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SU(3)-, G2- and Spin(7)-structures I

An SU(3)-structure on a 6-manifold is determined by a 2-form
ω and a 3-form ρ. There is in fact a U(1)-family of 3-forms ρθ,
θ ∈ R, which determine the same SU(3)-structure. We
nevertheless denote SU(3)-structures mostly by (ω, ρ).
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SU(3)-, G2- and Spin(7)-structures I

An SU(3)-structure on a 6-manifold is determined by a 2-form
ω and a 3-form ρ. There is in fact a U(1)-family of 3-forms ρθ,
θ ∈ R, which determine the same SU(3)-structure. We
nevertheless denote SU(3)-structures mostly by (ω, ρ).

A G2-structure on a 7-manifold is determined by a 3-form φ.

A Spin(7)-structure on an 8-manifold is determined by a 4-form
Φ.

The above forms have to satisfy certain constraints.
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SU(3)-, G2- and Spin(7)-structures II

(ω, ρ), φ and Φ yield symmetric bilinear forms denoted by g6, g7

and g8. In order to define an SU(3)-, G2- or Spin(7)-structure,
we need g6, g7, g8 > 0.

ω, ρ, φ should be stable, i.e. the GL(6)- or GL(7)-orbit is open.
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SU(3)-, G2- and Spin(7)-structures II

(ω, ρ), φ and Φ yield symmetric bilinear forms denoted by g6, g7

and g8. In order to define an SU(3)-, G2- or Spin(7)-structure,
we need g6, g7, g8 > 0.

ω, ρ, φ should be stable, i.e. the GL(6)- or GL(7)-orbit is open.

Moreover:

ω ∧ ρ = 0,
(
J∗

ρρ
)
∧ ρ = 2

3ω3.

There exists a frame such that Φ has certain coefficients.
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Exceptional Holonomies

dφ = d ∗ φ = 0 ⇔ Holonomy of g7 contained in G2.

dΦ = 0 ⇔ Holonomy of g8 contained in Spin(7).
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Exceptional Holonomies

dφ = d ∗ φ = 0 ⇔ Holonomy of g7 contained in G2.

dΦ = 0 ⇔ Holonomy of g8 contained in Spin(7).

We call such manifolds G2- or Spin(7)-manifolds. First
examples by Bryant, Salamon and Joyce.

Aim: Find further examples and understand the structure of G2-
and Spin(7)-manifolds.
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Hitchin’s flow equations I

On an oriented hypersurface in a

G2-manifold, there exists a canonical SU(3)-structure with
dρ = 0 and dω ∧ ω = 0 (half-flat).

Spin(7)-manifold, there exists a canonical G2-structure with
d ∗ φ = 0 (cocalibrated).
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Hitchin’s flow equations I

On an oriented hypersurface in a

G2-manifold, there exists a canonical SU(3)-structure with
dρ = 0 and dω ∧ ω = 0 (half-flat).

Spin(7)-manifold, there exists a canonical G2-structure with
d ∗ φ = 0 (cocalibrated).

On an equidistant one-parameter family of oriented
hypersurfaces we have:

∂
∂t ρ = dω and

(
∂
∂t ω

)
∧ ω = dJ∗

ρρ,
∂
∂t ∗ φ = dφ.

These are Hitchin’s flow equations.
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Hitchin’s flow equations II

Theorem(Hitchin) Let (ω0, ρ0) be a half-flat SU(3)-structure on
a compact N6. The initial value problem

∂
∂t ρ = dω ,
(

∂
∂t ω

)
∧ ω = dJ∗

ρρ ,

ω(t0) = ω0 ,
ρ(t0) = ρ0

(1)

has a unique solution on N6 × (t0 − ε, t0 + ε) such that
(ω(t), ρ(t)) always is a half-flat SU(3)-structure, too.
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Hitchin’s flow equations II

Theorem(Hitchin) Let (ω0, ρ0) be a half-flat SU(3)-structure on
a compact N6. The initial value problem

∂
∂t ρ = dω ,
(

∂
∂t ω

)
∧ ω = dJ∗

ρρ ,

ω(t0) = ω0 ,
ρ(t0) = ρ0

(1)

has a unique solution on N6 × (t0 − ε, t0 + ε) such that
(ω(t), ρ(t)) always is a half-flat SU(3)-structure, too. In this
situation,

φ := dt ∧ ω + ρ (2)

is parallel (dφ = 0, d ∗ φ = 0).
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Hitchin’s flow equations III

Theorem(Hitchin) Let φ0 be a cocalibrated G2-structure on a
compact N7. The initial value problem

∂
∂t ∗ φ = dφ ,
φ(t0) = φ0

(3)

has a unique solution on N7 × (t0 − ε, t0 + ε) such that φ(t)
always is a cocalibrated G2-structure, too.
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Hitchin’s flow equations III

Theorem(Hitchin) Let φ0 be a cocalibrated G2-structure on a
compact N7. The initial value problem

∂
∂t ∗ φ = dφ ,
φ(t0) = φ0

(3)

has a unique solution on N7 × (t0 − ε, t0 + ε) such that φ(t)
always is a cocalibrated G2-structure, too. In this situation,

Φ := dt ∧ φ + ∗φ (4)

is parallel (dΦ = 0).
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Why study degenerations?

A solution on N6 × I or N7 × I with I ( R is not complete.
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Why study degenerations?

A solution on N6 × I or N7 × I with I ( R is not complete.

Nevertheless, a complete (or compact) G2- or Spin(7)-manifold
may be foliated by equidistant hypersurfaces and finitely many
lower-dimensional submanifolds.
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Why study degenerations?

A solution on N6 × I or N7 × I with I ( R is not complete.

Nevertheless, a complete (or compact) G2- or Spin(7)-manifold
may be foliated by equidistant hypersurfaces and finitely many
lower-dimensional submanifolds.

In this situation, the existence and uniqueness of the Hitchin
flow is not always granted.
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Examples I

Let N7 be a nearly parallel G2-manifold (dφ0 = λ ∗ φ0 with
λ 6= 0).

φ(t) = λ3

64 t3φ0 solves Hitchin’s flow equation.
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Examples I

Let N7 be a nearly parallel G2-manifold (dφ0 = λ ∗ φ0 with
λ 6= 0).

φ(t) = λ3

64 t3φ0 solves Hitchin’s flow equation.

Degeneration of N7 into a point {p}.

Since there are many (non-homeomorphic) nearly parallel
G2-manifolds (cf. Friedrich et al.), the Hitchin flow near {p} is
far from unique.
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Examples II

Cohomogeneity-one examples (N6 or N7 is homogeneous)

Bryant and Salamon: N7 = S7, degeneration of S7 into a
sphere S4 for small t .
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Examples II

Cohomogeneity-one examples (N6 or N7 is homogeneous)

Bryant and Salamon: N7 = S7, degeneration of S7 into a
sphere S4 for small t .

Cvetič et al., R.: An Aloff-Wallach space Nk ,l := SU(3)/
U(1)k ,l degenerates into CP2. The third derivative of a
certain coefficient w.r.t. t can be chosen freely. ⇒ No
uniqueness.

Frank Reidegeld Holonomy and Hitchin flow



Review of Hitchin’s results
Degeneration of the Hitchin flow

Degeneration into a six-dimensional manifold
Outlook

Examples III

N7 is a generic Aloff-Wallach space which degenerates
into SU(3)/U(1)2. No solution of Hitchin’s flow equation (if
we assume SU(3)-invariance).

Frank Reidegeld Holonomy and Hitchin flow



Review of Hitchin’s results
Degeneration of the Hitchin flow

Degeneration into a six-dimensional manifold
Outlook

Examples III

N7 is a generic Aloff-Wallach space which degenerates
into SU(3)/U(1)2. No solution of Hitchin’s flow equation (if
we assume SU(3)-invariance).

Same situation, but now k = l = 1. (M8, g) has a
singularity, which can be repaired by replacing N1,1 by
N1,1/Z2 (Bazaikin, R.). ⇒ Smoothness of the flow is
another non-trivial problem.
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Shape of M8 I

From now on, we restrict ourselves to Spin(7)-manifolds
(M8,Φ).

We assume that there is a U(1)-action preserving Φ (and thus
g).
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Shape of M8 I

From now on, we restrict ourselves to Spin(7)-manifolds
(M8,Φ).

We assume that there is a U(1)-action preserving Φ (and thus
g).

The fixed point set shall be a six-dimensional connected
submanifold N6.

{p ∈ M8|dist(p, N6) = c} =: N7 is U(1)-invariant. Moreover, it is
a U(1)-bundle over N6 if c is small. (Project p to the nearest
point on N6.)
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Shape of M8 II

Local picture of M8: See flip chart.

t becomes the radial coordinate r .

Define er := ∂
∂r . The integral curves of er are geodesics.
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Shape of M8 II

Local picture of M8: See flip chart.

t becomes the radial coordinate r .

Define er := ∂
∂r . The integral curves of er are geodesics.

Let eϕ be the infinitesimal action of U(1) such that the flow
of eϕ at the time 2π is the identity map.
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Shape of M8 II

Local picture of M8: See flip chart.

t becomes the radial coordinate r .

Define er := ∂
∂r . The integral curves of er are geodesics.

Let eϕ be the infinitesimal action of U(1) such that the flow
of eϕ at the time 2π is the identity map.

g(er , er ) = 1, g(er , eϕ) = 0, g(eϕ, eϕ) = f (r)2.
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Shape of M8 III

On N6, there exists a canonical SU(3)-structure (ω0, ρ0).

On M8 \ N6, the Spin(7)-structure can be written as:

Φ = 1
2ω ∧ ω + e∗

r ∧ J∗

ρρ

+ f · e∗

ϕ ∧ ρ + f · e∗

r ∧ e∗

ϕ ∧ ω .
(5)
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Shape of M8 III

On N6, there exists a canonical SU(3)-structure (ω0, ρ0).

On M8 \ N6, the Spin(7)-structure can be written as:

Φ = 1
2ω ∧ ω + e∗

r ∧ J∗

ρρ

+ f · e∗

ϕ ∧ ρ + f · e∗

r ∧ e∗

ϕ ∧ ω .
(5)

Relations:

df (eϕ) = 0,

de∗

r = 0, [er , eϕ] = 0,

de∗

ϕ(eϕ, . . .) = 0, de∗

ϕ(er , . . .) = 2f ′f e∗

ϕ,

Leϕ
ω = 0, Leϕ

ρ = k · J∗

ρρ with k ∈ Z.
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Hitchin flow

Flow equations outside N6 are "nice". (f ′ does not depend on
terms containing "1

f ".)

Same theory as in the non-degenerate case. We merely extend
the solution from (0, ǫ) to [0, ǫ).

In particular, we have existence and uniqueness.
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Smoothness conditions I

Consider R2 with the canonical action of SO(2):

g(x , y) :=
∞∑

i ,j=0

cijx
iy j (6)

is SO(2)-invariant iff

g(x , y) =

∞∑

i=0

ci(x
2 + y2)i =: h(r) . (7)

Frank Reidegeld Holonomy and Hitchin flow



Review of Hitchin’s results
Degeneration of the Hitchin flow

Degeneration into a six-dimensional manifold
Outlook

Smoothness conditions I

Consider R2 with the canonical action of SO(2):

g(x , y) :=
∞∑

i ,j=0

cijx
iy j (6)

is SO(2)-invariant iff

g(x , y) =

∞∑

i=0

ci(x
2 + y2)i =: h(r) . (7)

⇒ g determined by h(r) = g(r , 0). Smoothness condition:
h(r) = h(−r).
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Smoothness consitions II

This translates into conditions on the objects on M8 as follows:

ω, ρ invariant under −1 ∈ U(1),

f 2 even.
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Smoothness consitions II

This translates into conditions on the objects on M8 as follows:

ω, ρ invariant under −1 ∈ U(1),

f 2 even.

Moreover,

f (0) = 0,
√

g(eϕ, eϕ) = t + O(t2)
⇔ |f ′(0)| = 1 (⇒ f odd)
⇔ ±ρ = −k · ρ − df ∧ ω

︸ ︷︷ ︸

=0

on N6.
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Smoothness conditions III

Remarks:

k = −f ′(0).

f may be non-constant on N7.

k cannot always be chosen freely and is not always ±1. If

N7 = G/H is homogeneous, k is determined by G and H.
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Main Theorem

Theorem: Let M8 and N6 be as above and let k ∈ Z be
arbitrary. N6 shall carry an SU(3)-structure (ω0, ρ0) satisfying
(dω0) ∧ ω0 = 0.

Then, there exists a unique U(1)-invariant Spin(7)-structure Φ
on a neighbourhood of N6 ⊆ M8 such that its restriction to N6

induces (ω0, ρ0) and Leϕ
ρ = k · J∗

ρρ.

Φ is smooth near N6 iff k = ±1.
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Examples I

Let N7 be a generic Aloff-Wallach space and N6 be
SU(3)/U(1)2. We assume that everything is
SU(3)-invariant. Leϕ

ρ = 0 ⇒ f ′(0) = 0 ⇒ No meaningful
examples.
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Examples I

Let N7 be a generic Aloff-Wallach space and N6 be
SU(3)/U(1)2. We assume that everything is
SU(3)-invariant. Leϕ

ρ = 0 ⇒ f ′(0) = 0 ⇒ No meaningful
examples.

Let N7 be one of the following homogeneous spaces: N1,1,
Q1,1,1 or M1,1,0. We have k = ±2 ⇒ There is a singularity
along N6.
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Examples II

Let N7 be a product of a homogeneous N6 and a circle.
We always have f ′(0) = 0 ⇒ No metrics with holonomy
Spin(7).
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Examples II

Let N7 be a product of a homogeneous N6 and a circle.
We always have f ′(0) = 0 ⇒ No metrics with holonomy
Spin(7).

By our methods we can construct many further examples
of Spin(7)-manifolds (of cohomogeneity one).
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Outlook I

Similar results for the G2-case to be expected.
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Outlook I

Similar results for the G2-case to be expected.

Degeneration into a four-dimensional calibrated
submanifold N4 ⊆ M8. Fiber: homogeneous S3 ∼= SU(2).
More insights into fibrations of M8 by calibrated
submanifolds?
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Outlook II

In superstring theory (M-theory) space-time is sometimes
modelled as:

(M8,Φ) × R2,1 . (8)
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Outlook II

In superstring theory (M-theory) space-time is sometimes
modelled as:

(M8,Φ) × R2,1 . (8)

Let U(1) act on M8 such that M8/U(1) is smooth and the fixed
point set N4 is four-dimensional. Duality:

M-theory on M8 × R2,1

⇔
IIA theory on M8/U(1) × R2,1 with D6-branes on N4 × R2,1.

(Cf. Acharya, Gukov)
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