Quaternionic contact Einstein structures

Dimiter Vassilev, University of New Mexico with
Stefan Ivanov, University of Sofia and
Ivan Minchev, Philipps-Universität Marburg

Marburg, September 2009

Quaternionic Contact Structures

Definition

$M^{4 n+3}$-quaternionic contact if we have
i) codimension three distribution H , locally, $H=\bigcap_{s=1}^{3} \operatorname{Ker} \eta_{s}, \eta_{s} \in T^{*} M$.
ii) a 2-sphere bundle of "almost complex structures" locally generated by $I_{s}: H \rightarrow H, \quad l_{s}^{2}=-1$, satisfying $l_{1} l_{2}=-l_{2} l_{1}=l_{3}$;
iii) a metric tensor g on H, s.t.,

$$
\begin{aligned}
& 2 g\left(I_{s} X, Y\right)=d \eta_{s}(X, Y), \\
& g\left(I_{s} X, I_{s} Y\right)=g(X, Y), \quad X, Y \in H .
\end{aligned}
$$

Quaternionic Contact Structures

- Given η (and H) there exists at most one triple of a.c.str. and metric g that are compatible.
- Rotating η we obtain the same qc-structure.

The Biquard connection

Theorem (O. Biquard)

Under the above conditions and $n>1$, there exists a unique supplementary distribution V of H in TM and a linear connection ∇ on M, s.t.,

1. V and H are parallel
2. g and $\Omega=\sum_{j=1}^{3}\left(\left.d \eta_{j}\right|_{H}\right)^{2}$ are parallel
3. torsion $T_{A, B}=\nabla_{A} B-\nabla_{B} A-[A, B]$ satisfies

- $\forall X, Y \in H, \quad T_{X, Y}=-[X, Y] \mid v \in V$
- $\forall \xi \in V$, and $\forall X \in H, T_{\xi, X} \in H$ and

$$
T_{\xi}:=\left(X \mapsto T_{\xi, X}\right) \in(s p(n)+s p(1))^{\perp}
$$

Reeb vector fields

- Note: V is generated by the Reeb vector fields
$\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$

$$
\begin{aligned}
& \eta_{s}\left(\xi_{k}\right)=\delta_{s k},\left.\quad\left(\xi_{s}\right\lrcorner d \eta_{s}\right|_{\mid H}=0 \\
& \left.\left.\left(\xi_{s}\right\lrcorner d \eta_{k}\right)_{\mid H}=-\left(\xi_{k}\right\lrcorner d \eta_{s}\right)_{\mid H} .
\end{aligned}
$$

Reeb vector fields

- Note: V is generated by the Reeb vector fields
$\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$
$\left.\eta_{s}\left(\xi_{k}\right)=\delta_{s k}, \quad\left(\xi_{s}\right\lrcorner d \eta_{s}\right)_{\mid H}=0$
$\left.\left.\left(\xi_{s}\right\lrcorner d \eta_{k}\right)_{\mid H}=-\left(\xi_{k}\right\lrcorner d \eta_{s}\right)_{\mid H}$.
- If the dimension of M is seven, $n=1$, Reeb vector fields might not exist.

Reeb vector fields

- Note: V is generated by the Reeb vector fields $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$
$\left.\eta_{s}\left(\xi_{k}\right)=\delta_{s k}, \quad\left(\xi_{s}\right\lrcorner d \eta_{s}\right)_{\mid H}=0$
$\left.\left.\left(\xi_{s}\right\lrcorner d \eta_{k}\right)_{\mid H}=-\left(\xi_{k}\right\lrcorner d \eta_{s}\right)_{\mid H}$.
- If the dimension of M is seven, $n=1$, Reeb vector fields might not exist.
- D. Duchemin showed that if we assume their existence, then there is a connection as before.

Reeb vector fields

- Note: V is generated by the Reeb vector fields $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$
$\left.\eta_{s}\left(\xi_{k}\right)=\delta_{s k}, \quad\left(\xi_{s}\right\lrcorner d \eta_{s}\right)_{\mid H}=0$
$\left.\left.\left(\xi_{s}\right\lrcorner d \eta_{k}\right)_{\mid H}=-\left(\xi_{k}\right\lrcorner d \eta_{s}\right)_{\mid H}$.
- If the dimension of M is seven, $n=1$, Reeb vector fields might not exist.
- D. Duchemin showed that if we assume their existence, then there is a connection as before.
- Henceforth, by a qc structure in dimension 7 we mean a qc structure satisfying the Reeb conditions
- curvature: $\mathcal{R}(A, B) C=\left[\nabla_{A}, \nabla_{B}\right] C-\nabla_{[A, B]} C$;
- (horizontal) Ricci tensor: $\operatorname{Ric}(X, Y)=\left.\operatorname{Ric}^{\nabla}\right|_{H}=\operatorname{tr}_{H}\{Z \mapsto \mathcal{R}(Z, X) Y\}$ for $X, Y \in H$
- scalar curvature: Scal $=t r_{H}$ Ric.
- Kähler forms

$$
\left.2 \omega_{i \mid H}=d \eta_{i \mid H}, \quad \xi\right\lrcorner \omega_{i}=0, \quad \xi \in V
$$

- $\operatorname{Sp}(1)=\{$ unit quaternions $\} \subset S O(4 n)$, $\lambda q=q \cdot \lambda^{-1}$.
- $\operatorname{Sp}(\mathrm{n})$-quaternionic unitary $\subset S O(4 n)$.
- $\operatorname{Sp}(n) S p(1)$-product in $S O(4 n)$.
- Let $\psi \in \operatorname{End}(H)$. The $S p(n)$-invariant parts are follows

$$
\Psi=\Psi^{+++}+\Psi^{+--}+\Psi^{-+-}+\Psi^{--+}
$$

- The two $S p(n) S p(1)$-invariant components are given by

$$
\Psi_{[3]}=\Psi^{+++}, \quad \Psi_{[-1]}=\Psi^{+--}+\Psi^{-+-}+\Psi^{--+}
$$

Using $\operatorname{End}(H) \stackrel{g}{\approx} \Lambda^{1,1}$ the $\operatorname{Sp}(n) \operatorname{Sp}(1)$-invariant components are the projections on the eigenspaces of $\Upsilon=I_{1} \otimes I_{1}+I_{2} \otimes I_{2}+I_{3} \otimes I_{3}$.

The Torsion Tensor. $T_{\xi_{j}}=T_{\xi_{j}}^{0}+I_{j} U$, $U \in \Psi_{[3]}$.

$T_{\xi_{j}}^{0}$-symmetric, $I_{j} U$-skew-symmetric.

Theorem (w/ St. Ivanov, I. Minchev)

Define $T^{0}=T_{\xi_{1}}^{0} I_{1}+T_{\xi_{2}}^{0} I_{2}+T_{\xi_{3}}^{0} I_{3} \in \Psi_{[-1]}$. We have Ric $=(2 n+2) T^{0}+(4 n+10) U+\frac{\text { Scal }}{4 n} g$.

The Torsion Tensor. $T_{\xi_{j}}=T_{\xi_{j}}^{0}+I_{j} U$, $U \in \Psi_{[3]}$.

$T_{\xi_{j}}^{0}$-symmetric, $I_{j} U$-skew-symmetric.

Theorem (w/ St. Ivanov, I. Minchev)

Define $T^{0}=T_{\xi_{1}}^{0} I_{1}+T_{\xi_{2}}^{0} I_{2}+T_{\xi_{3}}^{0} I_{3} \in \Psi_{[-1]}$. We have Ric $=(2 n+2) T^{0}+(4 n+10) U+\frac{\text { Scal }}{4 n} g$.

Definition

M is called qc-Einstein if $T^{0}=0$ and $U=0 . M$ is called qc-pseudo-Einstein if $U=0$.

Theorem (w/ St. Ivanov, I. Minchev)

 Let $\left(M^{4 n+3}, g, \mathbb{Q}\right)$ be a QC manifold. TFAEi) The torsion of the Biquard connection is identically zero, $T_{\xi}, \xi \in V$.
ii) $\left(M^{4 n+3}, g, \mathbb{Q}\right)$ is qc-Einstein manifold.
iii) Each Reeb vector field is a qc vector field, $\mathcal{L}_{Q} \eta=(\nu l+O) \cdot \eta$.
iv) Each Reeb vector field preserves the horizontal metric and the quaternionic structure simultaneously, i.e. $\mathcal{L}_{Q} g=0$ and $\mathcal{L}_{Q} I=O \cdot I$, where
$\nu \in \mathbb{C}^{\infty}(M), \quad O \in \mathbb{C}^{\infty}(M, s o(3)), \quad I=\left(I_{1}, I_{2}, I_{3}\right)^{t}$.

Vanishing horizontal connection 1 -forms

Lemma (w/ St. Ivanov, I. Minchev)

If a qc structure has zero connection one forms restricted to the horizontal space H then the qc structure is qc-Einstein.

The connection one forms are
$\nabla \boldsymbol{I}_{i}=-\alpha_{j} \otimes \boldsymbol{I}_{k}+\alpha_{k} \otimes \boldsymbol{I}_{\boldsymbol{j}}$.
It is also useful to note $R\left(A, B, \xi_{i}, \xi_{j}\right)=2 \rho_{k}(A, B)=\left(d \alpha_{k}+\alpha_{i} \wedge \alpha_{j}\right)(A, B)$.

Proposition (w/ St. Ivanov)

Let $\left(M^{4 n+3}, \eta, \mathbb{Q}\right)$ be a $(4 n+3)$ - dimensional qc manifold. Let $s=\frac{S c a l}{8 n(n+2)}$, so that a 3-Sasakian manifold has $s=2$. The following equations hold

$$
2 \omega_{i}=d \eta_{i}+\eta_{j} \wedge \alpha_{k}-\eta_{k} \wedge \alpha_{j}+s \eta_{j} \wedge \eta_{k},
$$

$d \omega_{i}=\omega_{j} \wedge\left(\alpha_{k}+\boldsymbol{s} \eta_{k}\right)-\omega_{k} \wedge\left(\alpha_{j}+\boldsymbol{s} \eta_{j}\right)-\rho_{k} \wedge \eta_{j}+\rho_{j} \wedge \eta$ $d \Omega=\sum_{(j i k)}\left[2 \eta_{i} \wedge\left(\rho_{k} \wedge \omega_{j}-\rho_{j} \wedge \omega_{k}\right)+d s \wedge \omega_{i} \wedge \eta_{j} \wedge \eta_{k}\right]$
where $\Omega=\omega_{1} \wedge \omega_{1}+\omega_{2} \wedge \omega_{2}+\omega_{3} \wedge \omega_{3}$.
In particular, the structure equations of a 3-Sasaki manifold have the form $d \eta_{i}=2 \omega_{i}+2 \eta_{j} \wedge \eta_{k}$.

Properties of qc-Einstein manifolds

Theorem (w/ St. Ivanov, I. Minchev)

If M is $q c$-Einstein then Scal=const., V is integrable, and for $X \in H, s, t=1,2,3$ we have $\rho_{t_{H}}=\tau_{t_{H}}=$ $-2 \zeta_{t_{\mid H}}=-s \omega_{t}, \quad \rho_{i}\left(\xi_{i}, \xi_{j}\right)+\rho_{k}\left(\xi_{k}, \xi_{j}\right)=$ $0, \quad \operatorname{Ric}\left(\xi_{s}, X\right)=\rho_{s}\left(X, \xi_{t}\right)=\zeta_{s}\left(X, \xi_{t}\right)=0$.

Here, $\rho_{s}(A, B)=\frac{1}{4 n} R\left(A, B, e_{\alpha}, l_{s} \boldsymbol{e}_{\alpha}\right), \quad \zeta_{s}(A, B)=$ $\frac{1}{4 n} R\left(e_{\alpha}, A, B, l_{s} e_{\alpha}\right), \quad \tau_{s}(A, B)=$ $\frac{1}{4 n} R\left(e_{\alpha}, l_{s} \boldsymbol{e}_{\alpha}, A, B\right), \quad \omega_{s}=\frac{1}{2} d \eta_{s \mid H}$.
The Proof uses the Bianchi's identities.

Theorem (w/ St. Ivanov, I. Minchev)

The divergences of the curvature tensors satisfy the system $B b=0$, where

$$
\mathbf{B}=\left(\begin{array}{ccccc}
-1 & 6 & 4 n-1 & \frac{3}{16 n(n+2)} & 0 \\
-1 & 0 & n+2 & \frac{3}{16 n(n+2)} & 0 \\
1 & -3 & 4 & 0 & -1
\end{array}\right),
$$

$\mathbf{b}=\left(\nabla^{*} T^{0}, \nabla^{*} U, A, d S c a l, \operatorname{Ric}\left(\xi_{j}, l_{j} .\right)\right)^{t}$, $A=I_{1}\left[\xi_{2}, \xi_{3}\right]+I_{2}\left[\xi_{3}, \xi_{1}\right]+I_{3}\left[\xi_{1}, \xi_{2}\right]$.

Vanishing tor using the str eqs

Using qc-Einstein $\Rightarrow S c a l=$ const., $[V, V] \subseteq V$, and Lemma (w/ St. Ivanov)

On a qc manifold of dimension $(4 n+3)>7$ we have $U(X, Y)=$
$-\frac{1}{16 n}\left[d \Omega\left(\xi_{i}, X, l_{k} Y, e_{a}, l_{j} e_{a}\right)+d \Omega\left(\xi_{i}, l_{i} X, l_{j} Y, e_{a}, l_{j} e_{a}\right)\right]$
$T^{0}(X, Y)=\frac{1}{8(1-n)} \sum_{(j k)}\left[d \Omega\left(\xi_{i}, X, I_{k} Y, e_{a}, I_{j} e_{a}\right)-\right.$
$\left.d \Omega\left(\xi_{i}, l_{i} X, l_{j} Y, e_{a}, l_{j} e_{a}\right)\right]$.
we prove

Theorem (w/ St. Ivanov)

Let $\left(M^{4 n+3}, \eta, \mathbb{Q}\right)$ be a qc manifold, $n>1$. The following conditions are equivalent
a) $\left(M^{4 n+3}, \eta, \mathbb{Q}\right)$ has closed fundamental four form, $d \Omega=0$;
b) $\left(M^{4 n+3}, g, \mathbb{Q}\right)$ is $q c$-Einstein manifold;
c) Each Reeb vector ξ_{s} field preserves the horizontal metric and the quaternionic structure simultaneous $/ y, \mathbb{L}_{\xi_{s}} g=0, \quad \mathbb{L}_{\xi_{s}} \mathbb{Q} \subset \mathbb{Q}$.
d) Each Reeb vector field ξ_{s} preserves the fundamental four form, $\mathbb{L}_{\xi_{s}} \Omega=0$.

The "positive" qc-Einstein case

Proposition (w/ St. Ivanov)

The structure equations characterizing a 3-Sasaki manifold among all qc structures are $d \eta_{i}=2 \omega_{i}+2 \eta_{j} \wedge \eta_{k}$.

The "positive" qc-Einstein case

Proposition (w/ St. Ivanov)

The structure equations characterizing a 3-Sasaki manifold among all qc structures are $d \eta_{i}=2 \omega_{i}+2 \eta_{j} \wedge \eta_{k}$.

Proof.

Recall, $2 \omega_{i}=d \eta_{i}+\eta_{j} \wedge \alpha_{k}-\eta_{k} \wedge \alpha_{j}+s \eta_{j} \wedge \eta_{k}$. For a 3-Sasakian manifold we have $s=2, d \eta_{i}\left(\xi_{j}, \xi_{k}\right)=2, \alpha_{s}=-2 \eta_{s}$. Conversely, the Kähler forms $F_{i}=t^{2}\left(\omega_{i}+\eta_{j} \wedge \eta_{k}\right)+t d t \wedge \eta_{i}$ on the cone $N=M \times \mathbb{R}^{+}$are closed and therefore $g_{N}=t^{2}\left(g+\sum_{s=1}^{3} \eta_{s} \otimes \eta_{s}\right)+d t \otimes d t$ is hyper Kähler

Main thrm for "positive" Einstein qc

Theorem (w/ St. Ivanov, I. Minchev)

Suppose Scal >0. The next conditions are equivalent:
i) $\left(M^{4 n+3}, g, \mathbb{Q}\right)$ is $q c$-Einstein manifold.
ii) M is locally 3-Sasakian: locally there exists a matrix $\psi \in \mathcal{C}^{\infty}(M: S O(3))$, s.t., $\left(\frac{2}{s} \psi \cdot \eta, Q\right)$ is 3-Sasakian;

Proof of the main theorem characterizing 3-Sasaki

Proof in the case $n>1$ using the fundamental 4-form. The original proof works when $n=1$ as well.
$d \Omega=0 \Rightarrow M$ is qc-Einstein \Rightarrow Scal $=$ const and $[V, V] \subseteq V$. The qc structure $\eta^{\prime}=\frac{16 n(n+2)}{S c a l} \eta$ has normalized qc scalar curvature $s^{\prime}=2$ and $d \Omega^{\prime}=0$ provided Scal $\neq 0$.
Drop the ' hereafter.

Claim: The Riemannian cone $N=M \times \mathbb{R}^{+}$, $g_{N}=t^{2}\left(g+\sum_{s=1}^{3} \eta_{s} \otimes \eta_{s}\right)+d t \otimes d t$ is hyper-Kähler.

Claim: The Riemannian cone $N=M \times \mathbb{R}^{+}$, $g_{N}=t^{2}\left(g+\sum_{s=1}^{3} \eta_{s} \otimes \eta_{s}\right)+d t \otimes d t$ is hyper-Kähler.

- $F_{i}=t^{2}\left(\omega_{i}+\eta_{j} \wedge \eta_{k}\right)+t d t \wedge \eta_{i}$, $F=F_{1} \wedge F_{1}+F_{2} \wedge F_{2}+F_{3} \wedge F_{3}$.
- $d F_{i}=t d t \wedge\left(2 \omega_{i}+2 \eta_{j} \wedge \eta_{k}-d \eta_{i}\right)+t^{2} d\left(\omega_{i}+\eta_{j} \wedge \eta_{k}\right)$.

Thus $(M, \Psi \cdot \eta)$ is locally a 3-Sasakian manifold.

Claim: The Riemannian cone $N=M \times \mathbb{R}^{+}$, $g_{N}=t^{2}\left(g+\sum_{s=1}^{3} \eta_{s} \otimes \eta_{s}\right)+d t \otimes d t$ is hyper-Kähler.

- $F_{i}=t^{2}\left(\omega_{i}+\eta_{j} \wedge \eta_{k}\right)+t d t \wedge \eta_{i}$, $F=F_{1} \wedge F_{1}+F_{2} \wedge F_{2}+F_{3} \wedge F_{3}$.
- $d F_{i}=t d t \wedge\left(2 \omega_{i}+2 \eta_{j} \wedge \eta_{k}-d \eta_{i}\right)+t^{2} d\left(\omega_{i}+\eta_{j} \wedge \eta_{k}\right)$.
- $d F=t^{4} d \Omega-2 t^{3} \sum_{(j k)} d t \wedge\left(\rho_{i}+2 \omega_{i}\right) \wedge \eta_{j} \wedge \eta_{k}=0$.

Thus $(M, \Psi \cdot \eta)$ is locally a 3-Sasakian manifold.

Claim: The Riemannian cone $N=M \times \mathbb{R}^{+}$, $g_{N}=t^{2}\left(g+\sum_{s=1}^{3} \eta_{s} \otimes \eta_{s}\right)+d t \otimes d t$ is hyper-Kähler.

- $F_{i}=t^{2}\left(\omega_{i}+\eta_{j} \wedge \eta_{k}\right)+t d t \wedge \eta_{i}$,

$$
F=F_{1} \wedge F_{1}+F_{2} \wedge F_{2}+F_{3} \wedge F_{3} .
$$

- $d F_{i}=t d t \wedge\left(2 \omega_{i}+2 \eta_{j} \wedge \eta_{k}-d \eta_{i}\right)+t^{2} d\left(\omega_{i}+\eta_{j} \wedge \eta_{k}\right)$.
- $d F=t^{4} d \Omega-2 t^{3} \sum_{(j k)} d t \wedge\left(\rho_{i}+2 \omega_{i}\right) \wedge \eta_{j} \wedge \eta_{k}=0$.
- N is quaternionic Kähler manifold if $n>1$.

Thus $(M, \Psi \cdot \eta)$ is locally a 3-Sasakian manifold.

Claim: The Riemannian cone $N=M \times \mathbb{R}^{+}$, $g_{N}=t^{2}\left(g+\sum_{s=1}^{3} \eta_{s} \otimes \eta_{s}\right)+d t \otimes d t$ is hyper-Kähler.

- $F_{i}=t^{2}\left(\omega_{i}+\eta_{j} \wedge \eta_{k}\right)+t d t \wedge \eta_{i}$,

$$
F=F_{1} \wedge F_{1}+F_{2} \wedge F_{2}+F_{3} \wedge F_{3}
$$

- $d F_{i}=t d t \wedge\left(2 \omega_{i}+2 \eta_{j} \wedge \eta_{k}-d \eta_{i}\right)+t^{2} d\left(\omega_{i}+\eta_{j} \wedge \eta_{k}\right)$.
- $d F=t^{4} d \Omega-2 t^{3} \sum_{(i j)} d t \wedge\left(\rho_{i}+2 \omega_{i}\right) \wedge \eta_{j} \wedge \eta_{k}=0$.
- N is quaternionic Kähler manifold if $n>1$.
- N is Einstein and (warped metric) is Ricci flat.

Thus $(M, \Psi \cdot \eta)$ is locally a 3-Sasakian manifold.

Claim: The Riemannian cone $N=M \times \mathbb{R}^{+}$, $g_{N}=t^{2}\left(g+\sum_{s=1}^{3} \eta_{s} \otimes \eta_{s}\right)+d t \otimes d t$ is hyper-Kähler.

- $F_{i}=t^{2}\left(\omega_{i}+\eta_{j} \wedge \eta_{k}\right)+t d t \wedge \eta_{i}$, $F=F_{1} \wedge F_{1}+F_{2} \wedge F_{2}+F_{3} \wedge F_{3}$.
- $d F_{i}=t d t \wedge\left(2 \omega_{i}+2 \eta_{j} \wedge \eta_{k}-d \eta_{i}\right)+t^{2} d\left(\omega_{i}+\eta_{j} \wedge \eta_{k}\right)$.
- $d F=t^{4} d \Omega-2 t^{3} \sum_{(j k)} d t \wedge\left(\rho_{i}+2 \omega_{i}\right) \wedge \eta_{j} \wedge \eta_{k}=0$.
- N is quaternionic Kähler manifold if $n>1$.
- N is Einstein and (warped metric) is Ricci flat.
- N is locally hyper-Kähler. Locally, there exists a SO(3)-matrix Ψ with smooth entries, possibly depending on t, such that the triple of two forms $\left(\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}\right)=\psi \cdot\left(F_{1}, F_{2}, F_{3}\right)^{t}$ are closed.
Thus $(M, \Psi \cdot \eta)$ is locally a 3-Sasakian manifold.

Zero torsion examples

- For some constant τ the following structure equations hold $d \eta_{i}=2 \omega_{i}+2 \tau \eta_{j} \wedge \eta_{k}$, for any cyclic permutation (i, j, k) of $(1,2,3)$.

Zero torsion examples

- For some constant τ the following structure equations hold $d \eta_{i}=2 \omega_{i}+2 \tau \eta_{j} \wedge \eta_{k}$, for any cyclic permutation (i, j, k) of $(1,2,3)$.
- Examples of such qc manifolds are:
(i) the quaternionic Heisenberg group, where $\tau=0$;
(ii) any 3-Sasakian manifold, where $\tau=1$; (iii) the zero torsion qc-flat group $G_{-1 / 4}$ described next, where $\tau=-1 / 4$.

Zero torsion examples

- For some constant τ the following structure equations hold $d \eta_{i}=2 \omega_{i}+2 \tau \eta_{j} \wedge \eta_{k}$, for any cyclic permutation (i, j, k) of $(1,2,3)$.
- Examples of such qc manifolds are:
(i) the quaternionic Heisenberg group, where $\tau=0$;
(ii) any 3-Sasakian manifold, where $\tau=1$; (iii) the zero torsion qc-flat group $G_{-1 / 4}$ described next, where $\tau=-1 / 4$.
- For $\tau<0(\tau>0)$, the qc homothety $\eta_{i} \mapsto-2 \tau \eta_{i}$ $\left(\eta_{i} \mapsto \tau \eta_{i}\right)$ brings the qc-structure $G_{-1 / 4}$ (a 3-Sasakain structure) to one satisfying the above structure equations.

Example of a "negative" qc-Einstein

This is the only Lie group s.t. $d \eta_{i}=2 \omega_{i}+2 \tau \eta_{j} \wedge \eta_{k}$, $\tau \neq 0$, for some (necessarily) negative constant τ.
Consider the Lie algebra $\mathfrak{g}_{-1 / 4}$
$d e^{1}=0, \quad d e^{2}=-e^{12}-2 e^{34}-\frac{1}{2} e^{37}+\frac{1}{2} e^{46}$
$d e^{3}=-e^{13}+2 e^{24}+\frac{1}{2} e^{27}-\frac{1}{2} e^{45}$
$d e^{4}=-e^{14}-2 e^{23}-\frac{1}{2} e^{26}+\frac{1}{2} e^{35}$
$d e^{5}=2 e^{12}+2 e^{34}-\frac{1}{2} e^{67}$
$d e^{6}=2 e^{13}+2 e^{42}+\frac{1}{2} e^{57}, \quad d e^{7}=2 e^{14}+2 e^{23}-\frac{1}{2} e^{56}$

Example of a "negative" qc-Einstein

This is the only Lie group s.t. $d \eta_{i}=2 \omega_{i}+2 \tau \eta_{j} \wedge \eta_{k}$, $\tau \neq 0$, for some (necessarily) negative constant τ.
Consider the Lie algebra $\mathfrak{g}_{-1 / 4}$
$d e^{1}=0, \quad d e^{2}=-e^{12}-2 e^{34}-\frac{1}{2} e^{37}+\frac{1}{2} e^{46}$ $d e^{3}=-e^{13}+2 e^{24}+\frac{1}{2} e^{27}-\frac{1}{2} e^{45}$ $d e^{4}=-e^{14}-2 e^{23}-\frac{1}{2} e^{26}+\frac{1}{2} e^{35}$ $d e^{5}=2 e^{12}+2 e^{34}-\frac{1}{2} e^{67}$ $d e^{6}=2 e^{13}+2 e^{42}+\frac{1}{2} e^{57}, \quad d e^{7}=2 e^{14}+2 e^{23}-\frac{1}{2} e^{56}$ $H=\operatorname{span}\left\{e^{1}, \ldots, e^{4}\right\}, \eta_{1}=e^{5}, \eta_{2}=e^{6}, \eta_{3}=e^{7}$, $\omega_{1}=e^{12}+e^{34}, \omega_{2}=e^{13}+e^{42}, \omega_{3}=e^{14}+e^{23}$

$\xi_{1}=e_{5}, \xi_{2}=e_{6}, \xi_{3}=e_{7}$ are the Reeb vector fields; hence, the Biquard connection exists.

$\xi_{1}=e_{5}, \xi_{2}=e_{6}, \xi_{3}=e_{7}$ are the Reeb vector fields; hence, the Biquard connection exists.
Theorem (w/ L. de Andres, M. Fernandez, St. Ivanov, J. Santisteban and L. Ugarte)

Let $\left(G_{-1 / 4}, \eta, \mathbb{Q}\right)$ be the simply connected Lie group with Lie algebra $\mathfrak{g}_{-1 / 4}$ equipped with the left invariant qc structure (η, \mathbb{Q}) defined above. Then
a) $G_{-1 / 4}$ is qc-Einstein and the normalized qc scalar curvature is a negative constant, $S=-\frac{1}{2}$.
b) The qc conformal curvature is zero, $W^{q c}=0$, i.e., $\left(G_{-1 / 4}, \eta, \mathbb{Q}\right)$ is locally qc conformally flat.

