Fourier inversion and Paley-Wiener theorems for rank one Riemannian symmetric superspaces

Alexander Alldridge (Cologne)
Seminar Sophus Lie, Schloss Rauischholzhausen
May 29, 2014

joint work with Wolfgang Palzer
Research supported by DFG, grants no. ZI 513/2-1 and SFB/TR 12, and by the UoC Institutional strategy in the German Excellence Initiative

Plan of the talk

- Basic super stuff
- Spherical superfunctions
- Leading asymptotics
- Asymptotic expansion
- Plancherel theorem for OSp
- Paley-Wiener theorem

Supermanifolds

Informal definition:
" X supermanifold = manifold with even/odd (commuting/anti-commuting) coordinates"

Supermanifolds

Informal definition:
" X supermanifold $=$ manifold with even/odd (commuting/anti-commuting) coordinates"

Definition.

$$
\begin{array}{lll}
X=\left(X_{0}, \mathcal{O}_{X}\right) & & \mathcal{O}_{X} \text { superalgebra sheaf } / \mathbb{C} \text { with local stalks } \\
X \text { complex supermanifold } & : \Leftrightarrow & X \cong \cong_{l o c} \mathbb{A}_{h o l}^{p \mid q}:=\left(\mathbb{C}^{p}, \mathcal{H}_{\mathbb{C}^{p}} \otimes_{\mathbb{C}} \wedge\left(\mathbb{C}^{q}\right)^{*}\right) \\
X \text { cs manifold } & : \Leftrightarrow & X \cong l o c \\
A^{p \mid q}:=\left(\mathbb{R}^{p}, C_{\mathbb{R}^{p}}^{\infty} \otimes_{\mathbb{R}} \wedge\left(\mathbb{C}^{q}\right)^{*}\right) \quad \text { (Bernstein) }
\end{array}
$$

Supermanifolds

Informal definition:
" X supermanifold $=$ manifold with even/odd (commuting/anti-commuting) coordinates"

Definition.

$$
\begin{array}{lll}
X=\left(X_{0}, \mathcal{O}_{X}\right) & & \mathcal{O}_{X} \text { superalgebra sheaf } / \mathbb{C} \text { with local stalks } \\
X \text { complex supermanifold } & : \Leftrightarrow & X \cong \cong_{l o c} \mathbb{A}_{h o l}^{p \mid q}:=\left(\mathbb{C}^{p}, \mathcal{H}_{\mathbb{C}^{p}} \otimes_{\mathbb{C}} \wedge\left(\mathbb{C}^{q}\right)^{*}\right) \\
X \text { cs manifold } & : \Leftrightarrow & X \cong l o c \\
A^{p \mid q}:=\left(\mathbb{R}^{p}, C_{\mathbb{R}^{p}}^{\infty} \otimes_{\mathbb{R}} \wedge\left(\mathbb{C}^{q}\right)^{*}\right) \quad \text { (Bernstein) }
\end{array}
$$

Examples:

$V \rightarrow X_{0}$ holomorphic vector bundle \quad complex $\operatorname{smf}_{\mathbb{A}_{\text {hol }}(V)=\left(X_{0}, \Lambda \mathcal{V}^{*}\right)}$
$V \rightarrow X_{0}$ complex vector bundle \quad cs manifold $\mathbb{A}(V)=\left(X_{0}, \wedge \mathcal{V}^{*}\right)$
For instance, $V=T X_{0}, V=S$ spinor bundle ($\left.X_{0} \operatorname{spin}^{c}\right), \ldots$

Supermanifolds

Informal definition:
" X supermanifold $=$ manifold with even/odd (commuting/anti-commuting) coordinates"

Definition.

$$
\begin{array}{lll}
X=\left(X_{0}, \mathcal{O}_{X}\right) & & \mathcal{O}_{X} \text { superalgebra sheaf } / \mathbb{C} \text { with local stalks } \\
X \text { complex supermanifold } & : \Leftrightarrow & X \cong \operatorname{loc} \mathbb{A}_{h o l}^{p \mid q}:=\left(\mathbb{C}^{p}, \mathcal{H}_{\mathbb{C}^{p}} \otimes_{\mathbb{C}} \wedge\left(\mathbb{C}^{q}\right)^{*}\right) \\
X \text { cs manifold } & : \Leftrightarrow & X \cong l o c \\
\mathbb{A}^{p \mid q}:=\left(\mathbb{R}^{p}, C_{\mathbb{R}^{p}}^{\infty} \otimes_{\mathbb{R}} \bigwedge\left(\mathbb{C}^{q}\right)^{*}\right) \quad \text { (Bernstein) }
\end{array}
$$

Examples:

$V \rightarrow X_{0}$ holomorphic vector bundle \quad complex $\operatorname{smf}_{\mathbb{A}_{\text {hol }}(V)=\left(X_{0}, \Lambda \mathcal{V}^{*}\right)}$
$V \rightarrow X_{0}$ complex vector bundle $\quad \bullet \quad$ cs manifold $\mathbb{A}(V)=\left(X_{0}, \wedge \mathcal{V}^{*}\right)$
For instance, $V=T X_{0}, V=S$ spinor bundle ($X_{0} \operatorname{spin}^{c}$), \ldots

Theorem (Batchelor). All cs manifolds are obtained in this way (i.e. are split).

But: Complex smf $\operatorname{Gr}(1|1,2| 2)$ is not split (Penkov, Wells et al.). Moreover: Maps are not the same.

Lie supergroups

Definition (Berezin-Leites, Kostant). A complex/cs Lie supergroup is a group object in complex smf/cs manifolds.

Lie supergroups

Definition (Berezin-Leites, Kostant). A complex/cs Lie supergroup is a group object in complex smf/cs manifolds.

Theorem (Kostant).
$\{$ complex/cs Lie supergroups $\} \rightleftharpoons\left\{\begin{array}{c}\text { (Harish-Chandra) pairs }\left(\mathfrak{g}, G_{0}\right), \\ \mathfrak{g} \text { Lie superalgebra, } G_{0} \text { Lie group }\end{array}\right\}$

$$
G_{0} \times \mathbb{A}\left(\mathfrak{g}_{\mathfrak{1}}\right) \longrightarrow G:(g, x) \longmapsto g \exp _{G}(x)
$$

Lie supergroups

Definition (Berezin-Leites, Kostant). A complex/cs Lie supergroup is a group object in complex smf/cs manifolds.

Theorem (Kostant).

$$
\begin{gathered}
\{\text { complex/cs Lie supergroups }\} \rightleftharpoons\left\{\begin{array}{c}
\text { (Harish-Chandra) pairs }\left(\mathfrak{g}, G_{0}\right), \\
\mathfrak{g} \text { Lie superalgebra, } G_{0} \text { Lie group }
\end{array}\right\} \\
\qquad G_{0} \times \mathbb{A}\left(\mathfrak{g}_{\overline{1}}\right) \longrightarrow G:(g, x) \longmapsto g \exp _{G}(x) .
\end{gathered}
$$

Usually better: group valued functor $T \longmapsto G(T)=\operatorname{Maps}(T, G)$.

Lie supergroups

Definition (Berezin-Leites, Kostant). A complex/cs Lie supergroup is a group object in complex smf/cs manifolds.

Theorem (Kostant).

$\{$ complex/cs Lie supergroups $\} \rightleftharpoons\left\{\begin{array}{c}\text { (Harish-Chandra) pairs }\left(\mathfrak{g}, G_{0}\right), \\ \mathfrak{g} \text { Lie superalgebra, } G_{0} \text { Lie group }\end{array}\right\}$

$$
G_{0} \times \mathbb{A}\left(\mathfrak{g}_{\mathfrak{1}}\right) \longrightarrow G:(g, x) \longmapsto g \exp _{G}(x)
$$

Usually better: group valued functor $T \longmapsto G(T)=\operatorname{Maps}(T, G)$.

Examples:

$$
\begin{aligned}
\operatorname{GL}(p \mid q, \mathbb{C})(T) & =\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \mathcal{O}(T)^{p \times q} \left\lvert\, \begin{array}{c}
A, D \text { even, } B, C \text { odd } \\
A, D \text { invertible }
\end{array}\right.\right\} \\
\operatorname{OSp}(p \mid 2 q, J, \mathbb{C})(T) & =\left\{g \in \operatorname{GL}(p \mid 2 q, \mathbb{C}) \mid g^{s t^{3}} J g=J\right\}
\end{aligned}
$$

Here, we let:

$$
J
$$

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{s t^{3}}:=\left(\begin{array}{cc}
A^{t} & C^{t} \\
-B^{t} & D^{t}
\end{array}\right)
$$

matrix of supersymmetric form order 4 automorphism

Cs supergroups from complex supergroups

$G_{\mathbb{C}} \quad$ complex Lie supergroup with pair $\left(\mathfrak{g}, G_{\mathbb{C}, 0}\right)$
G_{0} real form of $G_{\mathbb{C}, 0}$
\leadsto Cs Lie supergroup G with pair (\mathfrak{g}, G_{0})

Cs supergroups from complex supergroups

$G_{\mathbb{C}}$	complex Lie supergroup with pair $\left(\mathfrak{g}, G_{\mathbb{C}, 0}\right)$
G_{0}	real form of $G_{\mathbb{C}, 0}$

$n \rightarrow$ CS Lie supergroup G with pair (\mathfrak{g}, G_{0})
Examples:

$$
\begin{aligned}
\mathrm{U}_{c s}(m, n \mid r, s)(T) & =\left\{\left.\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \mathcal{O}(T)^{(m+n) \times(r+s)} \right\rvert\, \begin{array}{c}
A \in \mathrm{U}(m, n)(T) \\
D \in \mathrm{U}(r, s)(T)
\end{array}\right\} \\
\operatorname{SOSp}_{c s}^{+}(m, n \mid 2 q)(T) & =\left\{\left.\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \operatorname{OSp}(m+n \mid 2 q, J, \mathbb{C})(T) \right\rvert\, \begin{array}{c}
A \in \operatorname{SO}^{+}(m, n)(T) \\
D \in \operatorname{USp}(2 q)(T)
\end{array}\right\}
\end{aligned}
$$

Here, we let:

$$
\begin{gathered}
J=\left(\begin{array}{ccc}
-\mathbb{1}_{m} & 0 & 0 \\
0 & \mathbb{1}_{n} & 0 \\
0 & 0 & J_{q}
\end{array}\right), \quad J_{q}:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \otimes \cdots \otimes\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
\mathrm{USp}(2 q):=\mathrm{U}(2 q) \cap \operatorname{Sp}(2 q, \mathbb{C})
\end{gathered}
$$

Riemannian symmetric superspaces

Definition. A symmetric pair (G, K) of $c s$ Lie supergroups is Riemannian if so is (G_{0}, K_{0}). A Riemannian symmetric superspace is $X=G / K$ where (G, K) is Riemannian.

Riemannian symmetric superspaces

Definition. A symmetric pair (G, K) of $c s$ Lie supergroups is Riemannian if so is (G_{0}, K_{0}). A Riemannian symmetric superspace is $X=G / K$ where (G, K) is Riemannian.

Theorem (Goertsches). If X is Riemannian and for all $x \in X_{0}$, there is an isometry s_{x} such that $s_{x}(x)=x, T_{x} s_{x}=-\mathbb{1}$, then X is symmetric.

Riemannian symmetric superspaces

Definition. A symmetric pair (G, K) of $c s$ Lie supergroups is Riemannian if so is (G_{0}, K_{0}). A Riemannian symmetric superspace is $X=G / K$ where (G, K) is Riemannian.

Theorem (Goertsches). If X is Riemannian and for all $x \in X_{0}$, there is an isometry s_{x} such that $s_{x}(x)=x, T_{x} s_{x}=-1$, then X is symmetric.

Examples: Today, we will consider the following "rank one" cases:

G	K
$\mathrm{U}_{\mathcal{C S}}(1,1+p \mid q)$	$\mathrm{U}(1) \times \mathrm{U}_{\mathcal{}}(1+p \mid q)$
$\operatorname{SOSp}_{c s}^{+}(1,1+p \mid 2 q)$	$\operatorname{SOSp}_{c s}(1+p \mid 2 q)$
$\mathrm{GL}_{c s}(1 \mid 1)$	$\mathrm{U}_{\mathcal{C S}}(1 \mid 1)$

Even these are quite surprising.

Symmetric superfunctions

$E \rightarrow X$ vector bundle \leadsto Berezinian density bundle $|\operatorname{Ber}|(E),|\operatorname{Ber}|(X):=|\operatorname{Ber}|\left(\Pi T^{*} X\right)$

Symmetric superfunctions

$E \rightarrow X$ vector bundle \leadsto Berezinian density bundle $|\operatorname{Ber}|(E),|\operatorname{Ber}|(X):=|\operatorname{Ber}|\left(\Pi T^{*} X\right)$
Theorem (Berezin). Compactly supported Berezinian densities (sections of the sheaf $|\operatorname{Ber}|_{X}$ associated with $\left.|\operatorname{Ber}|(X)\right)$ admit a uniquely defined integral.

Symmetric superfunctions

$E \rightarrow X$ vector bundle $\leadsto \rightarrow$ Berezinian density bundle $|\operatorname{Ber}|(E),|\operatorname{Ber}|(X):=|\operatorname{Ber}|\left(\Pi T^{*} X\right)$

Theorem (Berezin). Compactly supported Berezinian densities (sections of the sheaf $|\operatorname{Ber}|_{X}$ associated with $\left.|\operatorname{Ber}|(X)\right)$ admit a uniquely defined integral.

Proposition (A-Hilgert). Let $X=G / H$. TFAE: (1) $\exists G$-invariant Berezinian density.
(2) $|\operatorname{Ber}|(X)$ equivariantly trivial. (3) $|\operatorname{Ber}|_{\mathfrak{g} / \mathfrak{h}}\left(\left.\operatorname{Ad}_{G}\right|_{H}\right)=1$.

In particular, $X=G / K$ admits a G-invariant Berezinian density $|D \dot{g}|$.

Symmetric superfunctions

$E \rightarrow X$ vector bundle \leadsto Berezinian density bundle $|\operatorname{Ber}|(E),|\operatorname{Ber}|(X):=|\operatorname{Ber}|\left(\Pi T^{*} X\right)$
Theorem (Berezin). Compactly supported Berezinian densities (sections of the sheaf $|\operatorname{Ber}|_{X}$ associated with $\left.|\operatorname{Ber}|(X)\right)$ admit a uniquely defined integral.

Proposition (A-Hilgert). Let $X=G / H$. TFAE: (1) $\exists G$-invariant Berezinian density.
(2) $|\operatorname{Ber}|(X)$ equivariantly trivial. (3) $|\operatorname{Ber}|_{\mathfrak{g} / \mathfrak{h}}\left(\left.\operatorname{Ad}_{G}\right|_{H}\right)=1$.

In particular, $X=G / K$ admits a G-invariant Berezinian density $|D \dot{g}|$.

$$
\begin{aligned}
& \mathfrak{a} \\
& M=Z_{K}(\mathfrak{a}) \\
& K / M \\
& |D \dot{k}| \\
& H: G \rightarrow \mathbb{A}\left(\mathfrak{a}_{\mathbb{R}}\right) \\
& \varrho=\left.\frac{1}{2} \operatorname{str}_{\mathfrak{n}} \operatorname{ad}_{\mathfrak{g}}\right|_{\mathfrak{a}}
\end{aligned}
$$

Cartan subspace
centraliser of Cartan
geodesic supersphere at infinity
K-invariant Berezinian density on K / M
Iwasawa A projection half sum of positive roots

Symmetric superfunctions

$E \rightarrow X$ vector bundle $\leadsto \rightarrow$ Berezinian density bundle $|\operatorname{Ber}|(E),|\operatorname{Ber}|(X):=|\operatorname{Ber}|\left(\Pi T^{*} X\right)$
Theorem (Berezin). Compactly supported Berezinian densities (sections of the sheaf $|\operatorname{Ber}|_{X}$ associated with $\left.|\operatorname{Ber}|(X)\right)$ admit a uniquely defined integral.

Proposition (A-Hilgert). Let $X=G / H$. TFAE: (1) $\exists G$-invariant Berezinian density.
(2) $|\operatorname{Ber}|(X)$ equivariantly trivial. (3) $|\operatorname{Ber}|_{\mathfrak{g} / \mathfrak{h}}\left(\left.\operatorname{Ad}_{G}\right|_{H}\right)=1$.

In particular, $X=G / K$ admits a G-invariant Berezinian density $|D \dot{g}|$.

$$
\begin{aligned}
& \mathfrak{a} \\
& M=Z_{K}(\mathfrak{a}) \\
& K / M \\
& |D \dot{k}| \\
& H: G \rightarrow \mathbb{A}\left(\mathfrak{a}_{\mathbb{R}}\right) \\
& \varrho=\left.\frac{1}{2} \operatorname{str}_{\mathfrak{n}} \operatorname{ad}_{\mathfrak{g}}\right|_{\mathfrak{a}}
\end{aligned}
$$

Cartan subspace centraliser of Cartan
$K / M \quad$ geodesic supersphere at infinity $|D \dot{k}| \quad K$-invariant Berezinian density on K / M
$H: G \rightarrow \mathbb{A}\left(\mathfrak{a}_{\mathbb{R}}\right) \quad$ Iwasawa A projection

Definition.

$$
\phi_{\lambda}(g):=\int_{K / M}|D \dot{k}| e^{(\lambda-\varrho)(H(g k))}, \quad \lambda \in \mathfrak{a}^{*} .
$$

These are eigenfunctions of the Laplacian.

Leading asympotics: c-function

Fix basis $h_{0} \in \mathfrak{a}, \alpha\left(h_{0}\right)=1, \alpha$ indecomposable positive root, identify $\lambda \equiv \lambda\left(h_{0}\right)$.

$$
c(\lambda):=\lim _{t \rightarrow \infty} e^{-(\lambda-\varrho) t} \phi_{\lambda}\left(e^{t h_{0}}\right) .
$$

Leading asympotics: c-function

Fix basis $h_{0} \in \mathfrak{a}, \alpha\left(h_{0}\right)=1, \alpha$ indecomposable positive root, identify $\lambda \equiv \lambda\left(h_{0}\right)$.

$$
c(\lambda):=\lim _{t \rightarrow \infty} e^{-(\lambda-\varrho) t} \phi_{\lambda}\left(e^{t h_{0}}\right)
$$

$\alpha, 2 \alpha$
$m_{\alpha}, m_{2 \alpha}$
positive roots
multiplicities

m_{α}	$m_{2 \alpha}$	ϱ
$2(p-q)$	1	$p-q+1$
$p-2 q$	0	$p / 2-q$
-2	0	-1

Leading asympotics: c-function

Fix basis $h_{0} \in \mathfrak{a}, \alpha\left(h_{0}\right)=1, \alpha$ indecomposable positive root, identify $\lambda \equiv \lambda\left(h_{0}\right)$.

$$
c(\lambda):=\lim _{t \rightarrow \infty} e^{-(\lambda-\varrho) t} \phi_{\lambda}\left(e^{t h_{0}}\right) .
$$

$\alpha, 2 \alpha$	positive roots
$m_{\alpha}, m_{2 \alpha}$	multiplicities

m_{α}	$m_{2 \alpha}$	ϱ
$2(p-q)$	1	$p-q+1$
$p-2 q$	0	$p / 2-q$
-2	0	-1

Theorem (A-Palzer). In each of the cases listed above, $c(\lambda)$ exists for $\Re \lambda>0$, and

$$
c(\lambda)=c_{0} \frac{2^{-\lambda} \Gamma(\lambda)}{\Gamma\left(\frac{1}{2}\left(\lambda+\frac{m_{\alpha}}{2}+1\right)\right) \Gamma\left(\frac{1}{2}\left(\lambda+\frac{m_{\alpha}}{2}+m_{2 \alpha}\right)\right)} \quad\left(c_{0} \equiv c_{0}(\varrho)\right)
$$

In the GL(1|1) case, we have $c(\lambda)=c_{0} \lambda$.

Leading asympotics: c-function

Fix basis $h_{0} \in \mathfrak{a}, \alpha\left(h_{0}\right)=1, \alpha$ indecomposable positive root, identify $\lambda \equiv \lambda\left(h_{0}\right)$.

$$
c(\lambda):=\lim _{t \rightarrow \infty} e^{-(\lambda-\varrho) t} \phi_{\lambda}\left(e^{t h_{0}}\right) .
$$

$\alpha, 2 \alpha$	positive roots
$m_{\alpha}, m_{2 \alpha}$	multiplicities

m_{α}	$m_{2 \alpha}$	ϱ
$2(p-q)$	1	$p-q+1$
$p-2 q$	0	$p / 2-q$
-2	0	-1

Theorem (A-Palzer). In each of the cases listed above, $c(\lambda)$ exists for $\Re \lambda>0$, and

$$
c(\lambda)=c_{0} \frac{2^{-\lambda} \Gamma(\lambda)}{\Gamma\left(\frac{1}{2}\left(\lambda+\frac{m_{\alpha}}{2}+1\right)\right) \Gamma\left(\frac{1}{2}\left(\lambda+\frac{m_{\alpha}}{2}+m_{2 \alpha}\right)\right)} \quad\left(c_{0} \equiv c_{0}(\varrho)\right)
$$

In the GL(1|1) case, we have $c(\lambda)=c_{0} \lambda$.

Theorem (A-Schmittner). For G / K reductive of even type, $c(\lambda)$ exists for $\Re \lambda>0$, and

$$
c(\lambda)=c_{0} \prod_{\langle\alpha, \alpha\rangle \neq 0} 2^{-\lambda_{\alpha}} \frac{\Gamma\left(\lambda_{\alpha}\right)}{\Gamma\left(\frac{1}{2}\left(\lambda_{\alpha}+\frac{m_{\alpha}}{2}+1\right)\right) \Gamma\left(\frac{1}{2}\left(\lambda_{\alpha}+\frac{m_{\alpha}}{2}+m_{2 \alpha}\right)\right)} \prod_{\langle\alpha, \alpha\rangle=0}\langle\lambda, \alpha\rangle^{-\frac{m_{\alpha}}{2}}
$$

the product over indecomposable roots, where $\lambda_{\alpha}:=\langle\lambda, \alpha\rangle\langle\alpha, \alpha\rangle^{-1}$ for $\langle\alpha, \alpha\rangle \neq 0$.

Comments on the proof

One uses stereographic coordinates $k: \bar{N} \rightarrow K / M$

Illustration from W. Casselman's web page
However, for $m_{\alpha} \leqslant 0$, cannot pull back ϕ_{λ} integral because of "boundary terms"!

Comments on the proof

One uses stereographic coordinates $k: \bar{N} \rightarrow K / M$

Illustration from W. Casselman's web page
However, for $m_{\alpha} \leqslant 0$, cannot pull back ϕ_{λ} integral because of "boundary terms"!

1. Use partition of unity on stereographic atlas parametrised by Weyl group.
2. Show convergence of partial integrals $c_{I}(\lambda), c_{I I}(\lambda)$.
3. Show that partition of unity cancels out in limit.

Comments on the proof

One uses stereographic coordinates $k: \bar{N} \rightarrow K / M$

Illustration from W. Casselman's web page
However, for $m_{\alpha} \leqslant 0$, cannot pull back ϕ_{λ} integral because of "boundary terms"!

1. Use partition of unity on stereographic atlas parametrised by Weyl group.
2. Show convergence of partial integrals $c_{I}(\lambda), c_{I I}(\lambda)$.
3. Show that partition of unity cancels out in limit.

Proposition (A-Palzer). In the $\mathrm{U}_{c s}$ case, we have for $m_{\alpha} \leqslant 0, \Re \lambda>0$:

$$
c(\lambda) \simeq \int_{0}^{\infty} d s \partial_{r=0}^{1-\varrho}\left((1+r)^{2}+s^{2}\right)^{-(\lambda+\varrho) / 2} .
$$

Comments on the proof

One uses stereographic coordinates $k: \bar{N} \rightarrow K / M$

Illustration from W. Casselman's web page
However, for $m_{\alpha} \leqslant 0$, cannot pull back ϕ_{λ} integral because of "boundary terms"!

1. Use partition of unity on stereographic atlas parametrised by Weyl group.
2. Show convergence of partial integrals $c_{I}(\lambda), c_{I I}(\lambda)$.
3. Show that partition of unity cancels out in limit.

Proposition (A-Palzer). In the $\mathrm{U}_{c s}$ case, we have for $m_{\alpha} \leqslant 0, \Re \lambda>0$:

$$
c(\lambda) \simeq \int_{0}^{\infty} d s \partial_{r=0}^{1-\varrho}\left((1+r)^{2}+s^{2}\right)^{-(\lambda+\varrho) / 2} .
$$

4. A similar statement holds for SOSp^{+}.
5. For $\mathfrak{R} \lambda>-\varrho$, derivatives and integral can be exchanged.
6. This gives the assertion.

Asymptotic expansion

In the GL(1|1) case, the ϕ_{λ} integral case be evaluated directly.
Proposition (A-Palzer). In the GL(1|1) case, one has

$$
\phi_{\lambda}\left(e^{t}\right)=c_{0} \lambda e^{\lambda t} \sinh t
$$

Notably, this function is not even.

Asymptotic expansion

In the GL(1|1) case, the ϕ_{λ} integral case be evaluated directly.
Proposition (A-Palzer). In the GL(1|1) case, one has

$$
\phi_{\lambda}\left(e^{t}\right)=c_{0} \lambda e^{\lambda t} \sinh t
$$

Notably, this function is not even.
In the other cases, we have an asymptotic expansion

$$
\begin{aligned}
\Phi_{\lambda}\left(e^{t}\right) & =e^{(\lambda-\varrho) t} \sum_{l=0}^{\infty} \gamma_{l}(\lambda) e^{-2 l t} \\
\gamma_{l}(\lambda) & :=c(\lambda) c(-\lambda)(-1)^{l}\binom{-\varrho}{l} \frac{-\lambda}{(l-\lambda) c(l-\lambda)}
\end{aligned}
$$

Theorem (A-Palzer). The series Φ_{λ} converges absolutely on $[\varepsilon, \infty)$ for $\varepsilon>0$. We have

$$
\phi_{\lambda}=\Phi_{\lambda}+\Phi_{-\lambda} .
$$

Asymptotic expansion

In the GL(1|1) case, the ϕ_{λ} integral case be evaluated directly.
Proposition (A-Palzer). In the GL(1|1) case, one has

$$
\phi_{\lambda}\left(e^{t}\right)=c_{0} \lambda e^{\lambda t} \sinh t
$$

Notably, this function is not even.
In the other cases, we have an asymptotic expansion

$$
\begin{aligned}
\Phi_{\lambda}\left(e^{t}\right) & =e^{(\lambda-\varrho) t} \sum_{l=0}^{\infty} \gamma_{l}(\lambda) e^{-2 l t} \\
\gamma_{l}(\lambda) & :=c(\lambda) c(-\lambda)(-1)^{l}\binom{-\varrho}{l} \frac{-\lambda}{(l-\lambda) c(l-\lambda)}
\end{aligned}
$$

Theorem (A-Palzer). The series Φ_{λ} converges absolutely on $[\varepsilon, \infty)$ for $\varepsilon>0$. We have

$$
\phi_{\lambda}=\Phi_{\lambda}+\Phi_{-\lambda} .
$$

Corollary (A-Palzer). For $m_{\alpha} \leq 0$ even, the series terminates and for OSp,

$$
\phi_{\lambda}\left(e^{t}\right) \simeq e^{(\lambda-\varrho) t} P_{-\varrho}^{(-\lambda, 2 \varrho-1)}\left(1-2 e^{-2 t}\right)
$$

where $P_{n}^{(\alpha, \beta)}$ are Jacobi polynomials.

Wave packet transform

In what follows, assume that $G=\operatorname{SOSp}_{c s}^{+}(1,1+p \mid 2 q), p>0$.
Definition. The Paley-Wiener space is

$$
\mathrm{PW}_{R}:=\left\{\varphi \in \operatorname{Hol}\left(\mathfrak{a}^{*}\right)\left|\quad \forall k \geqslant 0:\|\varphi\|_{k, R}:=\sup _{\lambda \in \mathfrak{a}^{*}}(1+\mid \lambda(\lambda)=\varphi(-\lambda))^{k}\right| \varphi(\lambda) \mid e^{-R|\mathfrak{R} \lambda|}<\infty\right\}
$$

For $\varphi \in \mathrm{PW}_{R}$, let the wave packet transform be

$$
\mathcal{J} \varphi(g):=\int_{i a_{R}^{*}} \frac{d \lambda}{|c(\lambda)|^{2}} \phi_{\lambda}(g) \varphi(\lambda) .
$$

Wave packet transform

In what follows, assume that $G=\operatorname{SOSp}_{c s}^{+}(1,1+p \mid 2 q), p>0$.
Definition. The Paley-Wiener space is

$$
\left.\mathrm{PW}_{R}:=\left\{\varphi \in \operatorname{Hol}\left(\mathfrak{a}^{*}\right) \mid \quad \forall k \geqslant 0:\|\varphi\|_{k, R}:=\sup _{\lambda \in \mathfrak{a}^{*}}(1+\mid \lambda)=\varphi(-\lambda) \quad\right)^{k}|\varphi(\lambda)| e^{-R|\mathfrak{R} \lambda|}<\infty\right\}
$$

For $\varphi \in \mathrm{PW}_{R}$, let the wave packet transform be

$$
\mathcal{J} \varphi(g):=\int_{i a_{R}^{*}} \frac{d \lambda}{|c(\lambda)|^{2}} \phi_{\lambda}(g) \varphi(\lambda) .
$$

Proposition (A-Palzer). Let $\|\varphi\|_{n, R}<\infty$ for some $n>\varrho, R \geq 0$. Then

$$
\mathcal{J} \varphi\left(e^{t}\right)=4 \pi \sum_{k<-\varrho} \operatorname{res}_{\lambda=\varrho+k} \frac{\Phi_{\lambda}\left(e^{t}\right)}{c(\lambda) c(-\lambda)} \varphi(\varrho+k), \quad t>R
$$

Wave packet transform

In what follows, assume that $G=\operatorname{SOSp}_{c s}^{+}(1,1+p \mid 2 q), p>0$.
Definition. The Paley-Wiener space is

$$
\left.\mathrm{PW}_{R}:=\left\{\varphi \in \operatorname{Hol}\left(\mathfrak{a}^{*}\right) \mid \quad \forall k \geqslant 0:\|\varphi\|_{k, R}:=\sup _{\lambda \in \mathfrak{a}^{*}}(1+\mid \lambda)=\varphi(-\lambda)\right)^{k}|\varphi(\lambda)| e^{-R|\mathfrak{R} \lambda|}<\infty\right\}
$$

For $\varphi \in \mathrm{PW}_{R}$, let the wave packet transform be

$$
\mathcal{J} \varphi(g):=\int_{i a_{R}^{*}} \frac{d \lambda}{|c(\lambda)|^{2}} \phi_{\lambda}(g) \varphi(\lambda) .
$$

Proposition (A-Palzer). Let $\|\varphi\|_{n, R}<\infty$ for some $n>\varrho, R \geq 0$. Then

$$
\mathcal{J} \varphi\left(e^{t}\right)=4 \pi \sum_{k<-\varrho} \operatorname{res}_{\lambda=\varrho+k} \frac{\Phi_{\lambda}\left(e^{t}\right)}{c(\lambda) c(-\lambda)} \varphi(\varrho+k), \quad t>R
$$

Corollary (A-Palzer). We have

$$
\begin{aligned}
& \tilde{\mathcal{J}}\left(\mathrm{PW}_{R}\right) \subseteq \mathcal{O}_{R}(G / K):=\left\{f \in \mathcal{O}(G / K) \mid \operatorname{supp} f \subseteq B_{R}(o)\right\} \\
& \tilde{\mathcal{J}} \varphi(g):=\mathcal{J} \varphi(g)-4 \pi \sum_{k<-\varrho} \operatorname{res}_{\lambda=\varrho+k} \frac{\Phi_{\lambda}(g)}{c(\lambda) c(-\lambda)} \varphi(\varrho+k)
\end{aligned}
$$

Fourier inversion and Paley-Wiener theorem

Proposition (A-Palzer). If $\varrho<0$, then $\mathcal{J} 1$ exists and

$$
\mathcal{J}\left(e^{t}\right)=-\frac{2 \pi}{c_{0} \Gamma(1-\varrho) \Gamma(-2 \varrho)} \partial_{y=0}^{-2 \varrho-1} \frac{\left(1-2 y^{2} \cosh t+y^{4}\right)^{-\varrho}}{(1-y)^{2}} .
$$

Fourier inversion and Paley-Wiener theorem

Proposition (A-Palzer). If $\varrho<0$, then $\mathcal{J} 1$ exists and

$$
\mathcal{J} 1\left(e^{t}\right)=-\frac{2 \pi}{c_{0} \Gamma(1-\varrho) \Gamma(-2 \varrho)} \partial_{y=0}^{-2 \varrho-1} \frac{\left(1-2 y^{2} \cosh t+y^{4}\right)^{-\varrho}}{(1-y)^{2}} .
$$

Define

$$
\begin{gathered}
\mathcal{F} f(\lambda, k):=\int_{G / K}|D \dot{g}| f(g) e^{(\lambda-\varrho)\left(H\left(g^{-1} k\right)\right)} \\
\mathcal{J} \varphi(g):=\int_{i \mathfrak{a}_{\mathbb{R}}^{*}} \frac{d \lambda}{|c(\lambda)|^{2}} \int_{K / M}|D \dot{k}| \varphi(\lambda, k) e^{(-\lambda-\varrho)\left(H\left(g^{-1} k\right)\right)}
\end{gathered}
$$

Fourier inversion and Paley-Wiener theorem

Proposition (A-Palzer). If $\varrho<0$, then $\mathcal{J} 1$ exists and

$$
\mathcal{J} 1\left(e^{t}\right)=-\frac{2 \pi}{c_{0} \Gamma(1-\varrho) \Gamma(-2 \varrho)} \partial_{y=0}^{-2 \varrho-1} \frac{\left(1-2 y^{2} \cosh t+y^{4}\right)^{-\varrho}}{(1-y)^{2}} .
$$

Define

$$
\begin{gathered}
\mathcal{F} f(\lambda, k):=\int_{G / K}|D \dot{g}| f(g) e^{(\lambda-\varrho)\left(H\left(g^{-1} k\right)\right)} \\
\mathcal{J} \varphi(g):=\int_{i \mathfrak{a}_{\mathbb{R}}^{*}} \frac{d \lambda}{|c(\lambda)|^{2}} \int_{K / M}|D \dot{k}| \varphi(\lambda, k) e^{(-\lambda-\varrho)\left(H\left(g^{-1} k\right)\right)}
\end{gathered}
$$

Theorem (A-Palzer). Let $\mathcal{J} 1:=0$ for $\varrho \geqslant 0$. Then for any $f \in \mathcal{O}_{c}(G / K)$

$$
\mathcal{J F} f=C_{0} f+(f * \mathcal{J} 1)
$$

provided $m_{\alpha} \geqslant 0$ or $m_{\alpha}<0$ is odd.

Fourier inversion and Paley-Wiener theorem

Proposition (A-Palzer). If $\varrho<0$, then $\mathcal{J} 1$ exists and

$$
\mathcal{J}\left(e^{t}\right)=-\frac{2 \pi}{c_{0} \Gamma(1-\varrho) \Gamma(-2 \varrho)} \partial_{y=0}^{-2 \varrho-1} \frac{\left(1-2 y^{2} \cosh t+y^{4}\right)^{-\varrho}}{(1-y)^{2}} .
$$

Define

$$
\begin{gathered}
\mathcal{F} f(\lambda, k):=\int_{G / K}|D \dot{g}| f(g) e^{(\lambda-\varrho)\left(H\left(g^{-1} k\right)\right)} \\
\mathcal{J} \varphi(g):=\int_{i a_{\mathbb{R}}^{*}} \frac{d \lambda}{|c(\lambda)|^{2}} \int_{K / M}|D \dot{k}| \varphi(\lambda, k) e^{(-\lambda-\varrho)\left(H\left(g^{-1} k\right)\right)}
\end{gathered}
$$

Theorem (A-Palzer). Let $\mathcal{J} 1:=0$ for $\varrho \geqslant 0$. Then for any $f \in \mathcal{O}_{c}(G / K)$

$$
\mathcal{J F} f=C_{0} f+(f * \mathcal{J} 1)
$$

provided $m_{\alpha} \geqslant 0$ or $m_{\alpha}<0$ is odd.

Corollary (A-Palzer). Under the above assumptions

$$
\mathcal{F}\left(\mathcal{O}_{R}(G / K)^{K}\right)=\mathrm{PW}_{R} .
$$

Condensed matter physics application

For a long, thin wire with impurities, at low temperatures, the mean conductance $\langle c\rangle$ is

$$
\langle c\rangle=\left.\int_{G / K}|D \dot{g}|\left|f_{t}(g)\right|^{2}\right|_{t=s / 2}, \quad \partial_{t} f_{t}=\Delta f_{t} .
$$

for some inital condition. Here, s is system size and G / K is a Riemannian symmetric superspace.

Condensed matter physics application

For a long, thin wire with impurities, at low temperatures, the mean conductance $\langle c\rangle$ is

$$
\langle c\rangle=\left.\int_{G / K}|D \dot{g}|\left|f_{t}(g)\right|^{2}\right|_{t=s / 2}, \quad \partial_{t} f_{t}=\Delta f_{t} .
$$

for some inital condition. Here, s is system size and G / K is a Riemannian symmetric superspace.

For $G=\operatorname{SOSp}^{+}$and $p=1$, one obtains (Zirnbauer, CMP 1991)

$$
\langle c\rangle=2 \int_{0}^{\infty} e^{-\left(\lambda^{2}+1\right) s} \lambda \tanh \lambda d \lambda \simeq \begin{cases}s & s \ll 1 \\ \frac{1}{2} \pi^{3 / 2} s^{-3 / 2} e^{-s / 4} & s \gg 1\end{cases}
$$

Condensed matter physics application

For a long, thin wire with impurities, at low temperatures, the mean conductance $\langle c\rangle$ is

$$
\langle c\rangle=\left.\int_{G / K}|D \dot{g}|\left|f_{t}(g)\right|^{2}\right|_{t=s / 2}, \quad \partial_{t} f_{t}=\Delta f_{t} .
$$

for some inital condition.
Here, s is system size and G / K is a Riemannian symmetric superspace.
For $G=\operatorname{SOSp}^{+}$and $p=1$, one obtains (Zirnbauer, CMP 1991)

$$
\langle c\rangle=2 \int_{0}^{\infty} e^{-\left(\lambda^{2}+1\right) s} \lambda \tanh \lambda d \lambda \simeq \begin{cases}s & s \ll 1 \\ \frac{1}{2} \pi^{3 / 2} s^{-3 / 2} e^{-s / 4} & s \gg 1\end{cases}
$$

In cases of higher rank, one obtains for $s \gg 1$ (Zirnbauer, PRL 1992)
$\langle c\rangle \simeq \begin{cases}2^{-4} \pi^{7 / 2} s^{-3 / 2} e^{-s}, & \text { orthogonal } \\ 2^{1 / 2} \pi^{3 / 2} s^{-3 / 2} e^{-s / 2} & \text { unitary } \\ 1 / 2+2^{5} 3^{-2} \pi^{3 / 2} s^{-3 / 2} e^{-s / 4} & \text { symplectic }\end{cases}$

FIG. 1. The product $s /\langle c\rangle$ as a function of $s=L / \xi+1 / \gamma$ for the case of orthogonal symmetry (dotted line), unitary symmetry (solid line), and symplectic symmetry (dash-dotted line).

Thank you for your attention.

