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Curvature

Let (M, g) be a Riemannian manifold, with its Levi-Civita
connection ∇ and associated curvature tensor R.

For a two-dimensional subspace σ ⊂ TpM, spanned by orthonormal
vectors X and Y , the sectional curvature of σ is defined by

K (σ) = 〈R(X ,Y )Y ,X 〉.

Unsolved problem: classify Riemannian manifolds with positive
sectional curvature, i.e., K (σ) > 0 for all σ.
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Known examples in even dimensions

In this talk we consider even-dimensional compact connected
orientable Riemannian manifolds with positive sectional curvature.

The only known examples are:

1 Spheres S2n

2 The projective spaces CPn, HPn, OP2

3 The Wallach spaces SU(3)/T 2, Sp(3)/Sp(1)3, F4/Spin(8)

4 Eschenburg’s twisted flag manifold SU(3)//T 2.

Note: these spaces are all highly symmetric!
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Results assuming a large symmetry group

Examples of structural results:

(Grove–Searle) If a torus T k acts effectively and isometrically
on a positively curved simply-connected compact Riemannian
manifold of dimension n, then k ≤ [n+1

2 ], and equality can

occur if and only if M is diffeomorphic to Sn or CPn/2.

(Wilking) If dim Iso(M) ≥ 2n − 5 (same assumptions on M),
then M is homotopy equivalent to a compact rank-one
symmetric space, or isometric to a homogeneous space of
positive curvature.

(Amann–Kennard) If n is even, and a torus T of dimension at
least log4/3(n) acts effectively and isometrically on M, then

χ(M) ≤
∑

b2i (M
T ) ≤

(
2

n
+ 1

)1+log4/3( n
2
+1)
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Torus actions of GKM type

An action of a torus T on an orientable differentiable manifold M
satisfying Hodd(M,R) = 0 is called GKMk (named after a paper
by Goresky–Kottwitz–MacPherson) if

1 The action has only finitely many fixed points

2 For each fixed point p ∈ MT , any k weights of the isotropy
representation are linearly independent.

If k = 2 then we simply say that the action is GKM.
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Torus actions of GKM type

Geometric interpretation of the second condition: Let p ∈ MT ,
and decompose

TpM =
⊕
α

Vα

into weight spaces, dimVα = 2. Then for a subtorus T ′ ⊂ T we
have

TpM
T ′ =

⊕
α:α|t′=0

Vα.

Condition 2: If dimT ′ = dimT − 1, then dimMT ′ ≤ 2.
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An example

Consider the T n-action on CPn by

(e iϕ1 , . . . , e iϕn) · [z0 : . . . : zn] = [z0 : e iϕ1z1 : . . . e iϕnzn].

Fixed points: [1 : 0 : . . . : 0], . . . , [0 : . . . : 0 : 1]. Components of
MT ′ , where dimT ′ = dimT − 1: either a fixed point or of the form

{[0 : . . . : 0 : u : 0 : . . . : 0 : v : 0 : . . . : 0]} = CP1 ∼= S2.

Each of these S2 is T -invariant and contains two fixed points!
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The GKM graph

In general: any two-dimensional component of a submanifold MT ′

as above is a two-sphere, and contains exactly two fixed points.

Thus: if dimM = 2n, then for any fixed point p there are n
invariant two-spheres containing p.

To any GKM action we can hence assign the GKM graph:

Vertices: the fixed points.

Edges: an edge connecting two fixed points for each
T -invariant S2 as above containing them.

Labeling: An edge is labeled with the corresponding weight of
the isotropy representation.
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The GKM graph

GKM graph of the T 3-action on CP3:

More generally: any toric manifold satisfies the GKM condition,
and the GKM graph is the one-skeleton of the momentum image.
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GKM actions on the positively curved examples

All the known examples of positively curved even-dimensional
orientable manifolds admit an action of GKM type:

Guillemin–Holm–Zara: Let G/H be a homogeneous space of
compact Lie groups with rkG = rkH, and let T ⊂ H be a
maximal torus. Then the T -action on G/H is GKM.

E.g.: weights of isotropy representation at eH: roots of G which
are not roots of H. In particular: pairwise linearly independent.

Also Eschenburg’s twisted flag admits a GKM action.
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GKM actions on the positively curved examples

S2n

CPn HPn OP2

SU(3)/T 2

and
SU(3)//T 2 Sp(3)/Sp(1)3

F4/Spin(8)
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The GKM graph and cohomology

Fact: The GKM graph of a GKM action of a torus T on M
determines the real cohomology ring H∗(M).

Sketch: Consider equivariant cohomology H∗T (M). The condition
Hodd(M) = 0 implies that H∗T (M) is a free module over H∗(BT ).

Chang-Skjelbred-Lemma: Denote by M1 = {p ∈ M | dimTp ≤ 1}
the one-skeleton of the action. Then freeness of H∗T (M) implies
that there is a short exact sequence

0 −→ H∗T (M) −→ H∗T (MT ) −→ H∗T (M1,M
T ).

Thus the GKM graph determines H∗T (M). Freeness of H∗T (M)
implies also H∗(M) = H∗T (M)⊗H∗(BT ) R, hence H∗T (M)
determines H∗(M).
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The main result

Theorem (—, Wiemeler)

Let M be a compact connected positively curved orientable
Riemannian manifold.

1 If M admits an isometric torus action of type GKM4, then M
has the real cohomology ring of S2n or CPn.

2 If M admits an isometric torus action of type GKM3, then M
has the real cohomology ring of a compact rank one
symmetric space.

Idea of proof: determine all possible GKM graphs of a
GKM3-action on M and show that they are one of those described
above. Easy in case 1, rather technical in case 2.
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Main ingredient

Given a GKM3-action on M, then any component of MT ′ , where
dimT ′ = dimT − 2, is at most 4-dimensional.

It thus makes sense to speak about two-dimensional faces of the
GKM graph: any two edges emanating from the same vertex
determines a two-dimensional face, i.e., a subgraph corresponding
to a four-dimensional submanifold.

These submanifolds are totally geodesic and admit an effective
isometric T 2-action, hence the result of Grove and Searle applies:
they are either S4 or CP2. In particular: the two-dimensional faces
have either 2 or 3 vertices!
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Main ingredient

Note that this condition is violated for the GKM graphs of the
Wallach spaces and the twisted flag:
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Proof of case 1

Consider the GKM4-case. If there are only 2 vertices, then the
GKM graph is necessarily that of an action on a sphere.

Let v1, v2, v3 be three vertices, and denote by Kij the set of edges
between vi and vj . Define a map

φ : K12 × K13 −→ K23

sending two edges (e1, e2) to the third edge of the two-dimensional
face determined by e1 and e2. If α1 and α2 are the weights of e1
and e2, then the weight of φ(e1, e2) is of the form aα1 + bα2. If
φ(e ′1, e

′
2) = φ(e1, e2), then a′α′1 + b′α′2 = aα1 + bα2, a

contradiction to the 4-independence of the weights.

Oliver Goertsches Positively curved GKM manifolds



Positively curved Riemannian manifolds
GKM theory

Positively curved GKM manifolds

The main result
Proof of case 1
Generalizations

Proof of case 1

Hence
φ : K12 × K13 −→ K23

is injective, i.e., |K12| · |K13| ≤ |K23|.

This implies: if |Kij | > 1 for some i , j , then the other two Kij must
be empty. Because the graph is connected, this implies that the
graph is necessarily a complete graph, i.e., the graph of a GKM
action on CPn.
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Generalizations

We can prove two generalizations of the main result:

Integer coefficients: If M satisfies Hodd(M,Z) = 0 and admits
an isometric GKM3-action such that any two weights are
coprime, then M has the integer cohomology of a compact
rank one symmetric space.

Non-orientable manifolds: If a non-orientable M admits an
isometric GKM3-action, then M has the real cohomology of a
real projective space, i.e., H∗(M) = H0(M) = R.
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