-like conditions on F, which guarantee that the solutions space has an irreducible $\mathbf{G L}(2, \mathbb{R})$ structure in dimension n.
- In order n we have $(n-2)$-Wünschmann-like conditions on F, which guarantee that the solutions space has an irreducible $\mathbf{G L}(2, \mathbb{R})$ structure in dimension n.
- These $\mathbf{G L}(2, \mathbb{R})$ structures can be understood in terms of a certain Weyl-like conformal geometries $\left[\left(\Upsilon_{1}, \Upsilon_{2}, \ldots, \Upsilon_{k}, A\right)\right]$ of $\mathbf{G L}(2, \mathbb{R})$-invariant symmetric conformal tensors Υ_{μ} and a certain 1 -form A given up to a gradient.
- In order n we have $(n-2)$-Wünschmann-like conditions on F, which guarantee that the solutions space has an irreducible $\mathbf{G L}(2, \mathbb{R})$ structure in dimension n.
- These $\mathbf{G L}(2, \mathbb{R})$ structures can be understood in terms of a certain Weyl-like conformal geometries $\left[\left(\Upsilon_{1}, \Upsilon_{2}, \ldots, \Upsilon_{k}, A\right)\right]$ of $\mathbf{G L}(2, \mathbb{R})$-invariant symmetric conformal tensors Υ_{μ} and a certain 1-form A given up to a gradient.
- It seems that rich $\mathbf{G L}(2, \mathbb{R})$ geometries, with lots of examples, are possible in orders $3 \leq n \leq 5$ only!

