Exceptional holonomy based on Hitchin's flow equations

Frank Reidegeld

Department Mathematik Universität Hamburg

Friday, 25.9.2009

< 回 > < 回 > < 回 >

Contents

Frank Reidegeld Holonomy and Hitchin flow

ヘロト 人間 とくほ とくほ とう

æ

Contents

Review of Hitchin's results

Degeneration of the Hitchin flow

Frank Reidegeld Holonomy and Hitchin flow

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

Review of Hitchin's results

2 Degeneration of the Hitchin flow

Objective a six-dimensional manifold

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

э

Review of Hitchin's results

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

э

SU(3)-, G_2 - and Spin(7)-structures I

An SU(3)-structure on a 6-manifold is determined by a 2-form ω and a 3-form ρ . There is in fact a U(1)-family of 3-forms ρ^{θ} , $\theta \in \mathbb{R}$, which determine the same SU(3)-structure. We nevertheless denote SU(3)-structures mostly by (ω, ρ) .

ヘロト ヘ戸ト ヘヨト ヘヨト

SU(3)-, G_2 - and Spin(7)-structures I

An SU(3)-structure on a 6-manifold is determined by a 2-form ω and a 3-form ρ . There is in fact a U(1)-family of 3-forms ρ^{θ} , $\theta \in \mathbb{R}$, which determine the same SU(3)-structure. We nevertheless denote SU(3)-structures mostly by (ω, ρ) .

A G_2 -structure on a 7-manifold is determined by a 3-form ϕ .

A Spin(7)-structure on an 8-manifold is determined by a 4-form Φ .

The above forms have to satisfy certain constraints.

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

SU(3)-, G_2 - and Spin(7)-structures II

 (ω, ρ) , ϕ and Φ yield symmetric bilinear forms denoted by g^6 , g^7 and g^8 . In order to define an SU(3)-, G_2 - or Spin(7)-structure, we need $g^6, g^7, g^8 > 0$.

 ω , ρ , ϕ should be stable, i.e. the *GL*(6)- or *GL*(7)-orbit is open.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

SU(3)-, G_2 - and Spin(7)-structures II

 (ω, ρ) , ϕ and Φ yield symmetric bilinear forms denoted by g^6 , g^7 and g^8 . In order to define an SU(3)-, G_2 - or Spin(7)-structure, we need $g^6, g^7, g^8 > 0$.

 ω , ρ , ϕ should be stable, i.e. the *GL*(6)- or *GL*(7)-orbit is open.

Moreover:

•
$$\omega \wedge \rho = 0, (J^*_{\rho}\rho) \wedge \rho = \frac{2}{3}\omega^3.$$

• There exists a frame such that Φ has certain coefficients.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exceptional Holonomies

 $d\phi = d * \phi = 0 \Leftrightarrow$ Holonomy of g^7 contained in G_2 .

 $d\Phi = 0 \Leftrightarrow$ Holonomy of g^8 contained in Spin(7).

イロト 人間 ト イヨト イヨト

э.

Exceptional Holonomies

 $d\phi = d * \phi = 0 \Leftrightarrow$ Holonomy of g^7 contained in G_2 .

 $d\Phi = 0 \Leftrightarrow$ Holonomy of g^8 contained in Spin(7).

We call such manifolds G_2 - or Spin(7)-manifolds. First examples by Bryant, Salamon and Joyce.

Aim: Find further examples and understand the structure of G_2 and Spin(7)-manifolds.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Hitchin's flow equations I

On an oriented hypersurface in a

- G_2 -manifold, there exists a canonical SU(3)-structure with $d\rho = 0$ and $d\omega \wedge \omega = 0$ (half-flat).
- Spin(7)-manifold, there exists a canonical G₂-structure with d * φ = 0 (cocalibrated).

ヘロト ヘ戸ト ヘヨト ヘヨト

Hitchin's flow equations I

On an oriented hypersurface in a

- G_2 -manifold, there exists a canonical SU(3)-structure with $d\rho = 0$ and $d\omega \wedge \omega = 0$ (half-flat).
- Spin(7)-manifold, there exists a canonical G₂-structure with d * φ = 0 (cocalibrated).

On an equidistant one-parameter family of oriented hypersurfaces we have:

•
$$\frac{\partial}{\partial t}\rho = \mathbf{d}\omega$$
 and $\left(\frac{\partial}{\partial t}\omega\right) \wedge \omega = \mathbf{d}\mathbf{J}_{\rho}^{*}\rho$,
• $\frac{\partial}{\partial t} * \phi = \mathbf{d}\phi$.

These are Hitchin's flow equations.

ヘロト ヘ戸ト ヘヨト ヘヨト

Hitchin's flow equations II

Theorem(Hitchin) Let (ω_0, ρ_0) be a half-flat *SU*(3)-structure on a compact N^6 . The initial value problem

$$\begin{split} & \frac{\partial}{\partial t}\rho = \boldsymbol{d}\omega , \\ & \left(\frac{\partial}{\partial t}\omega\right) \wedge \omega = \boldsymbol{d}J_{\rho}^{*}\rho , \\ & \omega(t_{0}) = \omega_{0} , \\ & \rho(t_{0}) = \rho_{0} \end{split}$$
 (1)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

has a unique solution on $N^6 \times (t_0 - \varepsilon, t_0 + \varepsilon)$ such that $(\omega(t), \rho(t))$ always is a half-flat SU(3)-structure, too.

Hitchin's flow equations II

Theorem(Hitchin) Let (ω_0, ρ_0) be a half-flat *SU*(3)-structure on a compact N^6 . The initial value problem

$$\begin{split} & \frac{\partial}{\partial t}\rho = \boldsymbol{d}\omega , \\ & \left(\frac{\partial}{\partial t}\omega\right) \wedge \omega = \boldsymbol{d}J_{\rho}^{*}\rho , \\ & \omega(t_{0}) = \omega_{0} , \\ & \rho(t_{0}) = \rho_{0} \end{split}$$
 (1)

has a unique solution on $N^6 \times (t_0 - \varepsilon, t_0 + \varepsilon)$ such that $(\omega(t), \rho(t))$ always is a half-flat SU(3)-structure, too. In this situation,

$$\phi := dt \wedge \omega + \rho \tag{2}$$

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

is parallel ($d\phi = 0$, $d * \phi = 0$).

Hitchin's flow equations III

Theorem(Hitchin) Let ϕ_0 be a cocalibrated G_2 -structure on a compact N^7 . The initial value problem

$$\begin{aligned} &\frac{\partial}{\partial t} * \phi = \boldsymbol{d}\phi \,, \\ &\phi(t_0) = \phi_0 \end{aligned} \tag{3}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

has a unique solution on $N^7 \times (t_0 - \varepsilon, t_0 + \varepsilon)$ such that $\phi(t)$ always is a cocalibrated G_2 -structure, too.

Hitchin's flow equations III

Theorem(Hitchin) Let ϕ_0 be a cocalibrated G_2 -structure on a compact N^7 . The initial value problem

$$\begin{aligned} &\frac{\partial}{\partial t} * \phi = \boldsymbol{d}\phi \,, \\ &\phi(t_0) = \phi_0 \end{aligned} \tag{3}$$

has a unique solution on $N^7 \times (t_0 - \varepsilon, t_0 + \varepsilon)$ such that $\phi(t)$ always is a cocalibrated G_2 -structure, too. In this situation,

$$\Phi := dt \wedge \phi + *\phi \tag{4}$$

< 回 > < 回 > < 回 >

is parallel ($d\Phi = 0$).

Why study degenerations?

A solution on $N^6 \times I$ or $N^7 \times I$ with $I \subsetneq \mathbb{R}$ is not complete.

Frank Reidegeld Holonomy and Hitchin flow

(日)

э

Why study degenerations?

A solution on $N^6 \times I$ or $N^7 \times I$ with $I \subsetneq \mathbb{R}$ is not complete.

Nevertheless, a complete (or compact) G_2 - or Spin(7)-manifold may be foliated by equidistant hypersurfaces and finitely many lower-dimensional submanifolds.

< ロ > < 同 > < 回 > < 回 > .

Why study degenerations?

A solution on $N^6 \times I$ or $N^7 \times I$ with $I \subsetneq \mathbb{R}$ is not complete.

Nevertheless, a complete (or compact) G_2 - or Spin(7)-manifold may be foliated by equidistant hypersurfaces and finitely many lower-dimensional submanifolds.

In this situation, the existence and uniqueness of the Hitchin flow is not always granted.

▲圖▶ ▲ 国▶ ▲ 国▶

Examples I

Let N^7 be a nearly parallel G_2 -manifold ($d\phi_0 = \lambda * \phi_0$ with $\lambda \neq 0$).

 $\phi(t) = \frac{\lambda^3}{64} t^3 \phi_0$ solves Hitchin's flow equation.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Examples I

Let N^7 be a nearly parallel G_2 -manifold ($d\phi_0 = \lambda * \phi_0$ with $\lambda \neq 0$).

 $\phi(t) = \frac{\lambda^3}{64} t^3 \phi_0$ solves Hitchin's flow equation.

Degeneration of N^7 into a point $\{p\}$.

Since there are many (non-homeomorphic) nearly parallel G_2 -manifolds (cf. Friedrich et al.), the Hitchin flow near $\{p\}$ is far from unique.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Cohomogeneity-one examples (N^6 or N^7 is homogeneous)

Bryant and Salamon: N⁷ = S⁷, degeneration of S⁷ into a sphere S⁴ for small t.

< ロ > < 同 > < 回 > < 回 > .

Cohomogeneity-one examples (N^6 or N^7 is homogeneous)

- Bryant and Salamon: N⁷ = S⁷, degeneration of S⁷ into a sphere S⁴ for small t.
- Cvetič et al., R.: An Aloff-Wallach space N^{k,l} := SU(3)/U(1)_{k,l} degenerates into CP². The third derivative of a certain coefficient w.r.t. *t* can be chosen freely. ⇒ No uniqueness.

< 回 > < 回 > < 回 >

• N^7 is a generic Aloff-Wallach space which degenerates into $SU(3)/U(1)^2$. No solution of Hitchin's flow equation (if we assume SU(3)-invariance).

< 回 > < 回 > < 回 >

Examples III

- N^7 is a generic Aloff-Wallach space which degenerates into $SU(3)/U(1)^2$. No solution of Hitchin's flow equation (if we assume SU(3)-invariance).
- Same situation, but now k = l = 1. (M⁸, g) has a singularity, which can be repaired by replacing N^{1,1} by N^{1,1}/ℤ₂ (Bazaikin, R.). ⇒ Smoothness of the flow is another non-trivial problem.

・ロト ・聞 ト ・ヨト ・ヨト

Shape of M⁸ I

From now on, we restrict ourselves to Spin(7)-manifolds (M^8, Φ) .

We assume that there is a U(1)-action preserving Φ (and thus *g*).

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Shape of M⁸ I

From now on, we restrict ourselves to Spin(7)-manifolds (M^8, Φ) .

We assume that there is a U(1)-action preserving Φ (and thus *g*).

The fixed point set shall be a six-dimensional connected submanifold N^6 .

 $\{p \in M^8 | \text{dist}(p, N^6) = c\} =: N^7 \text{ is } U(1)\text{-invariant. Moreover, it is a } U(1)\text{-bundle over } N^6 \text{ if } c \text{ is small. (Project } p \text{ to the nearest point on } N^6.)$

< ロ > < 同 > < 回 > < 回 > < □ > <

Local picture of M^8 : See flip chart.

- *t* becomes the radial coordinate *r*.
- Define $e_r := \frac{\partial}{\partial r}$. The integral curves of e_r are geodesics.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Local picture of M^8 : See flip chart.

- *t* becomes the radial coordinate *r*.
- Define $e_r := \frac{\partial}{\partial r}$. The integral curves of e_r are geodesics.
- Let e_φ be the infinitesimal action of U(1) such that the flow of e_φ at the time 2π is the identity map.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ .

Shape of M⁸ II

Local picture of M^8 : See flip chart.

- *t* becomes the radial coordinate *r*.
- Define $e_r := \frac{\partial}{\partial r}$. The integral curves of e_r are geodesics.
- Let e_φ be the infinitesimal action of U(1) such that the flow of e_φ at the time 2π is the identity map.
- $g(e_r, e_r) = 1, g(e_r, e_{\varphi}) = 0, g(e_{\varphi}, e_{\varphi}) = f(r)^2.$

ヘロト ヘ戸ト ヘヨト ヘヨト

Shape of *M*⁸ III

On N^6 , there exists a canonical SU(3)-structure (ω_0, ρ_0).

On $M^8 \setminus N^6$, the Spin(7)-structure can be written as:

$$\Phi = \frac{1}{2}\omega \wedge \omega + \mathbf{e}_{r}^{*} \wedge J_{\rho}^{*}\rho + f \cdot \mathbf{e}_{\varphi}^{*} \wedge \rho + f \cdot \mathbf{e}_{r}^{*} \wedge \mathbf{e}_{\varphi}^{*} \wedge \omega .$$
(5)

ヘロト ヘ戸ト ヘヨト ヘヨト

э.

Shape of *M*⁸ III

On N^6 , there exists a canonical SU(3)-structure (ω_0, ρ_0).

On $M^8 \setminus N^6$, the Spin(7)-structure can be written as:

$$\Phi = \frac{1}{2}\omega \wedge \omega + \mathbf{e}_{r}^{*} \wedge \mathbf{J}_{\rho}^{*}\rho + f \cdot \mathbf{e}_{\varphi}^{*} \wedge \rho + f \cdot \mathbf{e}_{r}^{*} \wedge \mathbf{e}_{\varphi}^{*} \wedge \omega .$$
(5)

ヘロト 人間 ト イヨト イヨト

э

Relations:

•
$$df(e_{\varphi}) = 0$$
,
• $de_r^* = 0$, $[e_r, e_{\varphi}] = 0$,
• $de_{\varphi}^*(e_{\varphi}, ...) = 0$, $de_{\varphi}^*(e_r, ...) = 2f'f e_{\varphi}^*$,
• $\mathcal{L}_{e_{\varphi}}\omega = 0$, $\mathcal{L}_{e_{\varphi}}\rho = k \cdot J_{\rho}^*\rho$ with $k \in \mathbb{Z}$.

Hitchin flow

Flow equations outside N^6 are "nice". (f' does not depend on terms containing " $\frac{1}{f}$ ".)

Same theory as in the non-degenerate case. We merely extend the solution from $(0, \epsilon)$ to $[0, \epsilon)$.

In particular, we have existence and uniqueness.

◆□ > ◆◎ > ◆ □ > ◆ □ >

Smoothness conditions I

Consider \mathbb{R}^2 with the canonical action of SO(2):

$$g(\mathbf{x},\mathbf{y}) := \sum_{i,j=0}^{\infty} c_{ij} \mathbf{x}^i \mathbf{y}^j$$
(6)

◆ロト ◆聞 と ◆臣 と ◆臣 と ─臣 ─

is SO(2)-invariant iff

$$g(x,y) = \sum_{i=0}^{\infty} c_i (x^2 + y^2)^i =: h(r).$$
 (7)

Smoothness conditions I

Consider \mathbb{R}^2 with the canonical action of SO(2):

$$g(x,y) := \sum_{i,j=0}^{\infty} c_{ij} x^i y^j$$
(6)

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

is SO(2)-invariant iff

$$g(x,y) = \sum_{i=0}^{\infty} c_i (x^2 + y^2)^i =: h(r).$$
 (7)

⇒ *g* determined by h(r) = g(r, 0). Smoothness condition: h(r) = h(-r).

Smoothness consitions II

This translates into conditions on the objects on M^8 as follows:

- ω , ρ invariant under $-1 \in U(1)$,
- f² even.

イロト イポト イヨト イヨト

Smoothness consitions II

This translates into conditions on the objects on M^8 as follows:

- ω , ρ invariant under $-1 \in U(1)$,
- f² even.

Moreover,

•
$$f(0) = 0$$
,
• $\sqrt{g(e_{\varphi}, e_{\varphi})} = t + O(t^2)$
 $\Leftrightarrow |f'(0)| = 1 \quad (\Rightarrow f \text{ odd})$
 $\Leftrightarrow \pm \rho = -k \cdot \rho - \underbrace{df \wedge \omega}_{=0} \quad \text{on } N^6.$

ヘロト 人間 ト イヨト イヨト

Smoothness conditions III

Remarks:

- k = -f'(0).
- f may be non-constant on N^7 .
- *k* cannot always be chosen freely and is not always ± 1 . If $N^7 = G/H$ is homogeneous, *k* is determined by *G* and *H*.

< 日 > < 同 > < 回 > < 回 > < □ > <

Main Theorem

Theorem: Let M^8 and N^6 be as above and let $k \in \mathbb{Z}$ be arbitrary. N^6 shall carry an SU(3)-structure (ω_0, ρ_0) satisfying $(d\omega_0) \wedge \omega_0 = 0$.

Then, there exists a unique U(1)-invariant Spin(7)-structure Φ on a neighbourhood of $N^6 \subseteq M^8$ such that its restriction to N^6 induces (ω_0, ρ_0) and $\mathcal{L}_{e_{\varphi}}\rho = k \cdot J^*_{\rho}\rho$.

 Φ is smooth near N^6 iff $k = \pm 1$.

< 通 > < 回 > < 回 >

Examples I

• Let N^7 be a generic Aloff-Wallach space and N^6 be $SU(3)/U(1)^2$. We assume that everything is SU(3)-invariant. $\mathcal{L}_{e_{\varphi}}\rho = 0 \Rightarrow f'(0) = 0 \Rightarrow$ No meaningful examples.

< ロ > < 同 > < 回 > < 回 > .

Examples I

- Let N^7 be a generic Aloff-Wallach space and N^6 be $SU(3)/U(1)^2$. We assume that everything is SU(3)-invariant. $\mathcal{L}_{e_{\varphi}}\rho = 0 \Rightarrow f'(0) = 0 \Rightarrow$ No meaningful examples.
- Let N^7 be one of the following homogeneous spaces: $N^{1,1}$, $Q^{1,1,1}$ or $M^{1,1,0}$. We have $k = \pm 2 \Rightarrow$ There is a singularity along N^6 .

・ロット (雪) (日) (日)

• Let N^7 be a product of a homogeneous N^6 and a circle. We always have $f'(0) = 0 \Rightarrow$ No metrics with holonomy Spin(7).

< ロ > < 同 > < 回 > < 回 > < □ > <

э

- Let N^7 be a product of a homogeneous N^6 and a circle. We always have $f'(0) = 0 \Rightarrow$ No metrics with holonomy Spin(7).
- By our methods we can construct many further examples of Spin(7)-manifolds (of cohomogeneity one).

< 回 > < 回 > < 回 >

Outlook I

• Similar results for the G_2 -case to be expected.

ヘロト 人間 とくほ とくほ とう

- Similar results for the G_2 -case to be expected.
- Degeneration into a four-dimensional calibrated submanifold N⁴ ⊆ M⁸. Fiber: homogeneous S³ ≅ SU(2). More insights into fibrations of M⁸ by calibrated submanifolds?

< ロ > < 同 > < 回 > < 回 > .

Outlook II

In superstring theory (M-theory) space-time is sometimes modelled as:

$$(M^8,\Phi) imes \mathbb{R}^{2,1}$$
. (8)

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Outlook II

In superstring theory (M-theory) space-time is sometimes modelled as:

$$(M^8,\Phi) imes \mathbb{R}^{2,1}$$
. (8)

< ロ > < 同 > < 回 > < 回 > .

Let U(1) act on M^8 such that $M^8/U(1)$ is smooth and the fixed point set N^4 is four-dimensional. Duality:

```
 \begin{split} & \text{M-theory on } M^8 \times \mathbb{R}^{2,1} \\ & \Leftrightarrow \\ & \text{IIA theory on } M^8/U(1) \times \mathbb{R}^{2,1} \text{ with D6-branes on } N^4 \times \mathbb{R}^{2,1}. \end{split}
```

```
(Cf. Acharya, Gukov)
```