Transformations of surfaces and their applications to spectral theory

Iskander A. TAIMANOV

Rauischholzhausen, September 25, 2009

The Euler-Poisson-Darboux equation

The equation

$$
z_{x y}-\frac{n}{x-y} z_{x}+\frac{m}{x-y} z_{y}-\frac{p}{(x-y)^{2}} z=0
$$

after a substitution

$$
z=(x-y)^{\alpha} w
$$

takes the form

$$
w_{x y}-\frac{n^{\prime}}{x-y} w_{x}+\frac{m^{\prime}}{x-y} w_{y}-\frac{p^{\prime}}{(x-y)^{2}} w=0
$$

where $n^{\prime}-n=m^{\prime}-m=\alpha, \quad p^{\prime}=p+(m+n) \alpha+\alpha(\alpha-1)$.

The Euler exact solution

Let $m^{\prime}=n^{\prime}=k$ are integers and $p^{\prime}=0$. The equation is reduced to the form

$$
w_{x y}-\frac{k}{x-y} w_{x}+\frac{k}{x-y} w_{y}=0
$$

and after the substitution $w=(x-y)^{-k} u$ we derive

$$
u_{x y}=\frac{k(1-k)}{(x-y)^{2}} u
$$

A general solution of this equation is as follows

$$
u(x, y)=(x-y)^{k} \frac{\partial^{2 k-2}}{\partial x^{k-1} \partial y^{k-1}}\left(\frac{f(x)+g(y)}{x-y}\right)
$$

The Laplace transformation

$$
\psi_{x y}+A \psi_{x}+B \psi_{y}+C \psi=0
$$

Replace ψ by

$$
\widetilde{\psi}=\left(\frac{\partial}{\partial y}+A\right) \psi
$$

The equation on $\widetilde{\psi}$ has another coefficients:

$$
\begin{gathered}
A \rightarrow A-(\log h)_{y} \\
B \rightarrow B \\
C \rightarrow C-A_{x}+B_{y}-(\log h)_{y} B,
\end{gathered}
$$

where

$$
h=A B+A_{x}-C
$$

The analogous transformation is obtained after swapping $x \leftrightarrow y$, therewith h is replaced by

$$
k=A B+B_{y}-C
$$

The Laplace integration method

Under the first transformation

$$
h \rightarrow 2 h-k-(\log h)_{x y}, \quad k \rightarrow h ;
$$

after the transformation

$$
\psi \rightarrow \tilde{\psi}=f(x, y) \psi
$$

the values of h and k are preserved (the Darboux invariants). Note that

$$
\tilde{\psi}_{x}=-B \tilde{\psi}+h \psi
$$

hence $h=0$ implies the integrability.

Exactly solvable operators with a magnetic field

Consider a two-dimensional Schrödinger operator

$$
L=\partial \bar{\partial}+A \bar{\partial}+B \partial+C
$$

with an electric potential $V=-\frac{h}{2}=-\frac{1}{2}\left(A B+A_{\bar{z}}-C\right)$ and in a magnetic field $H=\frac{1}{2}\left(B_{z}-A_{\bar{z}}\right)$. It is represented as follows

$$
L=(\bar{\partial}+B)(\partial+A)+2 V=(\partial+A)(\bar{\partial}+B)+2 U
$$

where $U=V+H=-k$. The Laplace transformation takes the form

$$
\widetilde{H}=H+\frac{1}{2} \partial \bar{\partial} \log V, \quad \widetilde{V}=V+\widetilde{H} .
$$

By exploiting that Novikov and Veselov constructed integrable on two energy levels periodic Schrödinger operators with nonvanishing magnetic flux.

The Darboux transformation I

Given the conjugate coordinates x, y on a surface $\mathbf{r}(x, y) \subset \mathbb{R}^{3}$, we have

$$
\mathbf{r}_{x y}+a \mathbf{r}_{x}+b \mathbf{r}_{y}=0
$$

For surfaces in $\mathbb{R} P^{3}$ we have

$$
\mathbf{r}_{x y}+a \mathbf{r}_{x}+b \mathbf{r}_{y}+c \mathbf{r}=0
$$

A generic congruence C (2-dimensional family) of lines in $R P^{3}$ has two focal surfaces \mathbf{r} and $\widetilde{\mathbf{r}}$ to which every line is tangent. Then the Laplace transformation

$$
\widetilde{\mathbf{r}}=\mathbf{r}_{y}+a \mathbf{r}
$$

defines a mapping from \mathbf{r} to $\tilde{\mathbf{r}}$ (here we assume that lines from C are tangent along y-directions) [Darboux].
A general congruence (line, spherical and etc) which relates two enveloping surfaces is called the Darboux transformation.

The Darboux transformation II

$$
H=-\frac{d^{2}}{d x^{2}}+u(x)
$$

- a one-dimensional Schrödinger operator. Every solution ω to

$$
H \omega=0
$$

defines a factorization of H :

$$
H=A^{\top} A, \quad A=-\frac{d}{d x}+v, \quad A^{\top}=\frac{d}{d x}+v, \quad v=\frac{\omega^{\prime}}{\omega} .
$$

The Darboux transformation of H consists in swapping A^{\top} and A :

$$
\begin{gathered}
H=A^{\top} A \longrightarrow \widetilde{H}=A A^{\top}=-\frac{d^{2}}{d x^{2}}+\widetilde{u}(x), \\
u=v^{2}+v^{\prime} \longrightarrow \widetilde{u}=v^{2}-v^{\prime}
\end{gathered}
$$

and it acts on eigenfunctions as follows:

$$
\psi \longrightarrow \widetilde{\psi}=A \psi
$$

The harmonic oscillator

Let $v=a x, a>0$, then

$$
v^{\prime}=\text { const }=a
$$

and

$$
A A^{\top}=2 H-a, \quad A^{\top} A=2 H+a,
$$

where

$$
H=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+a^{2} x^{2}\right)
$$

is the harmonic oscillator operator. It follows from the commutation relation $\left[A^{\top}, A\right]=2 a$ that if

$$
H \psi=E \psi
$$

then

$$
H(A \psi)=(E+a)(A \psi), \quad H\left(A^{\top} \psi\right)=(E-a)\left(A^{\top} \psi\right) .
$$

Note that

$$
(2 E-a)(\psi, \psi)=\left(A A^{\top} \psi, \psi\right)=\left(A^{\top} \psi, A^{\top} \psi\right) \geq 0
$$

which implies

$$
E \geq \frac{a}{2}
$$

The equality is attained on a solution of the equation

$$
A^{\top} \psi=\left(\frac{d}{d x}+a x\right) \psi=0
$$

which is up to a constant multiple equals

$$
\psi_{1}(x)=e^{-\frac{a x^{2}}{2}}
$$

The basis of eigenfunctions has the form

$$
\psi_{N}=A^{N-1} \psi_{1}, \quad N=1,2,3, \ldots
$$

with eigenvalues

$$
\frac{a}{2}+(N-1) a
$$

The Crum method

Consider the problem

$$
\begin{gathered}
-\varphi^{\prime \prime}+u \varphi=\lambda \varphi, \quad 0<x<1 \\
\varphi(0)=a \varphi^{\prime}(0), \quad \varphi(1)=b \varphi^{\prime}(1)
\end{gathered}
$$

where $u(x)$ is continuous on $[0,1]$. Denote by

$$
\lambda_{0}<\lambda_{1}<\ldots
$$

the spectrum of this problem, and by $\varphi_{0}, \varphi_{1}, \ldots-$ the corresponding eigenfunctions.
Let W_{n} be the Wronskian of $\varphi_{0}, \ldots, \varphi_{n-1}$ and $W_{n s}$ be the Wronskian of $\varphi_{0}, \ldots, \varphi_{n-1}, \varphi_{s}(s \geq n)$.

The Crum theorem:

- the problem

$$
-\varphi^{\prime \prime}+u_{n} \varphi=\lambda \varphi, 0<x<1, \lim _{x \rightarrow 0} \varphi(x)=0, \quad \lim _{x \rightarrow 1} \varphi(x)=0
$$

where $u_{n}=u-2 \frac{d^{2}}{d x^{2}} \log W_{n}$ has the spectrum

$$
\lambda_{n}<\lambda_{n+1}<\ldots
$$

and a complete family of corresponding eigenfunctions

$$
\varphi_{n s}=\frac{W_{n s}}{W_{n}}, \quad s \geq n
$$

For $n \geq 2$ the problem is not regular and

$$
u_{n} \sim \frac{n(n-1)}{x^{2}}, x \rightarrow 0 ; \quad u_{n} \sim \frac{n(n-1)}{(1-x)^{2}}, x \rightarrow 1
$$

The Moutard equation

If x and y are the asymptotic coordinates on a surface $\mathbf{r}(x, y) \subset \mathbb{R}^{3}$, then

$$
\left(\mathbf{r}_{x}, \mathbf{n}_{u}\right)=\left(\mathbf{r}_{y}, \mathbf{n}_{v}\right)=0
$$

with \mathbf{n} the normal field. This implies

$$
\mathbf{r}_{x}=\lambda \mathbf{n}_{x} \times \mathbf{n}, \quad \mathbf{r}_{y}=\mu \mathbf{n} \times \mathbf{n}_{y} .
$$

Put $\psi=\sqrt{\lambda} \mathbf{n}$ and derive

$$
\Psi_{x y} \times \Psi=0
$$

which is equivalent to the Moutard equation:

$$
\Psi_{x y}=Q(x, y) \Psi, \quad \text { or } \quad\left(\partial_{x} \partial_{y}-Q\right) \Psi=0
$$

Every (vector-valued) solution to this equation defines a surface with the asymptotic coordinates x, y and vise versa.

The Moutard transformation

Let H be a two-dimensional potential Schrödinger operator and ω be a solution of the equation

$$
H \omega=(-\Delta+u) \omega=0
$$

where Δ is the two-dimensional Laplace operator:

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

The Moutard transformation of H is defined as

$$
\widetilde{H}=-\Delta+u-2 \Delta \log \omega=-\Delta-u+2 \frac{\omega_{x}^{2}+\omega_{y}^{2}}{\omega^{2}} .
$$

If ψ satisfies $H \psi=0$, then the function θ, defined via the system

$$
(\omega \theta)_{x}=-\omega^{2}\left(\frac{\psi}{\omega}\right)_{y}, \quad(\omega \theta)_{y}=\omega^{2}\left(\frac{\psi}{\omega}\right)_{x}
$$

satisfies $\widetilde{H} \theta=0$.

Remarks:

1) the Moutard transformation describes deformations only of "eigenfunctions" with zero "eigenvalue";
2) the action of the Moutard transformation on "eigenfunctions" ψ
is multi-valued and is defined modulo multiples of $\frac{1}{\omega}$;
3) if $u=u(x)$ and $\omega=f(x) e^{\kappa y}$, the the Moutard transformation reduces to the Darboux transformation defined by f. Introduce the following notation:

$$
M_{\omega}(u)=\widetilde{u}=u-2 \Delta \log \omega, \quad M_{\omega}(\varphi)=\left\{\theta+\frac{C}{\omega}, C \in \mathbb{C}\right\}
$$

The double iteration

Let

$$
H=-\Delta+u_{0}
$$

- an operator with potential $u_{0}(x, y)$ and ω_{1} and ω_{2} satisfy the equation

$$
H \omega_{1}=H \omega_{2}=0
$$

Let $\theta_{1} \in M_{\omega_{1}}\left(\omega_{2}\right)$ и $\theta_{2}=-\frac{\omega_{1}}{\omega_{2}} \theta_{1} \in M_{\omega_{2}}\left(\omega_{1}\right)$. Then

- The diagram

$$
\begin{array}{ccccc}
& u_{0} & \xrightarrow{\omega_{1}} & u_{1} \\
\omega_{2} & \downarrow & & \downarrow & \theta_{1} \\
& & \\
& u_{2} & \xrightarrow{\theta_{2}} & u_{12}= & u_{21}
\end{array}
$$

where $\theta_{1} \in M_{\omega_{1}}\left(\omega_{2}\right), \theta_{2}=-\frac{\omega_{1}}{\omega_{2}} \theta_{1} \in M_{\omega_{2}}\left(\omega_{1}\right)$, is commutative, i.e.

$$
u_{12}=u_{21}=u
$$

- For $\psi_{1}=\frac{1}{\theta_{1}}$ and $\psi_{2}=\frac{1}{\theta_{2}}$ we have

$$
H \psi_{1}=H \psi_{2}=0, \quad \text { where } H=-\Delta+u
$$

A remark on the kernel of a two-dimensional rational

Schrödinger operator

If a one-dimensional potential meets the condition

$$
\int_{-\infty}^{\infty}|u(x)|(1+|x|) d x<\infty
$$

then there are finitely many eigenvalues and all of the m are negative (Faddeev, Marchenko).
For $n \geq 5$ it is easy by regularizing the Green function $G(x)=\frac{c_{n}}{r^{n-2}}$ to obtain a positive function ψ which lies in the kernel of the Schrödinger operator with finite potential

$$
u=\frac{\Delta \psi}{\psi}
$$

The question do there exist two-dimensional Schrödinger operators with smooth fast decaying potential and nontrivial kernel was opened until recently.

A two-dimensional Schrödinger operator with nontrivial kernel (T.-Tsarev)

Let

$$
\omega_{1}=x+2\left(x^{2}-y^{2}\right)+x y, \quad \omega_{2}=x+y+\frac{3}{2}\left(x^{2}-y^{2}\right)+5 x y
$$

Then the double iteration of the Moutard transformation gives the potential

$$
u^{*}=-\frac{5120\left(1+8 x+2 y+17 x^{2}+17 y^{2}\right)}{\left(160+(4+16 x+4 y)\left(x^{2}+y^{2}\right)+17\left(x^{2}+y^{2}\right)^{2}\right)^{2}}
$$

and the eigenfunctions with $E=0$:

$$
\begin{aligned}
& \psi_{1}=\frac{x+2 x^{2}+x y-2 y^{2}}{160+(4+16 x+4 y)\left(x^{2}+y^{2}\right)+17\left(x^{2}+y^{2}\right)^{2}} \\
& \psi_{2}=\frac{2 x+2 y+3 x^{2}+10 x y-3 y^{2}}{160+(4+16 x+4 y)\left(x^{2}+y^{2}\right)+17\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

$u^{*}, \psi_{1}, \psi_{2}$ are smooth rational functions.
u^{*} decays as r^{-6} as $r \rightarrow \infty$.
ψ_{1} and ψ_{2} decay as r^{-2} as $r \rightarrow \infty$

Fig. 1. The potential u^{*}.

Some problems

1. There are examples of potentials $u \sim O\left(r^{-8}\right)$ and eigenfunctions $\psi_{1}, \psi_{2} \sim O\left(r^{-3}\right)$ as $r \rightarrow \infty$. We think that for any $N>0$ by using this construction one may construct smooth rational potentials u and their eigenfunctions ψ_{1} and ψ_{2} which decay faster than $\frac{1}{r^{N}}$.
2. It looks that by using a k-th iteration it is possible to construct operators H with $\operatorname{dim} \operatorname{Ker} H \geq k$.
3. The potential u is nonpositive and $H=-\Delta+u^{*}$ has to have negative discrete eigenvalues. How looks the discrete spectrum of H and other Schrödinger operators with two-dimensional rational solitons as potentials?

The Novikov-Veselov equation

The Novikov-Veselov (NV) equation:

$$
U_{t}=\partial^{3} U+\bar{\partial}^{3} U+3 \partial(U V)+3 \bar{\partial}(\bar{V} U)=0, \quad \bar{\partial} V=\partial U
$$

The one-dimensional reduction $U=U(x), U=V=\bar{V}$ leads to the Korteweg-de Vries equation $U_{t}=\frac{1}{4} U_{x x x}+6 U U_{x}$. The NV equation is the compatibility condition for the system

$$
\begin{array}{r}
H \psi=(\partial \bar{\partial}+U) \psi=0 \\
\partial_{t} \psi=-A \psi=\left(\partial^{3}+\bar{\partial}^{3}+3 V \partial+3 \bar{V} \bar{\partial}\right) \psi \tag{1}
\end{array}
$$

and is represented by a "Manakov triple" of the form $H_{t}=[H, A]+B H$. Equations represented by such triples preserve the "spectrum on the zero energy level" deforming "eigenfunctions" via

$$
\left(\partial_{t}+A\right) \psi=0
$$

The extended Moutard transformation

The system (1) is invariant under the transformation

$$
\begin{gathered}
\varphi \rightarrow \theta=\frac{i}{\omega} \int(\varphi \partial \omega-\omega \partial \varphi) d z-(\varphi \bar{\partial} \omega-\omega \bar{\partial} \varphi) d \bar{z}+ \\
+\left[\varphi \partial^{3} \omega-\omega \partial^{3} \varphi+\omega \bar{\partial}^{3} \varphi-\varphi \bar{\partial}^{3} \omega+2\left(\partial^{2} \varphi \partial \omega-\partial \varphi \partial^{2} \omega\right)-\right. \\
\left.-2\left(\bar{\partial}^{2} \varphi \bar{\partial} \omega-\bar{\partial} \varphi \bar{\partial}^{2} \omega\right)+3 V(\varphi \partial \omega-\omega \partial \varphi)+3 \bar{V}(\omega \bar{\partial} \varphi-\varphi \bar{\partial} \omega)\right] d t \\
U
\end{gathered}
$$

Therefore if two holomorphic in z functions $p_{1}(z, t)$ and $p_{2}(z, t)$ satisfy the equation

$$
\frac{\partial p}{\partial t}=\frac{\partial^{3} p}{\partial z^{3}}
$$

then the double iteration of the extended Moutard transformation defined by them and applied to $U=0$ gives a solution of the Novikov-Veselov equation.

Blowing up solution of the Novikov-Veselov equation (T.-Tsarev)

Apply this construction to a pair of polynomials $p_{k}=p_{k}(z, 0)$:

$$
p_{1}=i z^{2}, \quad p_{2}=z^{2}+(1+i) z
$$

and obtain a solution

$$
U=\frac{H_{1}}{H_{2}}
$$

where

$$
\begin{gathered}
H_{1}=-12\left(12 t\left(2\left(x^{2}+y^{2}\right)+x+y\right)+x^{5}-3 x^{4} y+2 x^{4}-2 x^{3} y^{2}-\right. \\
\left.-4 x^{3} y-2 x^{2} y^{3}-60 x^{2}-3 x y^{4}-4 x y^{3}-30 x+y^{5}+2 y^{4}-60 y^{2}-30 y\right) \\
H_{2}=\left(3 x^{4}+4 x^{3}+6 x^{2} y^{2}+3 y^{4}+4 y^{3}+30-12 t\right)^{2}
\end{gathered}
$$

It decays as r^{-3}, is nonsingular for $0 \leq t<T_{*}=\frac{29}{12}$ and is singular for $t \geq T_{*}=\frac{29}{12}$.

Fig. 2. The potential U as $t \rightarrow \frac{29}{12}$.

Fig. 3. The potential U at $t=\frac{29}{12}$ near $(-1,0)$.

