Specialized Macdonald polynomials, quantum K-theory, and Kirillov-Reshetikhin modules

Cristian Lenart

Max-Planck-Institut für Mathematik and State University of New York at Albany

47th Sophus Lie Seminar
Castle Rauischholzhausen, May 2014

Macdonald polynomials

λ : dominant weight for classical subsystem of untwisted affine root system.

Macdonald polynomials

λ : dominant weight for classical subsystem of untwisted affine root system.
$P_{\lambda}(x ; q, t)$: Weyl group invariant polynomials, orthogonal, generalizing the corresponding irreducible characters $=P_{\lambda}(x ; 0,0)$.

Macdonald polynomials

λ : dominant weight for classical subsystem of untwisted affine root system.
$P_{\lambda}(x ; q, t)$: Weyl group invariant polynomials, orthogonal, generalizing the corresponding irreducible characters $=P_{\lambda}(x ; 0,0)$.

Defined in the DAHA setup, as common eigenfunctions of the Cherednik operators Y_{μ}.

Braverman-Finkelberg q-Whittaker functions

$\Psi_{\lambda}(x ; q)$: eigenfunctions of the quantum difference Toda integrable system (Etingof, Sevostyanov).

Braverman-Finkelberg q-Whittaker functions

$\Psi_{\lambda}(x ; q)$: eigenfunctions of the quantum difference Toda integrable system (Etingof, Sevostyanov).

Theorem (Braverman-Finkelberg, Ion)
We have

$$
P_{\lambda}(x ; q, t=0)=\widehat{\Psi}_{\lambda}(x ; q)
$$

Schubert calculus

Flag variety G / B, Schubert variety $X_{w}=\overline{B^{-} w B / B}$, for $w \in W$.

Schubert calculus

Flag variety G / B, Schubert variety $X_{w}=\overline{B^{-} w B / B}$, for $w \in W$.
$H^{*}(G / B)$ and $K(G / B)$ have bases of Schubert classes;

Schubert calculus

Flag variety G / B, Schubert variety $X_{w}=\overline{B^{-} w B / B}$, for $w \in W$.
$H^{*}(G / B)$ and $K(G / B)$ have bases of Schubert classes; for K-theory, they are the classes $\left[\mathcal{O}_{w}\right]=\left[\mathcal{O}_{X_{w}}\right]$ of structure sheaves of X_{w}.

Schubert calculus

Flag variety G / B, Schubert variety $X_{w}=\overline{B^{-} w B / B}$, for $w \in W$.
$H^{*}(G / B)$ and $K(G / B)$ have bases of Schubert classes; for K-theory, they are the classes $\left[\mathcal{O}_{w}\right]=\left[\mathcal{O}_{X_{w}}\right]$ of structure sheaves of X_{w}.

The quantum cohomology algebra $Q H^{*}(G / B)$ still has the Schubert basis, but over $\mathbb{C}\left[q_{1}, \ldots, q_{r}\right]$.

Schubert calculus

Flag variety G / B, Schubert variety $X_{w}=\overline{B^{-} w B / B}$, for $w \in W$.
$H^{*}(G / B)$ and $K(G / B)$ have bases of Schubert classes; for K-theory, they are the classes $\left[\mathcal{O}_{w}\right]=\left[\mathcal{O}_{X_{w}}\right]$ of structure sheaves of X_{w}.

The quantum cohomology algebra $Q H^{*}(G / B)$ still has the Schubert basis, but over $\mathbb{C}\left[q_{1}, \ldots, q_{r}\right]$.
The structure constants (for multiplying Schubert classes) are the 3-point Gromov-Witten (GW) invariants.

Schubert calculus

Flag variety G / B, Schubert variety $X_{w}=\overline{B^{-} w B / B}$, for $w \in W$.
$H^{*}(G / B)$ and $K(G / B)$ have bases of Schubert classes; for K-theory, they are the classes $\left[\mathcal{O}_{w}\right]=\left[\mathcal{O}_{X_{w}}\right]$ of structure sheaves of X_{w}.

The quantum cohomology algebra $Q H^{*}(G / B)$ still has the Schubert basis, but over $\mathbb{C}\left[q_{1}, \ldots, q_{r}\right]$.
The structure constants (for multiplying Schubert classes) are the 3-point Gromov-Witten (GW) invariants.
A k-point GW invariant (of degree d) counts curves of degree d passing through k given Schubert varieties.

Quantum K-theory

Givental and Lee defined K-theoretic GW invariants by applying the K-theory Euler characteristic when the space of curves (through given Schubert varieties) is infinite.

Quantum K-theory

Givental and Lee defined K-theoretic GW invariants by applying the K-theory Euler characteristic when the space of curves (through given Schubert varieties) is infinite.
The structure constants for the quantum K-theory $Q K(G / B)$ are defined based on the 2- and 3-point invariants (complex formula).

Quantum K-theory

Givental and Lee defined K-theoretic GW invariants by applying the K-theory Euler characteristic when the space of curves (through given Schubert varieties) is infinite.
The structure constants for the quantum K-theory $Q K(G / B)$ are defined based on the 2- and 3-point invariants (complex formula).

The K-theoretic J-function is the generating function of 1-point K-theoretic GW invariants.

Quantum K-theory

Givental and Lee defined K-theoretic GW invariants by applying the K-theory Euler characteristic when the space of curves (through given Schubert varieties) is infinite.
The structure constants for the quantum K-theory $Q K(G / B)$ are defined based on the 2- and 3-point invariants (complex formula).

The K-theoretic J-function is the generating function of 1 -point K-theoretic GW invariants.

Theorem (Braverman-Finkelberg)
In simply-laced types, the q-Whittaker function $\Psi_{\lambda}(x ; q)$ (viewed as a function of λ) coincides with the K-theoretic J-function.

Kirillov-Reshetikhin (KR) modules

$W^{r, s}$: finite dimensional modules for $\widehat{\mathfrak{g}}(r \in I, s \geq 1)$.

Kirillov-Reshetikhin (KR) modules

$W^{r, s}$: finite dimensional modules for $\widehat{\mathfrak{g}}(r \in I, s \geq 1)$.
Let $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ be a composition, and

$$
W^{\otimes \mathbf{p}}=W^{p_{1}, 1} \otimes W^{p_{2}, 1} \otimes \ldots, \quad \lambda=\omega_{p_{1}}+\omega_{p_{2}}+\ldots
$$

Kirillov-Reshetikhin (KR) modules

$W^{r, s}$: finite dimensional modules for $\widehat{\mathfrak{g}}(r \in I, s \geq 1)$.
Let $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ be a composition, and

$$
W^{\otimes \mathbf{p}}=W^{p_{1}, 1} \otimes W^{p_{2}, 1} \otimes \ldots, \quad \lambda=\omega_{p_{1}}+\omega_{p_{2}}+\ldots
$$

$X_{\lambda}(x ; q)$: the (graded) character of $W^{\otimes \mathbf{p}}$.

Kirillov-Reshetikhin (KR) modules

$W^{r, s}:$ finite dimensional modules for $\widehat{\mathfrak{g}}(r \in I, s \geq 1)$.
Let $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ be a composition, and

$$
W^{\otimes \mathbf{p}}=W^{p_{1}, 1} \otimes W^{p_{2}, 1} \otimes \ldots, \quad \lambda=\omega_{p_{1}}+\omega_{p_{2}}+\ldots
$$

$X_{\lambda}(x ; q)$: the (graded) character of $W^{\otimes \mathbf{p}}$.

Main Theorem (L.-Naito-Sagaki-Schilling-Shimozono)
For all untwisted affine root systems $A_{n-1}^{(1)}-G_{2}^{(1)}$, we have

$$
P_{\lambda}(x ; q, 0)=X_{\lambda}(x ; q)
$$

The underlying combinatorics

The quantum alcove model describes all the mentioned structures:

The underlying combinatorics

The quantum alcove model describes all the mentioned structures:

- the specialized Macdonald polynomials $P_{\lambda}(x ; q, 0)$ and the q-Whittaker functions (Ram-Yip formula),

The underlying combinatorics

The quantum alcove model describes all the mentioned structures:

- the specialized Macdonald polynomials $P_{\lambda}(x ; q, 0)$ and the q-Whittaker functions (Ram-Yip formula),
- the quantum K-theory of G / B (conjecture by L.-Postnikov),

The underlying combinatorics

The quantum alcove model describes all the mentioned structures:

- the specialized Macdonald polynomials $P_{\lambda}(x ; q, 0)$ and the q-Whittaker functions (Ram-Yip formula),
- the quantum K-theory of G / B (conjecture by L.-Postnikov),
- the tensor products of one-column KR modules (LNSSS).

The underlying combinatorics

The quantum alcove model describes all the mentioned structures:

- the specialized Macdonald polynomials $P_{\lambda}(x ; q, 0)$ and the q-Whittaker functions (Ram-Yip formula),
- the quantum K-theory of G / B (conjecture by L.-Postnikov),
- the tensor products of one-column KR modules (LNSSS).

The model is uniform for all Lie types $A_{n-1}-G_{2}$.

Finite root systems $\Phi \subset \mathfrak{h}_{\mathbb{R}}^{*}$

Reflections $s_{\alpha}, \alpha \in \Phi$.

Finite root systems $\Phi \subset \mathfrak{h}_{\mathbb{R}}^{*}$

Reflections $s_{\alpha}, \alpha \in \Phi$.
The Weyl group $W=\left\langle s_{\alpha}: \alpha \in \Phi^{+}\right\rangle$.

Finite root systems $\Phi \subset \mathfrak{h}_{\mathbb{R}}^{*}$

Reflections $s_{\alpha}, \alpha \in \Phi$.
The Weyl group $W=\left\langle s_{\alpha}: \alpha \in \Phi^{+}\right\rangle$.
The quantum Bruhat graph $\operatorname{QBG}(W)$ on W is the directed graph with labeled edges

$$
w \xrightarrow{\alpha} w s_{\alpha}
$$

where

$$
\begin{aligned}
& \ell\left(w s_{\alpha}\right)=\ell(w)+1 \quad(\text { covers of the Bruhat order }), \quad \text { or } \\
& \ell\left(w s_{\alpha}\right)=\ell(w)-2 \operatorname{ht}\left(\alpha^{\vee}\right)+1 \quad\left(\operatorname{ht}\left(\alpha^{\vee}\right)=\left\langle\rho, \alpha^{\vee}\right\rangle\right) .
\end{aligned}
$$

Finite root systems $\Phi \subset \mathfrak{h}_{\mathbb{R}}^{*}$

Reflections $s_{\alpha}, \alpha \in \Phi$.
The Weyl group $W=\left\langle s_{\alpha}: \alpha \in \Phi^{+}\right\rangle$.
The quantum Bruhat graph $\operatorname{QBG}(W)$ on W is the directed graph with labeled edges

$$
w \xrightarrow{\alpha} w s_{\alpha}
$$

where

$$
\begin{aligned}
& \ell\left(w s_{\alpha}\right)=\ell(w)+1 \quad \text { (covers of the Bruhat order) }, \quad \text { or } \\
& \ell\left(w s_{\alpha}\right)=\ell(w)-2 h t\left(\alpha^{\vee}\right)+1 \quad\left(\operatorname{ht}\left(\alpha^{\vee}\right)=\left\langle\rho, \alpha^{\vee}\right\rangle\right) .
\end{aligned}
$$

Comes from the multiplication of Schubert classes in the quantum cohomology of flag varieties $Q H^{*}(G / B)$ (Fulton and Woodward).

Bruhat graph for S_{3} :

Quantum Bruhat graph for S_{3} :

The quantum alcove model

Given a dominant weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right) .
$$

The quantum alcove model

Given a dominant weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)
$$

Fact. The construction of a λ-chain is based on a reduced decomposition of the affine Weyl group element corresponding to $A_{\circ}-\lambda$. This gives a sequence of alcoves from A_{\circ} to $A_{\circ}-\lambda$.

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$.

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$.
The objects of the model: subsets of positions in 「

$$
J=\left(j_{1}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\}
$$

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$.
The objects of the model: subsets of positions in 「

$$
J=\left(j_{1}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\}
$$

For $w \in W$ and J, construct the chain $\pi(w, J)$ of elements in W :

$$
w_{0}=w, \quad \ldots, \quad w_{i}:=w r_{j_{1}} \ldots r_{j_{i}}, \quad \ldots, \quad w_{s}=\operatorname{end}(w, J)
$$

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$.
The objects of the model: subsets of positions in 「

$$
J=\left(j_{1}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\}
$$

For $w \in W$ and J, construct the chain $\pi(w, J)$ of elements in W :

$$
w_{0}=w, \quad \ldots, \quad w_{i}:=w r_{j_{1}} \ldots r_{j_{i}}, \quad \ldots, \quad w_{s}=\operatorname{end}(w, J)
$$

Important structures:

$$
\begin{aligned}
& \mathcal{A}_{q}(\Gamma, w):=\{J: \pi(w, J) \text { path in } \operatorname{QBG}(W)\}, \\
& \mathcal{A}_{\lessdot}(\Gamma, w):=\{J: \pi(w, J) \text { saturated chain in }(W,<)\} .
\end{aligned}
$$

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$.
The objects of the model: subsets of positions in 「

$$
J=\left(j_{1}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\}
$$

For $w \in W$ and J, construct the chain $\pi(w, J)$ of elements in W :

$$
w_{0}=w, \quad \ldots, \quad w_{i}:=w r_{j_{1}} \ldots r_{j_{i}}, \quad \ldots, \quad w_{s}=\operatorname{end}(w, J)
$$

Important structures:

$$
\begin{aligned}
& \mathcal{A}_{q}(\Gamma, w):=\{J: \pi(w, J) \text { path in } \operatorname{QBG}(W)\}, \\
& \mathcal{A}_{\lessdot}(\Gamma, w):=\{J: \pi(w, J) \text { saturated chain in }(W,<)\}
\end{aligned}
$$

Let $\mathcal{A}_{q}(\Gamma):=\mathcal{A}_{q}\left(\Gamma, 1_{W}\right)$ and $\mathcal{A}_{\lessdot}(\Gamma):=\mathcal{A}_{\lessdot}\left(\Gamma, 1_{W}\right)$.

Macdonald polynomials: the Ram-Yip formula

Given a dominant weight λ, consider a λ-chain $\Gamma:=\left(\beta_{1}, \ldots, \beta_{m}\right)$.

Macdonald polynomials: the Ram-Yip formula

Given a dominant weight λ, consider a λ-chain $\Gamma:=\left(\beta_{1}, \ldots, \beta_{m}\right)$.
Given $J \in \mathcal{A}_{q}(\Gamma)$, we associate with it

- a weight weight(J),

Macdonald polynomials: the Ram-Yip formula

Given a dominant weight λ, consider a λ-chain $\Gamma:=\left(\beta_{1}, \ldots, \beta_{m}\right)$.
Given $J \in \mathcal{A}_{q}(\Gamma)$, we associate with it

- a weight weight(J),
- a statistic height(J), which "measures" the down steps $w_{i-1}>w_{i}$ in the path $\pi(w, J)$ in $\operatorname{QBG}(W)$.

Macdonald polynomials: the Ram-Yip formula

Given a dominant weight λ, consider a λ-chain $\Gamma:=\left(\beta_{1}, \ldots, \beta_{m}\right)$.
Given $J \in \mathcal{A}_{q}(\Gamma)$, we associate with it

- a weight weight(J),
- a statistic height(J), which "measures" the down steps $w_{i-1}>w_{i}$ in the path $\pi(w, J)$ in $\operatorname{QBG}(W)$.

Theorem (Ram-Yip, L.)

$$
P_{\lambda}(X ; q, 0)=\sum_{J \in \mathcal{A}_{q}(\Gamma)} q^{\operatorname{height}(J)} x^{\operatorname{weight}(J)}
$$

Macdonald polynomials: the Ram-Yip formula

Given a dominant weight λ, consider a λ-chain $\Gamma:=\left(\beta_{1}, \ldots, \beta_{m}\right)$.
Given $J \in \mathcal{A}_{q}(\Gamma)$, we associate with it

- a weight weight(J),
- a statistic height (J), which "measures" the down steps $w_{i-1}>w_{i}$ in the path $\pi(w, J)$ in $\operatorname{QBG}(W)$.

Theorem (Ram-Yip, L.)

$$
P_{\lambda}(X ; q, 0)=\sum_{J \in \mathcal{A}_{q}(\Gamma)} q^{\operatorname{height}(J)} x^{\operatorname{weight}(J)}
$$

Remark. For $q=0$, we retrieve the alcove model (L. and Postnikov, cf. Gaussent and Littelmann, Littelmann):

$$
P_{\lambda}(X ; 0,0)=\operatorname{ch}\left(V_{\lambda}\right)=\sum_{J \in \mathcal{A}_{\lessdot}(\Gamma)} x^{\operatorname{weight}(J)}
$$

$K(G / B)$ and $Q K(G / B)$: Chevalley formulas
Recall: $K(G / B)$ and $Q K(G / B)$ have bases of Schubert classes $\left[\mathcal{O}_{X_{w}}\right]=\left[\mathcal{O}_{w}\right], w \in W$.

$K(G / B)$ and $Q K(G / B)$: Chevalley formulas

Recall: $K(G / B)$ and $Q K(G / B)$ have bases of Schubert classes $\left[\mathcal{O}_{X_{w}}\right]=\left[\mathcal{O}_{w}\right], w \in W$.
Let $\Gamma_{\text {rev }}=$ reverse of an ω_{k}-chain (ω_{k} a fundamental weight).

$K(G / B)$ and $Q K(G / B)$: Chevalley formulas

Recall: $K(G / B)$ and $Q K(G / B)$ have bases of Schubert classes $\left[\mathcal{O}_{X_{w}}\right]=\left[\mathcal{O}_{w}\right], w \in W$.
Let $\Gamma_{\text {rev }}=$ reverse of an ω_{k}-chain (ω_{k} a fundamental weight).
Theorem (L.-Postnikov, L.-Shimozono)
In $K(G / B)$ (finite-type or Kac-Moody), we have

$$
\left[\mathcal{O}_{w}\right] \cdot\left[\mathcal{O}_{s_{k}}\right]=\sum_{J \in \mathcal{A}_{\lessdot}\left(\Gamma_{\mathrm{rev}}, w\right) \backslash\{\emptyset\}}(-1)^{|J|-1}\left[\mathcal{O}_{\mathrm{end}(w, J)}\right]
$$

$K(G / B)$ and $Q K(G / B)$: Chevalley formulas

Recall: $K(G / B)$ and $Q K(G / B)$ have bases of Schubert classes $\left[\mathcal{O}_{X_{w}}\right]=\left[\mathcal{O}_{w}\right], w \in W$.
Let $\Gamma_{\text {rev }}=$ reverse of an ω_{k}-chain (ω_{k} a fundamental weight).
Theorem (L.-Postnikov, L.-Shimozono)
In $K(G / B)$ (finite-type or Kac-Moody), we have

$$
\left[\mathcal{O}_{w}\right] \cdot\left[\mathcal{O}_{s_{k}}\right]=\sum_{J \in \mathcal{A}_{\varangle}\left(\Gamma_{\mathrm{rev}}, w\right) \backslash\{\emptyset\}}(-1)^{|J|-1}\left[\mathcal{O}_{\mathrm{end}(w, J)}\right]
$$

Conjecture (L.-Postnikov) In $Q K(G / B)$ (finite-type), we have:

$$
\left[\mathcal{O}_{w}\right] *\left[\mathcal{O}_{s_{k}}\right] \stackrel{?}{=} \sum_{J \in \mathcal{A}_{q}\left(\Gamma_{\mathrm{rev}}, w\right) \backslash\{\phi\}}(-1)^{|J|-1} q_{1}^{*} \ldots q_{r}^{*}\left[\mathcal{O}_{\mathrm{end}(w, J)}\right]
$$

Evidence for the conjectured formula in $Q K(G / B)$

(L.-Maeno) Based on some relations in $Q K\left(S L_{n} / B\right)$ discovered by Kirillov-Maeno, we constructed polynomials $\mathfrak{G}_{w}(x ; q)$, called quantum Grothendieck polynomials.

Evidence for the conjectured formula in $Q K(G / B)$

(L.-Maeno) Based on some relations in $Q K\left(S L_{n} / B\right)$ discovered by Kirillov-Maeno, we constructed polynomials $\mathfrak{G}_{w}(x ; q)$, called quantum Grothendieck polynomials.

- They multiply as in the conjectured Chevalley formula.

Evidence for the conjectured formula in $Q K(G / B)$

(L.-Maeno) Based on some relations in $Q K\left(S L_{n} / B\right)$ discovered by Kirillov-Maeno, we constructed polynomials $\mathfrak{G}_{w}(x ; q)$, called quantum Grothendieck polynomials.

- They multiply as in the conjectured Chevalley formula.
- They are conjectured to represent Schubert classes $\left[\mathcal{O}_{w}\right]$ in $Q K\left(S L_{n} / B\right)$.

Kirillov-Reshetikhin (KR) modules/crystals

Recall the KR modules, as modules for $U_{q}(\widehat{\mathfrak{g}}): W^{r, s}$ and

$$
W^{\otimes \mathbf{p}}=W^{p_{1}, 1} \otimes W^{p_{2}, 1} \otimes \ldots
$$

Kirillov-Reshetikhin (KR) modules/crystals

Recall the KR modules, as modules for $U_{q}(\widehat{\mathfrak{g}}): W^{r, s}$ and

$$
W^{\otimes \mathbf{p}}=W^{p_{1}, 1} \otimes W^{p_{2}, 1} \otimes \ldots
$$

Kashiwara (crystal) operators are modified versions of the
Chevalley generators (indexed by the simple roots): $\widetilde{f}_{0}, \ldots, \widetilde{f}_{r}$.

Kirillov-Reshetikhin (KR) modules/crystals

Recall the KR modules, as modules for $U_{q}(\widehat{\mathfrak{g}}): W^{r, s}$ and

$$
W^{\otimes \mathbf{p}}=W^{p_{1}, 1} \otimes W^{p_{2}, 1} \otimes \ldots
$$

Kashiwara (crystal) operators are modified versions of the Chevalley generators (indexed by the simple roots): $\widetilde{f}_{0}, \ldots, \widetilde{f}_{r}$.

Fact. $W^{\otimes \mathbf{p}}$ has a basis (crystal basis) $B=B^{\otimes \mathbf{p}}$ such that in the limit $q \rightarrow 0$ we have

$$
\widetilde{f}_{i}: B \rightarrow B \sqcup\{0\}, \quad \widetilde{f}_{i} b=b^{\prime} \Longleftrightarrow b \xrightarrow{i} b^{\prime}
$$

Kirillov-Reshetikhin (KR) modules/crystals

Recall the KR modules, as modules for $U_{q}(\widehat{\mathfrak{g}}): W^{r, s}$ and

$$
W^{\otimes \mathbf{p}}=W^{p_{1}, 1} \otimes W^{p_{2}, 1} \otimes \ldots
$$

Kashiwara (crystal) operators are modified versions of the Chevalley generators (indexed by the simple roots): $\widetilde{f}_{0}, \ldots, \widetilde{f}_{r}$.

Fact. $W^{\otimes \mathbf{p}}$ has a basis (crystal basis) $B=B^{\otimes \mathbf{p}}$ such that in the limit $q \rightarrow 0$ we have

$$
\widetilde{f}_{i}: B \rightarrow B \sqcup\{0\}, \quad \widetilde{f}_{i} b=b^{\prime} \Longleftrightarrow b \xrightarrow{i} b^{\prime}
$$

So $B^{\otimes \mathbf{p}}$ is a colored directed graph (connected).

Models for KR crystals

Fact. In the classical types $A-D$ there are tableau models (the usual column-strict fillings in type $A_{n-1}^{(1)}$, but more involved in the other types, particularly for $B_{n}^{(1)}$ and $D_{n}^{(1)}$).

Models for KR crystals

Fact. In the classical types $A-D$ there are tableau models (the usual column-strict fillings in type $A_{n-1}^{(1)}$, but more involved in the other types, particularly for $B_{n}^{(1)}$ and $D_{n}^{(1)}$).

Goal. Uniform model for all types $A_{n-1}^{(1)}-G_{2}^{(1)}$, based on the quantum alcove model.

The quantum alcove model for KR crystals

Given $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ and an arbitrary Lie type, let

$$
\lambda=\omega_{p_{1}}+\omega_{p_{2}}+\ldots
$$

The quantum alcove model for KR crystals

Given $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ and an arbitrary Lie type, let

$$
\lambda=\omega_{p_{1}}+\omega_{p_{2}}+\ldots
$$

Let Γ be a λ-chain, and consider $\mathcal{A}_{q}(\Gamma)$.

The quantum alcove model for KR crystals

Given $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ and an arbitrary Lie type, let

$$
\lambda=\omega_{p_{1}}+\omega_{p_{2}}+\ldots
$$

Let Γ be a λ-chain, and consider $\mathcal{A}_{q}(\Gamma)$.
Construction. (L. and Lubovsky, generalization of L.-Postnikov, Gaussent-Littelmann) Crystal operators $\widetilde{f}_{1}, \ldots, \widetilde{f}_{r}$ and \widetilde{f}_{0} on $\mathcal{A}_{q}(\Gamma)$.

The quantum alcove model for KR crystals

Given $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ and an arbitrary Lie type, let

$$
\lambda=\omega_{p_{1}}+\omega_{p_{2}}+\ldots
$$

Let Γ be a λ-chain, and consider $\mathcal{A}_{q}(\Gamma)$.
Construction. (L. and Lubovsky, generalization of L.-Postnikov, Gaussent-Littelmann) Crystal operators $\widetilde{f}_{1}, \ldots, \widetilde{f}_{r}$ and \widetilde{f}_{0} on $\mathcal{A}_{q}(\Gamma)$.

Main Theorem (L.-Naito-Sagaki-Schilling-Shimozono)
The (combinatorial) crystal $\mathcal{A}_{q}(\Gamma)$ is isomorphic to the tensor product of $K R$ crystals $B^{\otimes \mathbf{p}}$.

The energy function

It originates in the theory of exactly solvable lattice models.

The energy function

It originates in the theory of exactly solvable lattice models.
The energy function defines a grading on the classical components (no 0-arrows) of $B=B^{\otimes \boldsymbol{p}}$ (Schilling and Tingley).

The energy function

It originates in the theory of exactly solvable lattice models.
The energy function defines a grading on the classical components (no 0-arrows) of $B=B^{\otimes \boldsymbol{p}}$ (Schilling and Tingley).

More precisely, $D_{B}: B \rightarrow \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

- it is constant on classical components (0-arrows removed);

The energy function

It originates in the theory of exactly solvable lattice models.
The energy function defines a grading on the classical components (no 0-arrows) of $B=B^{\otimes \mathbf{p}}$ (Schilling and Tingley).

More precisely, $D_{B}: B \rightarrow \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

- it is constant on classical components (0-arrows removed);
- it decreases by 1 along certain 0 -arrows.

The energy function

It originates in the theory of exactly solvable lattice models.
The energy function defines a grading on the classical components (no 0-arrows) of $B=B^{\otimes \boldsymbol{p}}$ (Schilling and Tingley).

More precisely, $D_{B}: B \rightarrow \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

- it is constant on classical components (0-arrows removed);
- it decreases by 1 along certain 0 -arrows.

Goal. A more efficient uniform calculation, based only on the combinatorial data associated with a crystal vertex.

The energy via the quantum alcove model

Consider $J=\left\{j_{1}<j_{2}<\ldots<j_{s}\right\}$ in $\mathcal{A}_{q}(\Gamma)$ for $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, i.e., we have a path in the quantum Bruhat graph

$$
1_{W}=w_{0} \xrightarrow{\beta_{j_{1}}} w_{1} \xrightarrow{\beta_{j_{2}}} \ldots \xrightarrow{\beta_{j_{s}}} w_{s} .
$$

The energy via the quantum alcove model

Consider $J=\left\{j_{1}<j_{2}<\ldots<j_{s}\right\}$ in $\mathcal{A}_{q}(\Gamma)$ for $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, i.e., we have a path in the quantum Bruhat graph

$$
1_{W}=w_{0} \xrightarrow{\beta_{j_{1}}} w_{1} \xrightarrow{\beta_{j_{2}}} \ldots \xrightarrow{\beta_{j_{s}}} w_{s} .
$$

Recall that height (J) measures the down steps in the above path.

The energy via the quantum alcove model

Consider $J=\left\{j_{1}<j_{2}<\ldots<j_{s}\right\}$ in $\mathcal{A}_{q}(\Gamma)$ for $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, i.e., we have a path in the quantum Bruhat graph

$$
1_{W}=w_{0} \xrightarrow{\beta_{j_{1}}} w_{1} \xrightarrow{\beta_{j_{2}}} \ldots \xrightarrow{\beta_{j_{s}}} w_{s} .
$$

Recall that height (J) measures the down steps in the above path.

Theorem (L.-Naito-Sagaki-Schilling-Shimozono)
Given $J \in \mathcal{A}_{q}(\Gamma)$, which is identified with $B^{\otimes \mathbf{p}}$, we have

$$
D_{B}(J)=-\operatorname{height}(J)
$$

The combinatorial R-matrix via the quantum alcove model

This is the (unique) affine crystal isomorphism which commutes factors in the tensor product of KR crystals $B^{\otimes \mathbf{p}}$

The combinatorial R-matrix via the quantum alcove model

This is the (unique) affine crystal isomorphism which commutes factors in the tensor product of KR crystals $B^{\otimes \mathbf{p}}$ (the swap $a \otimes b \mapsto b \otimes a$ is not a crystal isomorphism!).

The combinatorial R-matrix via the quantum alcove model

This is the (unique) affine crystal isomorphism which commutes factors in the tensor product of KR crystals $B^{\otimes \mathbf{p}}$ (the swap $a \otimes b \mapsto b \otimes a$ is not a crystal isomorphism!).

Theorem (L.-Lubovsky)
We give a uniform realization, based on the quantum alcove model, of the combinatorial R-matrix.

Example in type A_{2}.

$$
\mathbf{p}=(1,2,2,1)=\begin{array}{|}
\square & \square & \square=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}=(4,2,0) .
\end{array}
$$

Example in type A_{2}.

$\mathbf{p}=(1,2,2,1)=$| \square | |
| :---: | :---: |
| \square | \square |,$\lambda=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}=(4,2,0)$.

A λ-chain as a concatenation of $\omega_{1^{-}}, \omega_{2^{-}}, \omega_{2^{-}}$, and $\omega_{1^{-}}$-chains:

$$
\Gamma=((1,2),(1,3)|(2,3),(1,3)|(2,3),(1,3) \mid(1,2),(1,3)) .
$$

Example. Let $J=\{1,2,3,6,7,8\}$. $(\underline{(1,2)}, \underline{(1,3)}|\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)} \mid \underline{(1,2)}, \underline{(1,3)})$.

Example. Let $J=\{1,2,3,6,7,8\}$.
$(\underline{(1,2)}, \underline{(1,3)}|\underline{(2,3)},(1,3)|$
$(2,3), \underline{(1,3)} \mid \underline{(1,2)}$
$(1,3)$).

Claim: J is admissible. Indeed, the corresponding path in the quantum Bruhat graph is

Example. Let $J=\{1,2,3,6,7,8\}$.
$((1,2),(1,3)|(2,3),(1,3)|$
$(2,3)$
$(1,3) \mid$
$(1,2),(1,3))$.

Claim: J is admissible. Indeed, the corresponding path in the quantum Bruhat graph is

The corresponding element in $B^{\otimes \mathbf{p}}=B^{1,1} \otimes B^{2,1} \otimes B^{2,1} \otimes B^{1,1}$ represented via column-strict fillings:

$$
3 \otimes \frac{2}{3} \otimes \frac{1}{2} \otimes 3 .
$$

The energy calculation

Example. Consider the running example: $\lambda=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}$ in type A_{2}.

The energy calculation

Example. Consider the running example: $\lambda=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}$ in type A_{2}.
We considered the λ-chain Γ and $J=\{1,2,3,6,7,8\} \in \mathcal{A}(\Gamma)$:

$$
\begin{aligned}
& \Gamma=(\underline{(1,2)}, \underline{(1,3)}|\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)} \mid \underline{(1,2)}, \underline{(1,3)}), \\
& \left(h_{i}\right)=\left(\begin{array}{lllllllll}
2, & 4 & 2, & 3 & 1, & 2 & 1, & 1
\end{array}\right) .
\end{aligned}
$$

The energy calculation

Example. Consider the running example: $\lambda=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}$ in type A_{2}.
We considered the λ-chain Γ and $J=\{1,2,3,6,7,8\} \in \mathcal{A}(\Gamma)$:

$$
\begin{aligned}
& \Gamma=(\underline{(1,2)}, \underline{(1,3)}|\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)} \mid \underline{(1,2)}, \underline{(1,3)}), \\
& \left(h_{i}\right)=\left(\begin{array}{lllllllll}
2, & 4 & 2, & 3 & 1, & 2 & 1, & 1
\end{array}\right) .
\end{aligned}
$$

We have

$$
\operatorname{height}(J)=2
$$

