Scattering on manifolds with cylindrical ends and stable systoles

Werner Müller

University of Bonn Institute of Mathematics

Schloss Rauischholzhausen, September 26, 2009

• joint work with Alexander Strohmaier

2

御 と くきと くきと

1) Scattering theory

Scattering theory seeks to understand large-time asymptotic behavior of solutions to evolution equations such as the Schrödinger equation

$$i\frac{\partial u}{\partial t} = Hu$$

and the wave equation

$$\frac{\partial^2 u}{\partial t^2} = -\Delta u.$$

Solution operators are

$$e^{itH}$$
, and $\cos(t\sqrt{\Delta})$ or $\sin(t\sqrt{\Delta})/\sqrt{\Delta}$,

depending in the latter case on initial conditions. **Main features:** Open systems, particle may escape to infinity,

1.1. The time-dependent approach

- \mathcal{H} separable Hilbert space, H_0 and H self-adjoint operators in \mathcal{H} .
- H_0 free Hamiltonian, H Hamiltonian with interaction

Example. Scattering by a potential $V \in C_c^{\infty}(\mathbb{R}^n)$.

$$\mathcal{H} = L^2(\mathbb{R}^n), \quad \Delta = d^*d, \quad H_0 = \overline{\Delta}, \quad H = \overline{\Delta + V}.$$

We say that

$$u(t) = e^{-itH}\varphi$$

is asymptotically free as $t \to \pm \infty$, if there exist $\varphi_{\pm} \in \mathcal{H}$:

$$\lim_{t\to\pm\infty} \parallel e^{-itH}\varphi - e^{-itH_0}\varphi_{\pm} \parallel = 0.$$

Equivalent to

$$\lim_{t\to\pm\infty} \| e^{itH} e^{-itH_0} \varphi_{\pm} - \varphi \| = 0.$$

Problem. Existence of the limit.

Wave operators

- $\mathcal{H}_{\rm ac}$ and $\mathcal{H}_{0,{\rm ac}}$ absolutely continuous subspaces of H and H_0 , respectively.
- $\bullet~{\it P}_{\rm ac}$ and ${\it P}_{0,{\rm ac}}$ projections onto ${\cal H}_{\rm ac}$ and ${\cal H}_{0,{\rm ac}}$, respectively.
- $H_{\rm ac}$ and $H_{0,\rm ac}$ absolutely continuous parts of H and H_0 , respectively.

Put

$$W_{\pm}(H,H_0) := \operatorname{s-lim}_{t \to \pm \infty} e^{itH} e^{-itH_0} P_{0,\mathrm{ac}}$$

Problem. Existence and completeness of wave operators.

• If $W_{\pm}(H, H_0)$ exist and are complete, then

$$W_{\pm}$$
: $\mathcal{H}_{0,\mathrm{ac}} \cong \mathcal{H}_{\mathrm{ac}}$, $W_{\pm}H_{0,\mathrm{ac}} = H_{\mathrm{ac}}W_{\pm}$.

• Absolutely continuous parts of H_0 and H are unitarily equivalent.

Birman-Kato invariance principle: 1) Let $\lambda \in \mathbb{C} - \mathbb{R}$ and $k \in \mathbb{N}$ such that

$$(H + \lambda \operatorname{Id})^{-k} - (H_0 + \lambda \operatorname{Id})^{-k}$$

is trace class. Then the wave operators exist and are complete.

2) Suppose that $H, H_0 \ge 0$ and

$$e^{-tH} - e^{-tH_0}$$

is trace class for all t > 0. Then the wave operators exist and are complete.

Scattering operator:

$$S=W_+^*\circ W_-.$$

- S unitary operator in $\mathcal{H}_{0,\mathrm{ac}}$, commutes with $H_{0,\mathrm{ac}}$.
- Let σ_0 be the absolutely continuous spectrum of H_0 , and $\{E_0(\lambda)\}_{\lambda \in \sigma_0}$ the spectral family of $H_{0,ac}$.

Then

$$S = \int_{\sigma_0} S(\lambda) dE_0(\lambda).$$

• $S(\lambda)$ "on-shell scattering matrix".

1.2. Stationary (time-independent) approach

Example. $H = \overline{\Delta + V}$, $V \in C_c^{\infty}(\mathbb{R}^n)$.

The stationary approach is related to the spectral decomposition of H.

Let $\omega \in S^{n-1}$, $\lambda > 0$, $\hat{x} = x/|x|$.

 $e^{i\lambda\langle\omega,x\rangle}$, plane wave.

Sommerfeld radiation condition: There exists a unique solution of

$$(\Delta + V - \lambda^2)\psi = 0$$

such that

$$\psi(x;\omega,\lambda) = e^{i\lambda\langle\omega,x
angle} + a(\hat{x},\omega,\lambda)|x|^{-(n-1)/2}e^{-i\lambda|x|} + o\left(|x|^{-(n-1)/2}
ight), \quad |x| \to \infty.$$

distorted plane wave.

- $a(\theta, \omega, \lambda)$ scattering amplitude.
- $|a(\theta, \omega, \lambda)|d\theta$ scattering cross section with respect to angle $d\theta$.
- fundamental quantity, measured in scattering experiments

$$S(\lambda) \colon L^2(S^{n-1}) \to L^2(S^{n-1})$$

on-shell scattering matrix,

• $S(\lambda) - \mathsf{Id}$ integral operator with kernel

$$e^{\frac{\pi}{4}(n-1)i}(2\pi)^{-\frac{1}{2}(n-1)}\lambda^{(n-1)/2}a(\theta,\omega,\lambda).$$

Time delay operator.

Example. $H_0 = \overline{\Delta}, \ H = \overline{H + V}.$ Let $\Omega \subset \mathbb{R}^n, \ \phi \in L^2(\mathbb{R}^n).$

Quantum mechanics: Probability to find particle with wave function ϕ at time *t* in Ω is given by

$$\int_{\Omega} \left| e^{-itH} \phi(x) \right|^2 dx = \parallel \chi_{\Omega} e^{-itH} \phi \parallel^2$$

Total time:

$$\int_{\mathbb{R}} \| \chi_{\Omega} e^{-itH} \phi \|^2 dt.$$

• By definition, $e^{-itH}W_{-}\phi$ and $e^{-itH_{0}}\phi$ are asymptotically equivalent as $t \to \infty$.

Time excess due to interaction:

$$\int_{\Omega} \left(\| \chi_{\Omega} e^{-itH} W_{-} \phi \|^{2} - \| \chi_{\Omega} e^{-itH_{0}} \phi \|^{2} \right).$$

Eisenbud-Wigner time delay operator:

$$\langle \phi, \mathcal{T} \phi \rangle = \lim_{R \to \infty} \int_{\mathbb{R}} \left(\| \chi_{B_R} e^{-itH} W_{-} \phi \|^2 - \| \chi_{B_R} e^{-itH_0} \phi \|^2 \right).$$

defines closable quadratic form, \mathcal{T} self-adjoint, commutes with H_0 . Let

$$\mathcal{T} = \int_{\sigma_{ac}(H_0)} \mathcal{T}(\lambda) \, dE_0(\lambda).$$

Eisenbud-Wigner formula: Let $S(\lambda)$ be the on-shell scattering matrix. Then

$$\mathcal{T}(\lambda) = -iS(\lambda)^{-1} \frac{dS}{d\lambda}(\lambda).$$

movie

<ロ> <部> <き> <き>

-2

Resonances

- In physics a resonance $E i\gamma$ is related to a dissipative metastable state with energy E and decay rate γ .
- Mathematically resonances can be defined as poles of the meromorphic continuation of the resolvent.
- Resonances describe the longtime behaviour of solutions of the wave equation.
- In many settings a meromorphic extension of the scattering matrix exists and resonances can be defined as poles of the scattering matrix.
- Resonances replace bound states in any system in which particles have the possibility to escape to infinity.

2) Geometric scattering theory

• Basic tool to study of continuous spectrum of geometric differential operators on noncompact manifolds.

Examples: Manifolds with cylindrical ends, wave guides, locally symmetric spaces $\Gamma \setminus G/K$ of finite volume, moduli spaces, etc.

• Common feature: Special geometric structure at infinity.

Manifolds with cylindrical ends:

• M compact Riemannian manifold with boundary Y,

•
$$g^M|_{(-\varepsilon,0]\times Y} = du^2 + g^Y$$
,
 $X = M \cup_Y Z$, $Z = \mathbb{R}^+ \times Y$, $g^Z = du^2 + g^Y$.

Figure: Elongation X of M.

2

- ∢ ⊒ →

▲圖 ▶ ▲ 圖 ▶

• $E \to X$ Hermitian vector bundle, $E|_Z = pr_Y^*(E^Y)$, $E^Y \to Y$.

$$D: C^{\infty}(X, E) \to C^{\infty}(X, E)$$

Dirac type operator.

Assumption: $D|_Z = \gamma \left(\frac{\partial}{\partial u} + D_Y \right)$,

- $\gamma \colon E|_Y \to E|_Y$ bundle isomorphism,
- $D_Y : C^{\infty}(Y, E|_Y) \to C^{\infty}(Y, E|_Y)$ symmetric, 1st order, elliptic, s.th.

$$\gamma^2 = -\operatorname{Id}, \quad \gamma^* = -\gamma, \quad D_Y \gamma = -\gamma D_Y.$$

Put

$$D_0 = \gamma \left(\frac{\partial}{\partial u} + D_Y
ight) : C_c^{\infty}(\mathbb{R}^+ \times Y, E) \to L^2(\mathbb{R}^+ \times Y, E).$$

- D = D, D₀ closure of D₀ w.r.t. Atiyah-Patodi-Singer boundary conditions.
- Let $J: L^2(Z, E|_Z) \subset L^2(X, E)$ be the inclusion.

Theorem. For all t > 0,

$$e^{-t\mathcal{D}^2} - Je^{-t\mathcal{D}_0^2}, \quad \mathcal{D}e^{-t\mathcal{D}^2} - J\mathcal{D}_0e^{-t\mathcal{D}_0^2}$$

are trace class operators.

By the Kato-Birman invariance principle, the wave operators

$$W_{\pm}(\mathcal{D},\mathcal{D}_0) = \operatorname{\mathsf{s-lim}}_{t o \pm \infty} e^{it\mathcal{D}} J e^{-it\mathcal{D}_0}$$

exist and are complete.

• $S(\lambda)$, $\lambda \in \mathbb{R}$, on-shell scattering matrix.

Let $0 \le \mu_1 < \mu_2 < \cdots$ be the nonnegative eigenvalues of D_Y , $\mathcal{E}(\mu_k)$ eigenspace of μ_k .

$$\mathcal{S}(\lambda)\colon igoplus_{\mu_k\leq |\lambda|} \left(\mathcal{E}(\mu_k)\oplus \mathcal{E}(-\mu_k)
ight) o igoplus_{\mu_k\leq |\lambda|} \left(\mathcal{E}(\mu_k)\oplus \mathcal{E}(-\mu_k)
ight).$$

Let $\Sigma \to \mathbb{C}$ be the ramified covering associated to the functions $\sqrt{\lambda \pm \mu_k}$, $k \in \mathbb{N}$. Then $S(\lambda)$ extends to a meromorphic function on Σ .

Question: What information about X can be extracted from $S(\lambda)$? – inverse scattering theory.

Example. S(0): ker $(D_Y) \rightarrow$ ker (D_Y) satisfies

$$S(0)^2 = \operatorname{Id}, \quad S(0)\gamma = -\gamma S(0).$$

Let $E_Y = E_Y^+ \oplus E_Y^-$ be the decomposition of $E_Y \to Y$ into the ± 1 eigenspaces of γ . Let D_Y^{\pm} be the restriction of D_Y to $C^{\infty}(Y, E_Y^{\pm})$. Then

$$D_Y^{\pm}\colon C^{\infty}(Y, E_Y^{\pm}) \to C^{\infty}(Y, E_Y^{\mp}).$$

Then

$$S(0)$$
: ker $(D_Y^+) \cong$ ker (D_Y^-) .

Cobordism invariance of the index for Dirac type operators:

$$\operatorname{Ind}(D_Y^+)=0.$$

3) Harmonic forms and scattering length From now on we restrict attention to

$$d + d^* \colon \Lambda^*(X) \to \Lambda^*(X).$$

Let $\omega \in \Lambda^{p}(\mathbb{R}^{+} \times Y)$. Then

$$\omega = \phi + \mathbf{d}\mathbf{u} \wedge \psi,$$

where $\phi \in C^{\infty}(\mathbb{R}^+, \Lambda^p(Y))$ and $\psi \in C^{\infty}(\mathbb{R}^+, \Lambda^{p-1}(Y))$.

• S(0) preserves this decomposition.

• $0 \le \mu_1 < \mu_2 < \cdots$ eigenvalues of $\Delta_{Y,p}$

Then for $\lambda \geq 0$:

$$\mathcal{S}_{p}(\lambda) \colon \bigoplus_{\mu_{k} \leq \lambda} \mathcal{E}(\mu_{k}) \to \bigoplus_{\mu_{k} \leq \lambda} \mathcal{E}(\mu_{k}).$$

A B > A B >

Let $\mu > 0$ be the first positive eigenvalue of $\Delta_{Y,p}$. Then

$$S_p(\lambda): \mathcal{H}^p(Y) \to \mathcal{H}^p(Y)$$

is analytic in $\lambda \in B(0,\mu)$.

Generalized eigenforms: Let $\phi \in \mathcal{H}^{p}(Y)$. For $|\lambda| < \mu$ there is a unique $E(\phi, \lambda) \in \Lambda^{p}(X)$ which is a solution of

$$\Delta_{p}E(\phi,\lambda)=\lambda^{2}E(\phi,\lambda),$$

such that on $\mathbb{R}^+ imes Y$ we have

$$E(\phi,\lambda,(u,y)) = e^{-i\lambda u}\phi(y) + e^{i\lambda u}(S_p(\lambda)\phi)(y) + R(\phi,\lambda,(u,y))$$

with $R(\phi, \lambda) \in L^2$.

• Analog of Sommerfeld radiation condition.

Relation with cohomology

Let $\phi \in \mathcal{H}^p(Y)$ and assume that $S_p(0)\phi = \phi$. Then

$$E(\phi,0)|_Z = 2\phi + \psi, \quad \psi \in L^2.$$

- ¹/₂E(φ, 0) extended harmonic form on X (in the sense of A-P-S) with limiting value φ.
- $X = M \cup_Y Z$, M compact manifold with boundary Y.

Thoerem. The +1-eigenspace of S(0) on $H^p(Y, \mathbb{R})$ coincides with $Im(H^p(M, \mathbb{R}) \to H^p(Y, \mathbb{R}))$.

Let

$$\begin{aligned} \mathcal{H}^p_{\mathrm{ext}}(X) &= \{ \psi \in \Lambda^p(X) \colon \Delta_p \psi = 0, \ \exists \phi_1 \in \mathcal{H}^p(Y), \ \phi_2 \in \mathcal{H}^{p-1}(Y) \\ \psi|_Z &= \phi_1 + du \wedge \phi_2 + \theta, \quad \theta \in L^2 \Lambda^p(Z) \}. \end{aligned}$$

- ϕ_1 and ϕ_2 are uniquely determined by ψ .
- Put $\psi_t = \phi_1$ and $\psi_n = \phi_2$.

$$\begin{aligned} \mathcal{H}_{ext,abs}^{p}(X) &:= \{ \psi \in \mathcal{H}_{ext}^{p}(X) \mid \psi_{n} = 0 \}, \\ \mathcal{H}_{ext,rel}^{p}(X) &:= \{ \psi \in \mathcal{H}_{ext}^{p}(X) \mid \psi_{t} = 0 \}. \end{aligned}$$

Let $\psi \in \mathcal{H}^{p}_{ext}(X)$. Since ψ is harmonic, it follows that

$$(\psi - \psi_t - du \wedge \psi_n)(u, y) \ll e^{-cu}, \quad (u, y) \in Z.$$

Applying Green's formula to $M_a = M \cup_Y ([0, a] \times Y)$, we get

$$0 = \langle \Delta \psi, \psi \rangle_{M_{\mathfrak{a}}} = \parallel d\psi \parallel^{2}_{M_{\mathfrak{a}}} + \parallel \delta \psi \parallel^{2}_{M_{\mathfrak{a}}} + O(e^{-c\mathfrak{a}})$$

which implies that

$$d\psi = 0, \ \delta\psi = 0 \quad \text{for all } \psi \in \mathcal{H}^p_{ext}(X).$$

Thus we get a canonical map

$$R: \mathcal{H}^p_{ext,abs}(X) \to H^p(X,\mathbb{R}).$$

Let
$$\psi \in \mathcal{H}^{p}_{ext,rel}(X)$$
. Then $d\psi = 0$,

$$\psi|_{Z} = du \wedge \psi_{n} + d\theta,$$

and θ is exponentially decaying.

 χ cut-off function, support on the cylinder Z equal to 1
 outside a compact set.

Define

$$R_c: \mathcal{H}^p_{ext,rel}(X) \to H^p_c(X,\mathbb{R}), \quad \psi \mapsto [\psi - d(\chi(u\psi_n + \theta))].$$

This map is well defined and independent of the choice of $\chi.$ There are maps

$$\begin{split} \hat{F} &: \mathcal{H}^{p}(Y) \to \mathcal{H}^{p}_{ext,abs}(X), \quad \phi \mapsto \frac{1}{2}E(\phi,0), \\ \hat{G} &: \mathcal{H}^{p}(Y) \to \mathcal{H}^{p}_{ext,rel}(X), \quad \phi \mapsto \frac{1}{2}dE'(\phi,0). \end{split}$$

Lemma. S'(0) is invertible on $\mathcal{H}^*(Y)$.

Put

$$\tilde{\partial} = \hat{G} \circ \left(\frac{i}{2}S'(0)\right)^{-1}.$$

Then

$$\tilde{\partial} \colon \mathcal{H}^p(Y) \to \mathcal{H}^{p+1}_{\mathrm{ext}, \mathit{rel}}(X)$$

corresponds to the boundary operator

$$\partial \colon H^p(Y,\mathbb{R}) \to H^{p+1}_c(X,\mathbb{R}).$$

There is a long exact sequence

$$\cdots \to \mathcal{H}^p_{\mathrm{ext}, \mathit{rel}}(X) \to \mathcal{H}^p_{\mathrm{ext}, \mathit{abs}}(X) \to \mathcal{H}^p(Y) \to \mathcal{H}^{p+1}_{\mathrm{ext}, \mathit{rel}}(X) \to \cdots$$

which is equivalent to

$$\cdots \to H^p_c(X,\mathbb{R}) \to H^p(X,\mathbb{R}) \to H^p(Y,\mathbb{R}) \to H^{p+1}_c(X,\mathbb{R}) \to \cdots$$

4) Stable norm and comass norm Federer, Gromov

• V n-dimensional Euclidean vector space

For $\omega \in \Lambda^{p} V^{*}$ define the comass norm by

$$\|\omega\|_{\infty} = \sup\{\omega(e_1,\ldots,e_{\rho}) \mid e_k \in V, \|e_k\| = 1\}$$
(1)

Since the norms are equivalent there is a constant C such that

$$\|\omega\|^2 \le C \|\omega\|_{\infty}^2. \tag{2}$$

• C(n, p) the optimal such constant.

•
$$C(n,0) = C(n,1) = 1, C(n,p) \le {n \choose p}.$$

• *B* a compact manifold with boundary ∂B , $\omega \in \Lambda^{p}(B)$. Define comass by

$$\begin{split} \|\omega\|_{\infty} &= \sup\{\omega_x(e_1,\ldots,e_p) \mid x \in B, \ e_i \in T_x B, \ g(e_i,e_i) = 1\} \\ &= \sup\{\|\omega_x\|_{\infty} \mid x \in B\}. \end{split}$$

Get norm on $H^p(B, \partial B, \mathbb{R})$ by

$$\|\phi\|_{\infty} = \inf\{\|\omega\|_{\infty} \mid \phi = [\omega], \ \omega \in \Lambda^{p}(B, \partial B), \ d\omega = 0\}.$$

For $z \in H_p(B, \partial B, \mathbb{R})$ the stable norm $||z||_{st}$ is defined as

$$||z||_{st} = \inf\{\sum_i |\alpha_i| \operatorname{Vol}(c_i) | z = \sum_i \alpha_i[c_i], \ \alpha_i \in \mathbb{R}\},\$$

where the infimum is taken over all Lipschitz continuous simplices c_i .

Geometric measure theory: Federer, Gromov

 $\|z\|_{st} = \sup\{|\phi(z)| \mid \phi \in H^{p}(B, \partial B, \mathbb{R}), \|\phi\|_{\infty} \leq 1\}.$

5) Scattering length:

$$T_{\rho}(0)=-iS_{\rho}(0)^{-1}\left(\frac{d}{ds}S_{\rho}\right)(0).$$

Put

$$\operatorname{Vol}_*(M) = \operatorname{Vol}(M) + \frac{1}{\sqrt{\mu}} \operatorname{Vol}(Y),$$

where μ is the samllest postive eigenvalue of Δ_Y .

Theorem

Let $0 \le p \le n$. For every $\phi \in \mathcal{H}^p(Y)$ in the -1-eigenspace of $S_p(0)$ we have

$$\begin{split} \frac{1}{2}C(n,p+1)^{-1}\mathrm{Vol}_*(M)^{-1}\|[M] \cap \partial \phi\|_{st}^2 \\ &\leq \langle \phi,T(0)^{-1}\phi\rangle \leq \frac{1}{2}C(n,p+1)\mathrm{Vol}(M)\|\partial \phi\|_{\infty}^2. \end{split}$$

Example. *Y* has two components Y_1 and Y_2 , p = 0. There is a canonical basis in $H^0(Y, \mathbb{R})$ s.th.

$$\mathcal{T}_0(0) = egin{pmatrix} t_1 & 0 \ 0 & t_2 \end{pmatrix},$$

so that

$$t_1=2rac{{
m Vol}({\it M})}{{
m Vol}({\it Y})}, \quad {\it C}_2\leq t_2\leq {\it C}_1,$$

- ∢ ≣ ▶

where

$$\begin{split} C_1 &= 2 \operatorname{Vol}_*(M) \frac{\operatorname{Vol}(Y_1) \operatorname{Vol}(Y_2)}{\|\iota_*([Y_1])\|_{st}^2(\operatorname{Vol}(Y_1) + \operatorname{Vol}(Y_2))},\\ C_2 &= 2 \operatorname{Vol}(M)^{-1} \frac{\operatorname{dist}(Y_1, Y_2)^2 \operatorname{Vol}(Y_1) \operatorname{Vol}(Y_2)}{\operatorname{Vol}(Y_1) + \operatorname{Vol}(Y_2)}. \end{split}$$

and ι is the inclusion of Y into M.

P

▶ ★ 문 ▶ ★ 문 ▶

2