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Minimizer of the area functional

Q c R" bounded domain, ¢ € C°(99).

Classical problem: Find a function u: Q2 — R whose graph
G, = {(x,u(x)) tXE€ Q}
has minimal area

Area(G,) = Aq(u) = fQ 1+ [Vul dx.
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Minimizer of the area functional

Q) c R" bounded domain, ¢ € C°(99).

Classical problem: Find a function u: 2 — R whose graph
G, = {(x,u(x)) (X € Q}
has minimal area

Area(G,) =Aq(u) = fQ 1 +|Vul*dx.

= Find a minimizer u of the area functional Aq, i.e.

Aa(u) <Ag(u+mn)  V¥neC'(Q),sptncc
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Aq(u) <Aq(u+en) Ve eR.
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Minimal surface equation

In the minimality condition replace 7 by en:
Aq(u) <Aq(u+en) Ve eR.

= First variation of Aq:
Aq(wsen) - f Vu-vi f ( ) "
Q4\/1+ |Vu|2 1+ |Vu|2

Non parametric minimal surface equation: For given o € C%(99)
find u € C2(2) n C°(Q) with

d
0=—
de e=0

dlv\/mzo in Q,
U= on 0f2.



Minimization of the area functional

» Existence of solutions in general not so easy



Minimization of the area functional

» Existence of solutions in general not so easy

» Approach by Haar (Math. Ann., 1927): existence of
Lipschitz minima if 92 and ¢ satisfy the bounded slope
condition



Solution of the gradient constrained problem

u: ) - R is Lipschitz continuous in Q: There exists L > 0 s.t.
u(x) —u()| <Lix-y[  Vx,ye

Lip(u): smallest possible constant L.

Define

Lip(Q;¢) := {u e C°(Q) : u bounded, Lipschitz cont. in ©, u|sq = cp},

Lipg(€; ) := {u € Lip(Q; ) : Lip(u) < R}



Solution of the gradient constrained problem

u: ) - R is Lipschitz continuous in Q: There exists L > 0 s.t.
u(x) —u()| <Lix-y[  Vx,ye

Lip(u): smallest possible constant L.

Define

Lip(Q;¢) := {u e C°(Q) : u bounded, Lipschitz cont. in ©, u|sq = cp},

Lipg(€; ) := {u € Lip(Q; ) : Lip(u) < R}

Theorem. There exists a unique minimum ug of A in the class
Lipp(€; ).
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The bounded slope condition

Problem: remove the constraint Lip(ug) < R

Idea of Haar: find a geometric constraint on €2, ¢ such that
Lip(ug) < Q for any R > 0, with some constant 0 < Q < oo.

Definition. (2, ¢ satisfy the bounded slope condition (bsc) with
constant 0 < Q < oo if for any x, € 952 there exist two affine
functions w; such that

i) W;,,(XO) = o(x,)
i) we (x) <p(x) <wy (x) VxedQ,
i) |[vwi|<Q
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The bounded slope condition

» bsc = 2 is convex

» Q uniformly convex C'!-
domain:
bsc < ¢ is CH! on 90




The existence result of Haar

Theorem. Let Q2 c R” convex and bounded, ¢: 92 — R Lipschitz
continuous and (€2, ) satisfy the bsc with constant Q < co.
Then, for any R > Q the function uy satisfies Lip(ug) < Q.
Therefore, it is the unique minimum of Aq in Lip(€2; ¢).



The existence result of Haar

Theorem. Let Q2 c R” convex and bounded, ¢: 92 — R Lipschitz
continuous and (€2, ) satisfy the bsc with constant Q < co.
Then, for any R > Q the function uy satisfies Lip(ug) < Q.
Therefore, it is the unique minimum of Aq in Lip(€2; ¢).

Remark. The same result holds true for variational functionals
F(u)s= [ f(Du)ds,

with f:R" — R strictly convex.



Parabolic problem

Is there a similar existence result for parabolic equations?

—_di Vu - i .=
Ou — div N 0 in Qr:=Qx(0,T),
U=, on 9pQr := (2 x {0}) N (99 x (0,T)),

with u, € Lip(€; ¢)




Parabolic problem

Is there a similar existence result for parabolic equations?

—_di Vu - i .=
Ou — div N 0 in Qr:=Qx(0,T),
U=, on 9pQr := (2 x {0}) N (99 x (0,T)),

with u, € Lip(Q2; ¢), or more generally 2
{ Ou—divDf(Du) =0 in Qrp, Q

u=1u, on 9pQ)r.




Variational inequality

Multiply both sides of the diff. eq. by v — u, integrate over Qr:

[[Qr Ou(v — u) dxdt — foT div Df (Du)(v — u) dxdt = 0.

=] =1




Variational inequality

Multiply both sides of the diff. eq. by v — u, integrate over Qr:

[[Qr Ou(v — u) dxdt — foT div Df (Du)(v — u) dxdt = 0.

=] =1

For the time term compute

T
I:[[ @v(v—u)dxdt—%f /8t|v—u|2dxdt
Qr 0 Q

- ffg O (v —u) dxdt = 3 [v(T) = u(T) 720y + 319(0) = tto 72y
T



Variational inequality

Multiply both sides of the diff. eq. by v — u, integrate over Qr:

[[Qr Ou(v — u) dxdt — [[Qr div Df (Du)(v — u) dxdt = 0.

=] =1

For the time term compute

I:[[Q Ov(v — u) dxd —%_[OT[Q@,|V_M|2dxdt

- ffg O (v —u) dxdt = 3 [v(T) = u(T) 720y + 319(0) = tto 72y
T
Integration by parts and convexity of f:

I - ffﬂ Df(Du)- D(v - u)d < ffg [r(ov) ~f(Dw)] d



Variational inequality

[/S;Tf(Du) dxdt < [fQT [&v(v —u) +f(Dv)] dxdt

- 19(0) = o2 = 2IV(T) = (T B

for any v:Qr — R with v = u, on 922 x (0, T).



Variational inequality

[/S;Tf(Du) dxdt < [[Qr [&v(v —u) +f(Dv)] dxdt

- 19(0) = o2 = 2IV(T) = (T B

for any v:Qr — R with v = u, on 922 x (0, T).

Function spaces: Since Lip(Q) = W (Q2), we consider
K(Qr) = {veL*(Qr) n C°([0,T];L*(2)) : Dv € L™ (27, R") }
and
K., (Qr) = {veK(Qr) : v(t) =u, on 9Q for a.e. t € (0,T)}

and
K (Qr) = {ve Ky, () : |Dv] 1 < R}



Existence of variational solutions

Definition. Let u, ¢ W'>(Q). A function u € K, (Qr) is a
variational solution if

]fQTf(Du) dxdt < /fQT [8,v(v —u) +f(Du)] dxdt

+31v(0) = o2y = 3 I(T) = u(T) |2

holds true for any v € K,,, (Q7) with d,v € L*(Q7).



Existence of variational solutions

Definition. Let u, ¢ W'>(Q). A function u € K, (Qr) is a
variational solution if

]fQTf(Du) dxdt < /]QT [&v(v —u) +f(Du)] dxdt

+31v(0) = o2y = 3 I(T) = u(T) |2

holds true for any v € K,,, (Q7) with d,v € L*(Q7).

Theorem (B., Duzaar, Marcellini, Signoriello). Let /:R" - R
be convex, u, € WH*(Q), (u,]s0,?) satisfy the bsc with some
constant Q > 0. Then, there exists a unique variational solution
u with

| Dull o (0 ey < max {Q, | Duy | (07 ) }-



Existence of variational solutions

» Contrary to the elliptic case, uniqueness is guarantied even
if £ is (not uniformly) convex.



Existence of variational solutions

» Contrary to the elliptic case, uniqueness is guarantied even
if £ is (not uniformly) convex.

» Possible integrands:
» Areaintegrand: f(&) = /1 + %
> Integrands with exponential growth: £(¢) = exp(|¢[*);
» Orlicz type functionals: 1 (&) = |€|log(1 + [€]).



Idea of the proof

» Solve the constrained problem: For R > 0 there exists a
function ug € KLSOR)(QT) satisfying the varaitional inequality

/]QTf(Du)dxdt < f/f‘lr [(‘3,v(v —u) +f(Du)] dxdt

= 3I(T) = u(T) 720 + 319(0) = o720

for any v € K (Qr) with 9,v € L2(Q7).



Idea of the proof

» Solve the constrained problem: For R > 0 there exists a
function ug € KLSOR)(QT) satisfying the varaitional inequality

/]QTf(Du)dxdt < f/f‘lr [(‘3,v(v —u) +f(Du)] dxdt

= 5T = u(D)F2 ) + 319(0) = o] 720
for any v € K (Qr) with 9,v € L2(Q7).

» Remove the constraint: For R > Q prove that |Dug|;~ < Q.
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Solve the constrained problem

» Consider on Q7 c R™*! the convex variational integral
F.(v) = fo et [Lon + LF(Dv)] ddr.
T

» Existence of a minimizer »° in the class K,Ef)(QT) with
o € L*(Q7), u?(0) = u,



Solve the constrained problem
» Consider on Q7 c R™*! the convex variational integral

F.(v):= /[QT e_é[%|8tv|2 + éf(Dv)] dxdt.

» Existence of a minimizer »° in the class K,Ef)(QT) with
o € L*(Q7), u?(0) = u,
» Formally compute first variation
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Solve the constrained problem
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Solve the constrained problem

» Consider on Q7 c R™*! the convex variational integral

F.(v):= foT e_é[%|8tv|2 + éf(Dv)] dxdt.

v

Existence of a minimizer «° in the class K,Ef)(QT) with
o € L*(Q7), u?(0) = u,
Formally compute first variation

v

d
0=—

p Fe(u5+sg0)=f/9 e_é[a,,ue—é@uﬁ%diva(sz)]gpdxdt
s r

s=0

v

u® formally solves the differential equation

e0uu® — Ou® +divDf(Du®) =0

v

Heuristically, u* should converge in the limits | 0to a
solution ug of the parabolic pde.



Solve the constrained problem

» Consider on Q7 c R™*! the convex variational integral
Fo(v) = fo et [Lon + LF(Dv)] ddr.
T

» Existence of a minimizer »° in the class K,Ef)(QT) with
o € L*(Q7), u?(0) = u,
» Formally compute first variation
d

0=—
ds

F.(u+sp) = [/QT e_é[a,,ue—é@uﬁ%diva(sz)]gpdxdt
s=0

» u® formally solves the differential equation
e0uu® — Ou® +divDf(Du®) =0

» Heuristically, «* should converge in the limite | 0to a
solution ug of the parabolic pde.

» Rigorous proof on the level of variational solutions



Remove the constraint |Dug| < R

» Affine functions w are variational solutions with initial-
boundary data u, = w.
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Remove the constraint |Dug| < R

» Affine functions w are variational solutions with initial-
boundary data u, = w.

» For x, € 0Q take w; from the bsc, so that w;, <u, <w} inQ

» Maximum principle:

wy (x) <ug(x) <wj (x) VxeQ

:>|MR(X)—MO()C0)|SQ|X—XO| VxeQ,x, €00



Remove the constraint [Dug| < R
» So far, we know
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Remove the constraint |Dug| < R
» So far, we know
lug (x) — uo(x,)| < Olx — x| VxeQ,x, €0
» Consider x,x € Q, let y := x — x and define
vr(x) = up(x—y) forxeQ:=y+Q

Q_‘

e ~ 2= K-x1e 2
e ‘
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Remove the constraint |Dug| < R
» So far, we know
lug (x) — uo(x,)| < Olx — x| VxeQ,x, €0
» Consider x,x € Q, let y := x — x and define
vr(x) = up(x—y) forxeQ:=y+Q

Q_‘

e ~ 2= K-x1e 2
\
e :
/

o -

» Maximum principle: there exists x, € (2 n Q) such that

|ug (%) — vR(X)| < ur(xo) = VR (%0)| = |ur(xo) — ur(xo — y)|



Remove the constraint |Dug| < R
» So far, we know

|MR(X)—M0()C0)|SQ|X—XO| Vxe,x, €08
» Consider x,x € Q, let y := x — x and define
vr(x) = up(x—y) forxeQ:=y+Q

Q_‘

e TS Es K-
\
e :
/

o -

» Maximum principle: there exists x, € (2 n Q) such that
|ug (X) = vr(¥)| < [ur(x0) = vR(x0)| = [ur(x0) — ur(xo = )|
» Either x, € 9Q or x, —y € 0X2; moreover vg(x) = ug(x)

= [ur(X) —ur(x)| < Q¥ -x| = Lip(ug) < Q.
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The total variation flow

Initial-boundary value preoblem for the total variation flow

{ du~div(2)=0 inQy,

U=u, on 8}397‘.

Existence results by Andreu, Ballester, Caselles, Mazoén.

Variational inequality:
[f |Du| dxdt < ]] [0v(v — u) + |Dv|] dxdt
QT QT
= 3Iv(T) —u(T) ”%,Z(Q) + 5[v(0) - MOHiZ(Q)

for any (sufficiently regular) comparison function v: Q7 — R with
v = u, on the lateral boundary 9 x (0,T).



The total variation flow
Initial-boundary value preoblem for the total variation flow

{ du~div(2)=0 inQy,

U=u, on 8}397‘.

Existence results by Andreu, Ballester, Caselles, Mazoén.

Variational inequality:

foT |Du| dxdt < ]]ﬂr [&v(v —u)+ ]Dv]] ddrt

- %HV(T) —u(T) ”%,Z(Q) + %”V(O) - MOHiZ(Q)

for any (sufficiently regular) comparison function v: Q7 — R with
v = u, on the lateral boundary 9 x (0,T).

Rigorous formulation: repalce |Du| by total variation || Du(z)| ().



Existence of variational solutions to the obstacle
problem for the total variation flow

Theorem (B., Duzaar, Scheven).
» Assume that

Y e L*(Qr)nLl.(0,T;BV,, ().

Then, there exists a variational solution « of the obstacle
problem to the total variation flow with u > v a.e. in Q7.



Existence of variational solutions to the obstacle
problem for the total variation flow

Theorem (B., Duzaar, Scheven).
» Assume that

Y e L*(Qr)nLl.(0,T;BV,, ().
Then, there exists a variational solution « of the obstacle
problem to the total variation flow with u > v a.e. in Q7.

» Assume that ¢ is upper semicontinuous. Then, there exists
a (generalized) variational solution « of the obstacle
problem to the total variation flow with u(r) > ¢ () at least
outside a set of Hausdorff-dimension < n - 1 for a.e.
te(0,7T).



