Parabolic equations and the bounded slope condition

Verena Bögelein

Fachbereich Mathematik Paris-Lodron Universität Salzburg

Minimizer of the area functional

 $\Omega \subset \mathbb{R}^n$ bounded domain, $\varphi \in C^0(\partial \Omega)$.

Classical problem: Find a function $u: \Omega \to \mathbb{R}$ whose graph

$$G_u \coloneqq \big\{ \big(x, u(x) \big) : x \in \Omega \big\}$$

has minimal area

Area
$$(G_u) = A_{\Omega}(u) := \int_{\Omega} \sqrt{1 + |\nabla u|^2} dx$$
.

Experiments with soap films

picture from Homepage of F. Duzaar (Erlangen)

Experiments with soap films

picture from Homepage of F. Duzaar (Erlangen)

Minimizer of the area functional

 $\Omega \subset \mathbb{R}^n$ bounded domain, $\varphi \in C^0(\partial \Omega)$.

Classical problem: Find a function $u: \Omega \to \mathbb{R}$ whose graph

$$G_u \coloneqq \big\{ \big(x, u(x) \big) : x \in \Omega \big\}$$

has minimal area

Area
$$(G_u) = A_{\Omega}(u) := \int_{\Omega} \sqrt{1 + |\nabla u|^2} dx.$$

 \Rightarrow Find a minimizer u of the area functional A_{Ω} , i.e.

$$A_{\Omega}(u) \le A_{\Omega}(u+\eta)$$
 $\forall \eta \in C^{1}(\Omega), \text{ spt } \eta \subset \Omega$

Minimizer of the area functional

 $\Omega \subset \mathbb{R}^n$ bounded domain, $\varphi \in C^0(\partial \Omega)$.

Classical problem: Find a function $u: \Omega \to \mathbb{R}$ whose graph

$$G_u := \{(x, u(x)) : x \in \Omega\}$$

has minimal area

Area
$$(G_u) = A_{\Omega}(u) := \int_{\Omega} \sqrt{1 + |\nabla u|^2} dx.$$

 \Rightarrow Find a minimizer u of the area functional A_{Ω} , i.e.

$$A_{\Omega}(u) \leq A_{\Omega}(u+\eta) \qquad \forall \eta \in C^{1}(\Omega), \text{ spt } \eta \subset \Omega$$

Minimal surface equation

In the minimality condition replace η by $\varepsilon\eta$:

$$A_{\Omega}(u) \leq A_{\Omega}(u + \varepsilon \eta) \qquad \forall \varepsilon \in \mathbb{R}.$$

 \Rightarrow First variation of A_{Ω} :

$$0 = \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} A_{\Omega}(u + \varepsilon \eta) = \int_{\Omega} \frac{\nabla u \cdot \nabla \eta}{\sqrt{1 + |\nabla u|^2}} dx = -\int_{\Omega} \operatorname{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) \eta dx$$

Non parametric minimal surface equation: For given $\varphi \in C^0(\partial \Omega)$ find $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ with

$$\begin{cases} \operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} = 0 & \text{in } \Omega, \\ u = \varphi & \text{on } \partial \Omega \end{cases}$$

Minimal surface equation

In the minimality condition replace η by $\varepsilon \eta$:

$$A_{\Omega}(u) \le A_{\Omega}(u + \varepsilon \eta) \qquad \forall \varepsilon \in \mathbb{R}.$$

 \Rightarrow First variation of A_{Ω} :

$$0 = \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} A_{\Omega}(u + \varepsilon \eta) = \int_{\Omega} \frac{\nabla u \cdot \nabla \eta}{\sqrt{1 + |\nabla u|^2}} dx = -\int_{\Omega} \operatorname{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) \eta dx$$

Non parametric minimal surface equation: For given $\varphi \in C^0(\partial \Omega)$ find $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ with

$$\begin{cases} \operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} = 0 & \text{in } \Omega, \\ u = \varphi & \text{on } \partial \Omega \end{cases}$$

Minimal surface equation

In the minimality condition replace η by $\varepsilon \eta$:

$$A_{\Omega}(u) \leq A_{\Omega}(u + \varepsilon \eta) \qquad \forall \varepsilon \in \mathbb{R}.$$

 \Rightarrow First variation of A_{Ω} :

$$0 = \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} A_{\Omega}(u + \varepsilon \eta) = \int_{\Omega} \frac{\nabla u \cdot \nabla \eta}{\sqrt{1 + |\nabla u|^2}} dx = -\int_{\Omega} \operatorname{div} \left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) \eta dx$$

Non parametric minimal surface equation: For given $\varphi \in C^0(\partial\Omega)$ find $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ with

$$\begin{cases} \operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} = 0 & \text{in } \Omega, \\ u = \varphi & \text{on } \partial \Omega. \end{cases}$$

Minimization of the area functional

- Existence of solutions in general not so easy
- Approach by Haar (Math. Ann., 1927): existence of Lipschitz minima if $\partial\Omega$ and φ satisfy the bounded slope condition

Minimization of the area functional

- Existence of solutions in general not so easy
- Approach by Haar (Math. Ann., 1927): existence of Lipschitz minima if $\partial\Omega$ and φ satisfy the bounded slope condition

Solution of the gradient constrained problem

 $u:\Omega\to\mathbb{R}$ is Lipschitz continuous in Ω : There exists L>0 s.t.

$$|u(x) - u(y)| \le L|x - y| \quad \forall x, y \in \Omega;$$

Lip(u): smallest possible constant L.

Define

$$\operatorname{Lip}(\Omega;\varphi)\coloneqq \big\{u\in C^0(\overline{\Omega}): u \text{ bounded, Lipschitz cont. in }\Omega, \ u|_{\partial\Omega}=\varphi\big\},$$

$$\operatorname{Lip}_R(\Omega;\varphi)\coloneqq \big\{u\in\operatorname{Lip}(\Omega;\varphi):\operatorname{Lip}(u)\leq R\big\}$$

Theorem. There exists a unique minimum u_R of A_{Ω} in the class $\operatorname{Lip}_R(\Omega;\varphi)$.

Solution of the gradient constrained problem

 $u: \Omega \to \mathbb{R}$ is Lipschitz continuous in Ω : There exists L > 0 s.t.

$$|u(x) - u(y)| \le L|x - y| \quad \forall x, y \in \Omega;$$

Lip(u): smallest possible constant L.

Define

$$\operatorname{Lip}(\Omega;\varphi)\coloneqq \big\{u\in C^0(\overline{\Omega}): u \text{ bounded, Lipschitz cont. in }\Omega, \ u|_{\partial\Omega}=\varphi\big\},$$

$$\operatorname{Lip}_R(\Omega;\varphi)\coloneqq \big\{u\in\operatorname{Lip}(\Omega;\varphi):\operatorname{Lip}(u)\leq R\big\}$$

Theorem. There exists a unique minimum u_R of A_{Ω} in the class $\mathrm{Lip}_R(\Omega;\varphi)$.

Problem: remove the constraint $Lip(u_R) \le R$

Idea of Haar: find a geometric constraint on Ω , φ such that $\operatorname{Lip}(u_R) \leq Q$ for any R > 0, with some constant $0 < Q < \infty$.

Definition. Ω , φ satisfy the bounded slope condition (bsc) with constant $0 < Q < \infty$ if for any $x_o \in \partial \Omega$ there exist two affine functions $w_{x_o}^{\pm}$ such that

- i) $W_{x_o}^{\pm}(x_o) = \varphi(x_o)$
- ii) $w_{x_o}^-(x) \le \varphi(x) \le w_{x_o}^+(x) \quad \forall x \in \partial \Omega,$
- iii) $\left| \nabla w_{\chi_o}^{\pm} \right| \leq Q$

Problem: remove the constraint $Lip(u_R) \le R$

Idea of Haar: find a geometric constraint on Ω , φ such that $\operatorname{Lip}(u_R) \leq Q$ for any R > 0, with some constant $0 < Q < \infty$.

Definition. Ω , φ satisfy the bounded slope condition (bsc) with constant $0 < Q < \infty$ if for any $x_o \in \partial \Omega$ there exist two affine functions $w_{x_o}^{\pm}$ such that

- i) $W_{x_o}^{\pm}(x_o) = \varphi(x_o)$
- ii) $w_{x_o}^-(x) \le \varphi(x) \le w_{x_o}^+(x) \quad \forall x \in \partial \Omega,$
- iii) $\left| \nabla w_{x_o}^{\pm} \right| \leq Q$

Problem: remove the constraint $Lip(u_R) \le R$

Idea of Haar: find a geometric constraint on Ω , φ such that $\operatorname{Lip}(u_R) \leq Q$ for any R > 0, with some constant $0 < Q < \infty$.

Definition. Ω , φ satisfy the bounded slope condition (bsc) with constant $0 < Q < \infty$ if for any $x_o \in \partial \Omega$ there exist two affine functions $w_{x_o}^{\pm}$ such that

- i) $w_{x_o}^{\pm}(x_o) = \varphi(x_o)$
- ii) $w_{x_o}^-(x) \le \varphi(x) \le w_{x_o}^+(x) \quad \forall x \in \partial \Omega$,
- iii) $|\nabla w_{x_o}^{\pm}| \leq Q$

- bsc $\Rightarrow \Omega$ is convex
- Ω uniformly convex $C^{1,1}$ domain:

- bsc $\Rightarrow \Omega$ is convex
- Ω uniformly convex $C^{1,1}$ domain:

- bsc $\Rightarrow \Omega$ is convex
- Ω uniformly convex $C^{1,1}$ domain:
 bsc $\Leftrightarrow \varphi$ is $C^{1,1}$ on $\partial\Omega$

The existence result of Haar

Theorem. Let $\Omega \subset \mathbb{R}^n$ convex and bounded, $\varphi \colon \partial \Omega \to \mathbb{R}$ Lipschitz continuous and (Ω, φ) satisfy the bsc with constant $Q < \infty$. Then, for any R > Q the function u_R satisfies $\operatorname{Lip}(u_R) \leq Q$. Therefore, it is the unique minimum of A_Ω in $\operatorname{Lip}(\Omega; \varphi)$.

Remark. The same result holds true for variational functionals

$$F(u) \coloneqq \int_{\Omega} f(Du) \, dx,$$

with $f: \mathbb{R}^n \to \mathbb{R}$ strictly convex.

The existence result of Haar

Theorem. Let $\Omega \subset \mathbb{R}^n$ convex and bounded, $\varphi \colon \partial \Omega \to \mathbb{R}$ Lipschitz continuous and (Ω, φ) satisfy the bsc with constant $Q < \infty$. Then, for any R > Q the function u_R satisfies $\operatorname{Lip}(u_R) \leq Q$. Therefore, it is the unique minimum of A_Ω in $\operatorname{Lip}(\Omega; \varphi)$.

Remark. The same result holds true for variational functionals

$$F(u) \coloneqq \int_{\Omega} f(Du) \, dx,$$

with $f: \mathbb{R}^n \to \mathbb{R}$ strictly convex.

Parabolic problem

Is there a similar existence result for parabolic equations?

$$\begin{cases} \partial_t u - \operatorname{div} \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} = 0 & \text{in } \Omega_T \coloneqq \Omega \times (0, T), \\ u = u_o & \text{on } \partial_P \Omega_T \coloneqq (\overline{\Omega} \times \{0\}) \cap (\partial \Omega \times (0, T)), \end{cases}$$

with $u_o \in \text{Lip}(\Omega; \varphi)$, or more generally

$$\begin{cases} \partial_t u - \operatorname{div} Df(Du) = 0 & \text{in } \Omega_T, \\ u = u_o & \text{on } \partial_P \Omega_T \end{cases}$$

Parabolic problem

Is there a similar existence result for parabolic equations?

$$\left\{ \begin{array}{ll} \partial_t u - \operatorname{div} \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} = 0 & \text{in } \Omega_T \coloneqq \Omega \times (0, T), \\ u = u_o & \text{on } \partial_P \Omega_T \coloneqq (\overline{\Omega} \times \{0\}) \cap (\partial \Omega \times (0, T)), \end{array} \right.$$

with $u_o \in \text{Lip}(\Omega; \varphi)$, or more generally

$$\begin{cases} \partial_t u - \operatorname{div} Df(Du) = 0 & \text{in } \Omega_T, \\ u = u_o & \text{on } \partial_P \Omega_T. \end{cases}$$

Multiply both sides of the diff. eq. by v - u, integrate over Ω_T :

$$\underbrace{\iint_{\Omega_T} \partial_t u(v-u) \, dx dt}_{=:I} - \underbrace{\iint_{\Omega_T} \operatorname{div} Df(Du)(v-u) \, dx dt}_{=:II} = 0.$$

For the time term compute

$$I = \iint_{\Omega_T} \partial_t v(v - u) \, dx dt - \frac{1}{2} \int_0^T \int_{\Omega} \partial_t |v - u|^2 \, dx dt$$

=
$$\iint_{\Omega_T} \partial_t v(v - u) \, dx dt - \frac{1}{2} ||v(T) - u(T)||_{L^2(\Omega)}^2 + \frac{1}{2} ||v(0) - u_o||_{L^2(\Omega)}^2.$$

Integration by parts and convexity of f:

$$-II = \iint_{\Omega_T} Df(Du) \cdot D(v - u) \, dxdt \le \iint_{\Omega_T} [f(Dv) - f(Du)] \, dxdt.$$

Multiply both sides of the diff. eq. by v - u, integrate over Ω_T :

$$\underbrace{\iint_{\Omega_T} \partial_t u(v-u) \, dx dt}_{=:I} - \underbrace{\iint_{\Omega_T} \operatorname{div} Df(Du)(v-u) \, dx dt}_{=:II} = 0.$$

For the time term compute

$$I = \iint_{\Omega_T} \partial_t v(v - u) \, dx dt - \frac{1}{2} \int_0^T \int_{\Omega} \partial_t |v - u|^2 \, dx dt$$

=
$$\iint_{\Omega_T} \partial_t v(v - u) \, dx dt - \frac{1}{2} ||v(T) - u(T)||_{L^2(\Omega)}^2 + \frac{1}{2} ||v(0) - u_o||_{L^2(\Omega)}^2.$$

Integration by parts and convexity of f:

$$-II = \iint_{\Omega_T} Df(Du) \cdot D(v - u) \, dxdt \le \iint_{\Omega_T} [f(Dv) - f(Du)] \, dxdt.$$

Multiply both sides of the diff. eq. by v - u, integrate over Ω_T :

$$\underbrace{\iint_{\Omega_T} \partial_t u(v-u) \, dx dt}_{=:I} - \underbrace{\iint_{\Omega_T} \operatorname{div} Df(Du)(v-u) \, dx dt}_{=:II} = 0.$$

For the time term compute

$$\begin{split} I &= \iint_{\Omega_T} \partial_t v(v-u) \, dx dt - \tfrac{1}{2} \int_0^T \int_{\Omega} \partial_t |v-u|^2 \, dx dt \\ &= \iint_{\Omega_T} \partial_t v(v-u) \, dx dt - \tfrac{1}{2} \|v(T) - u(T)\|_{L^2(\Omega)}^2 + \tfrac{1}{2} \|v(0) - u_o\|_{L^2(\Omega)}^2. \end{split}$$

Integration by parts and convexity of f:

$$-II = \iint_{\Omega_T} Df(Du) \cdot D(v - u) \, dx dt \le \iint_{\Omega_T} \left[f(Dv) - f(Du) \right] dx dt.$$

$$\iint_{\Omega_{T}} f(Du) \, dx dt \leq \iint_{\Omega_{T}} \left[\partial_{t} v(v - u) + f(Dv) \right] dx dt
+ \frac{1}{2} \| v(0) - u_{o} \|_{L^{2}(\Omega)}^{2} - \frac{1}{2} \| v(T) - u(T) \|_{L^{2}(\Omega)}^{2}$$

for any $v: \Omega_T \to \mathbb{R}$ with $v = u_o$ on $\partial \Omega \times (0, T)$.

Function spaces: Since $\operatorname{Lip}(\Omega) \cong W^{1,\infty}(\Omega)$, we consider

$$K(\Omega_T) := \left\{ v \in L^{\infty}(\Omega_T) \cap C^0([0,T]; L^2(\Omega)) : Dv \in L^{\infty}(\Omega_T, \mathbb{R}^n) \right\}$$

and

$$K_{u_o}(\Omega_T) := \{ v \in K(\Omega_T) : v(t) = u_o \text{ on } \partial\Omega \text{ for a.e. } t \in (0,T) \}$$

and

$$K_{u_o}^{(R)}(\Omega_T) := \left\{ v \in K_{u_o}(\Omega_T) : \|Dv\|_{L^{\infty}} \le R \right\}$$

$$\iint_{\Omega_{T}} f(Du) \, dx dt \leq \iint_{\Omega_{T}} \left[\partial_{t} v(v - u) + f(Dv) \right] dx dt
+ \frac{1}{2} \| v(0) - u_{o} \|_{L^{2}(\Omega)}^{2} - \frac{1}{2} \| v(T) - u(T) \|_{L^{2}(\Omega)}^{2}$$

for any $v: \Omega_T \to \mathbb{R}$ with $v = u_o$ on $\partial \Omega \times (0, T)$.

Function spaces: Since $\operatorname{Lip}(\Omega) \cong W^{1,\infty}(\Omega)$, we consider

$$K(\Omega_T) := \left\{ v \in L^{\infty}(\Omega_T) \cap C^0([0,T]; L^2(\Omega)) : Dv \in L^{\infty}(\Omega_T, \mathbb{R}^n) \right\}$$

and

$$K_{u_o}(\Omega_T) \coloneqq \{ v \in K(\Omega_T) : v(t) = u_o \text{ on } \partial\Omega \text{ for a.e. } t \in (0,T) \}$$

and

$$K_{u_o}^{(R)}(\Omega_T) := \left\{ v \in K_{u_o}(\Omega_T) : \|Dv\|_{L^{\infty}} \le R \right\}$$

Definition. Let $u_o \in W^{1,\infty}(\Omega)$. A function $u \in K_{u_o}(\Omega_T)$ is a variational solution if

$$\iint_{\Omega_{T}} f(Du) \, dx dt \leq \iint_{\Omega_{T}} \left[\partial_{t} v(v - u) + f(Du) \right] dx dt
+ \frac{1}{2} \| v(0) - u_{o} \|_{L^{2}(\Omega)}^{2} - \frac{1}{2} \| v(T) - u(T) \|_{L^{2}(\Omega)}^{2} \right]$$

holds true for any $v \in K_{u_o}(\Omega_T)$ with $\partial_t v \in L^2(\Omega_T)$.

Theorem (B., Duzaar, Marcellini, Signoriello). Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex, $u_o \in W^{1,\infty}(\Omega)$, $(u_o|_{\partial\Omega},\Omega)$ satisfy the bsc with some constant Q > 0. Then, there exists a unique variational solution u with

$$||Du||_{L^{\infty}(\Omega_T,\mathbb{R}^n)} \le \max\{Q, ||Du_o||_{L^{\infty}(\Omega_T,\mathbb{R}^n)}\}.$$

Definition. Let $u_o \in W^{1,\infty}(\Omega)$. A function $u \in K_{u_o}(\Omega_T)$ is a variational solution if

$$\iint_{\Omega_{T}} f(Du) \, dx dt \leq \iint_{\Omega_{T}} \left[\partial_{t} v(v - u) + f(Du) \right] dx dt
+ \frac{1}{2} \| v(0) - u_{o} \|_{L^{2}(\Omega)}^{2} - \frac{1}{2} \| v(T) - u(T) \|_{L^{2}(\Omega)}^{2} \right]$$

holds true for any $v \in K_{u_o}(\Omega_T)$ with $\partial_t v \in L^2(\Omega_T)$.

Theorem (B., Duzaar, Marcellini, Signoriello). Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex, $u_o \in W^{1,\infty}(\Omega)$, $(u_o|_{\partial\Omega},\Omega)$ satisfy the bsc with some constant Q > 0. Then, there exists a unique variational solution u with

$$||Du||_{L^{\infty}(\Omega_T,\mathbb{R}^n)} \leq \max \{Q, ||Du_o||_{L^{\infty}(\Omega_T,\mathbb{R}^n)}\}.$$

- Contrary to the elliptic case, uniqueness is guarantied even if f is (not uniformly) convex.
- Possible integrands:
 - Area integrand: $f(\xi) = \sqrt{1 + |\xi|^2}$;
 - Integrands with exponential growth: $f(\xi) = \exp(|\xi|^2)$;
 - Orlicz type functionals: $f(\xi) = |\xi| \log(1 + |\xi|)$

- Contrary to the elliptic case, uniqueness is guarantied even if f is (not uniformly) convex.
- Possible integrands:
 - Area integrand: $f(\xi) = \sqrt{1 + |\xi|^2}$;
 - ▶ Integrands with exponential growth: $f(\xi) = \exp(|\xi|^2)$;
 - Orlicz type functionals: $f(\xi) = |\xi| \log(1 + |\xi|)$.

Idea of the proof

Solve the constrained problem: For R > 0 there exists a function $u_R \in K_{u_o}^{(R)}(\Omega_T)$ satisfying the variational inequality

$$\iint_{\Omega_T} f(Du) \, dx dt \le \iint_{\Omega_T} \left[\partial_t v(v - u) + f(Du) \right] dx dt$$
$$- \frac{1}{2} \| v(T) - u(T) \|_{L^2(\Omega)}^2 + \frac{1}{2} \| v(0) - u_o \|_{L^2(\Omega)}^2$$

for any $v \in K_{u_o}^{(R)}(\Omega_T)$ with $\partial_t v \in L^2(\Omega_T)$.

▶ Remove the constraint: For R > Q prove that $||Du_R||_{L^{\infty}} < Q$.

Idea of the proof

Solve the constrained problem: For R > 0 there exists a function $u_R \in K_{u_o}^{(R)}(\Omega_T)$ satisfying the variational inequality

$$\iint_{\Omega_T} f(Du) \, dx dt \le \iint_{\Omega_T} \left[\partial_t v(v - u) + f(Du) \right] dx dt$$
$$- \frac{1}{2} \| v(T) - u(T) \|_{L^2(\Omega)}^2 + \frac{1}{2} \| v(0) - u_o \|_{L^2(\Omega)}^2$$

for any $v \in K_{u_o}^{(R)}(\Omega_T)$ with $\partial_t v \in L^2(\Omega_T)$.

▶ Remove the constraint: For R > Q prove that $||Du_R||_{L^{\infty}} < Q$.

Solve the constrained problem

▶ Consider on $\Omega_T \subset \mathbb{R}^{n+1}$ the convex variational integral

$$F_{\varepsilon}(v) \coloneqq \iint_{\Omega_T} e^{-\frac{t}{\varepsilon} \left[\frac{1}{2} |\partial_t v|^2 + \frac{1}{\varepsilon} f(Dv) \right] dx dt.}$$

- Existence of a minimizer u^{ε} in the class $K_{u_o}^{(R)}(\Omega_T)$ with $\partial_t u^{\varepsilon} \in L^2(\Omega_T)$, $u^{\varepsilon}(0) = u_o$
- Formally compute first variation

$$0 = \frac{d}{ds} \bigg|_{s=0} F_{\varepsilon}(u^{\varepsilon} + s\varphi) = \iint_{\Omega_{T}} e^{-\frac{t}{\varepsilon}} \Big[\partial_{tt} u^{\varepsilon} - \frac{1}{\varepsilon} \partial_{t} u^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div} Df(Du^{\varepsilon}) \Big] \varphi \, dx dt$$

• u^{ε} formally solves the differential equation

$$\varepsilon \partial_{tt} u^{\varepsilon} - \partial_t u^{\varepsilon} + \operatorname{div} Df(Du^{\varepsilon}) = 0$$

- ▶ Heuristically, u^{ε} should converge in the limit $\varepsilon \downarrow 0$ to a solution u_R of the parabolic pde.
- Rigorous proof on the level of variational solutions

Solve the constrained problem

• Consider on $\Omega_T \subset \mathbb{R}^{n+1}$ the convex variational integral

$$F_{\varepsilon}(v) := \iint_{\Omega_T} e^{-\frac{t}{\varepsilon} \left[\frac{1}{2} |\partial_t v|^2 + \frac{1}{\varepsilon} f(Dv) \right] dx dt.$$

- Existence of a minimizer u^{ε} in the class $K_{u_o}^{(R)}(\Omega_T)$ with $\partial_t u^{\varepsilon} \in L^2(\Omega_T)$, $u^{\varepsilon}(0) = u_o$
- Formally compute first variation

$$0 = \frac{d}{ds} \bigg|_{s=0} F_{\varepsilon}(u^{\varepsilon} + s\varphi) = \iint_{\Omega_T} e^{-\frac{t}{\varepsilon}} \Big[\partial_{tt} u^{\varepsilon} - \frac{1}{\varepsilon} \partial_t u^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div} Df(Du^{\varepsilon}) \Big] \varphi \, dx dt$$

• u^{ε} formally solves the differential equation

$$\varepsilon \partial_{tt} u^{\varepsilon} - \partial_t u^{\varepsilon} + \operatorname{div} Df(Du^{\varepsilon}) = 0$$

- ▶ Heuristically, u^{ε} should converge in the limit $\varepsilon \downarrow 0$ to a solution u_R of the parabolic pde.
- Rigorous proof on the level of variational solutions

• Consider on $\Omega_T \subset \mathbb{R}^{n+1}$ the convex variational integral

$$F_{\varepsilon}(v) := \iint_{\Omega_T} e^{-\frac{t}{\varepsilon} \left[\frac{1}{2} |\partial_t v|^2 + \frac{1}{\varepsilon} f(Dv) \right] dx dt.$$

- Existence of a minimizer u^{ε} in the class $K_{u_o}^{(R)}(\Omega_T)$ with $\partial_t u^{\varepsilon} \in L^2(\Omega_T)$, $u^{\varepsilon}(0) = u_o$
- Formally compute first variation

$$0 = \frac{d}{ds} \bigg|_{s=0} F_{\varepsilon} (u^{\varepsilon} + s\varphi) = \iint_{\Omega_T} e^{-\frac{t}{\varepsilon}} \Big[\partial_{tt} u^{\varepsilon} - \frac{1}{\varepsilon} \partial_t u^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div} Df(Du^{\varepsilon}) \Big] \varphi \, dx dt$$

$$\varepsilon \partial_{tt} u^{\varepsilon} - \partial_t u^{\varepsilon} + \operatorname{div} Df(Du^{\varepsilon}) = 0$$

- ▶ Heuristically, u^{ε} should converge in the limit $\varepsilon \downarrow 0$ to a solution u_R of the parabolic pde.
- Rigorous proof on the level of variational solutions

• Consider on $\Omega_T \subset \mathbb{R}^{n+1}$ the convex variational integral

$$F_{\varepsilon}(v) := \iint_{\Omega_T} e^{-\frac{t}{\varepsilon} \left[\frac{1}{2} |\partial_t v|^2 + \frac{1}{\varepsilon} f(Dv) \right] dx dt.$$

- Existence of a minimizer u^{ε} in the class $K_{u_o}^{(R)}(\Omega_T)$ with $\partial_t u^{\varepsilon} \in L^2(\Omega_T)$, $u^{\varepsilon}(0) = u_o$
- Formally compute first variation

$$0 = \frac{d}{ds} \bigg|_{s=0} F_{\varepsilon}(u^{\varepsilon} + s\varphi) = \iint_{\Omega_T} e^{-\frac{t}{\varepsilon}} \Big[\partial_{tt} u^{\varepsilon} - \frac{1}{\varepsilon} \partial_t u^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div} Df(Du^{\varepsilon}) \Big] \varphi \, dx dt$$

$$\varepsilon \partial_{tt} u^{\varepsilon} - \partial_t u^{\varepsilon} + \operatorname{div} Df(Du^{\varepsilon}) = 0$$

- ▶ Heuristically, u^{ε} should converge in the limit $\varepsilon \downarrow 0$ to a solution u_R of the parabolic pde.
- Rigorous proof on the level of variational solutions

▶ Consider on Ω_T \subset \mathbb{R}^{n+1} the convex variational integral

$$F_{\varepsilon}(v) := \iint_{\Omega_T} e^{-\frac{t}{\varepsilon} \left[\frac{1}{2} |\partial_t v|^2 + \frac{1}{\varepsilon} f(Dv) \right] dx dt.$$

- Existence of a minimizer u^{ε} in the class $K_{u_o}^{(R)}(\Omega_T)$ with $\partial_t u^{\varepsilon} \in L^2(\Omega_T)$, $u^{\varepsilon}(0) = u_o$
- Formally compute first variation

$$0 = \frac{d}{ds} \bigg|_{s=0} F_{\varepsilon}(u^{\varepsilon} + s\varphi) = \iint_{\Omega_T} e^{-\frac{t}{\varepsilon}} \Big[\partial_{tt} u^{\varepsilon} - \frac{1}{\varepsilon} \partial_t u^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div} Df(Du^{\varepsilon}) \Big] \varphi \, dx dt$$

$$\varepsilon \partial_{tt} u^{\varepsilon} - \partial_t u^{\varepsilon} + \operatorname{div} Df(Du^{\varepsilon}) = 0$$

- Heuristically, u^{ε} should converge in the limit $\varepsilon \downarrow 0$ to a solution u_R of the parabolic pde.
- Rigorous proof on the level of variational solutions

▶ Consider on $\Omega_T \subset \mathbb{R}^{n+1}$ the convex variational integral

$$F_{\varepsilon}(v) := \iint_{\Omega_{T}} e^{-\frac{t}{\varepsilon}} \left[\frac{1}{2} |\partial_{t} v|^{2} + \frac{1}{\varepsilon} f(Dv) \right] dx dt.$$

- Existence of a minimizer u^{ε} in the class $K_{u_o}^{(R)}(\Omega_T)$ with $\partial_t u^{\varepsilon} \in L^2(\Omega_T)$, $u^{\varepsilon}(0) = u_o$
- Formally compute first variation

$$0 = \frac{d}{ds} \bigg|_{s=0} F_{\varepsilon}(u^{\varepsilon} + s\varphi) = \iint_{\Omega_T} e^{-\frac{t}{\varepsilon}} \Big[\partial_{tt} u^{\varepsilon} - \frac{1}{\varepsilon} \partial_t u^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div} Df(Du^{\varepsilon}) \Big] \varphi \, dx dt$$

$$\varepsilon \partial_{tt} u^{\varepsilon} - \partial_t u^{\varepsilon} + \operatorname{div} Df(Du^{\varepsilon}) = 0$$

- Heuristically, u^{ε} should converge in the limit $\varepsilon \downarrow 0$ to a solution u_R of the parabolic pde.
- Rigorous proof on the level of variational solutions

- Affine functions w are variational solutions with initial-boundary data $u_o = w$.
- For $x_o \in \partial \Omega$ take $w_{x_o}^{\pm}$ from the bsc, so that $w_{x_o}^{-} \leq u_o \leq w_{x_o}^{+}$ in Ω
- Maximum principle:

$$w_{x_o}^-(x) \le u_R(x) \le w_{x_o}^+(x) \qquad \forall x \in \Omega$$

$$\Rightarrow |u_R(x) - u_o(x_o)| \le Q|x - x_o| \qquad \forall \ x \in \Omega, x_o \in \partial \Omega$$

- Affine functions w are variational solutions with initial-boundary data $u_o = w$.
- ▶ For $x_o \in \partial \Omega$ take $w_{x_o}^{\pm}$ from the bsc, so that $w_{x_o}^{-} \leq u_o \leq w_{x_o}^{+}$ in Ω
- Maximum principle:

$$w_{x_o}^-(x) \le u_R(x) \le w_{x_o}^+(x) \qquad \forall x \in \Omega$$

$$\Rightarrow |u_R(x) - u_o(x_o)| \le Q|x - x_o| \qquad \forall \ x \in \Omega, x_o \in \partial\Omega$$

- Affine functions w are variational solutions with initial-boundary data $u_o = w$.
- ▶ For $x_o \in \partial \Omega$ take $w_{x_o}^{\pm}$ from the bsc, so that $w_{x_o}^{-} \leq u_o \leq w_{x_o}^{+}$ in Ω
- Maximum principle:

$$w_{x_o}^-(x) \le u_R(x) \le w_{x_o}^+(x) \qquad \forall \, x \in \Omega$$

$$\Rightarrow |u_R(x) - u_o(x_o)| \le Q|x - x_o| \qquad \forall x \in \Omega, x_o \in \partial\Omega$$

So far, we know

$$|u_R(x) - u_o(x_o)| \le Q|x - x_o| \quad \forall x \in \Omega, x_o \in \partial\Omega$$

▶ Consider $x, \tilde{x} \in \Omega$, let $y := \tilde{x} - x$ and define

$$v_R(x) := u_R(x - y)$$
 for $x \in \tilde{\Omega} := y + \Omega$

▶ Maximum principle: there exists $x_o \in \partial(\Omega \cap \tilde{\Omega})$ such that

$$|u_R(\tilde{x}) - v_R(\tilde{x})| \le |u_R(x_o) - v_R(x_o)| = |u_R(x_o) - u_R(x_o - y)|$$

$$\Rightarrow |u_R(\tilde{x}) - u_R(x)| \le Q|\tilde{x} - x| \Rightarrow \text{Lip}(u_R) \le Q$$

So far, we know

$$|u_R(x) - u_o(x_o)| \le Q|x - x_o| \quad \forall x \in \Omega, x_o \in \partial\Omega$$

▶ Consider $x, \tilde{x} \in \Omega$, let $y := \tilde{x} - x$ and define

$$v_R(x) := u_R(x - y)$$
 for $x \in \tilde{\Omega} := y + \Omega$

▶ Maximum principle: there exists $x_o \in \partial(\Omega \cap \hat{\Omega})$ such that

$$|u_R(\tilde{x}) - v_R(\tilde{x})| \le |u_R(x_o) - v_R(x_o)| = |u_R(x_o) - u_R(x_o - y)|$$

$$\Rightarrow |u_R(\tilde{x}) - u_R(x)| \le Q|\tilde{x} - x| \qquad \Rightarrow \text{Lip}(u_R) \le Q$$

So far, we know

$$|u_R(x) - u_o(x_o)| \le Q|x - x_o| \quad \forall x \in \Omega, x_o \in \partial\Omega$$

▶ Consider $x, \tilde{x} \in \Omega$, let $y := \tilde{x} - x$ and define

$$v_R(x) \coloneqq u_R(x - y)$$
 for $x \in \tilde{\Omega} \coloneqq y + \Omega$

▶ Maximum principle: there exists $x_o \in \partial(\Omega \cap \tilde{\Omega})$ such that

$$|u_R(\tilde{x}) - v_R(\tilde{x})| \le |u_R(x_o) - v_R(x_o)| = |u_R(x_o) - u_R(x_o - y)|$$

$$\Rightarrow |u_R(\tilde{x}) - u_R(x)| \le Q|\tilde{x} - x| \qquad \Rightarrow \text{Lip}(u_R) \le Q.$$

So far, we know

$$|u_R(x) - u_o(x_o)| \le Q|x - x_o| \quad \forall x \in \Omega, x_o \in \partial\Omega$$

▶ Consider $x, \tilde{x} \in \Omega$, let $y := \tilde{x} - x$ and define

$$v_R(x) := u_R(x - y)$$
 for $x \in \tilde{\Omega} := y + \Omega$

▶ Maximum principle: there exists $x_o \in \partial(\Omega \cap \tilde{\Omega})$ such that

$$|u_R(\tilde{x}) - v_R(\tilde{x})| \le |u_R(x_o) - v_R(x_o)| = |u_R(x_o) - u_R(x_o - y)|$$

$$\Rightarrow |u_R(\tilde{x}) - u_R(x)| \le Q|\tilde{x} - x| \Rightarrow \text{Lip}(u_R) \le Q.$$

Initial-boundary value preoblem for the total variation flow

$$\begin{cases} \partial_t u - \operatorname{div}\left(\frac{Du}{|Du|}\right) = 0 & \text{in } \Omega_T, \\ u = u_o & \text{on } \partial_P \Omega_T. \end{cases}$$

Existence results by Andreu, Ballester, Caselles, Mazón.

Variational inequality

$$\iint_{\Omega_T} |Du| \, dx dt \le \iint_{\Omega_T} \left[\partial_t v(v - u) + |Dv| \right] dx dt \\ - \frac{1}{2} \|v(T) - u(T)\|_{L^2(\Omega)}^2 + \frac{1}{2} \|v(0) - u_o\|_{L^2(\Omega)}^2$$

for any (sufficiently regular) comparison function $v: \Omega_T \to \mathbb{R}$ with $v = u_o$ on the lateral boundary $\partial \Omega \times (0, T)$.

Initial-boundary value preoblem for the total variation flow

$$\begin{cases} \partial_t u - \operatorname{div}\left(\frac{Du}{|Du|}\right) = 0 & \text{in } \Omega_T, \\ u = u_o & \text{on } \partial_P \Omega_T. \end{cases}$$

Existence results by Andreu, Ballester, Caselles, Mazón.

Variational inequality

$$\iint_{\Omega_T} |Du| \, dx dt \le \iint_{\Omega_T} \left[\partial_t v(v - u) + |Dv| \right] dx dt \\ - \frac{1}{2} \|v(T) - u(T)\|_{L^2(\Omega)}^2 + \frac{1}{2} \|v(0) - u_o\|_{L^2(\Omega)}^2$$

for any (sufficiently regular) comparison function $v: \Omega_T \to \mathbb{R}$ with $v = u_o$ on the lateral boundary $\partial \Omega \times (0, T)$.

Initial-boundary value preoblem for the total variation flow

$$\begin{cases} \partial_t u - \operatorname{div}\left(\frac{Du}{|Du|}\right) = 0 & \text{in } \Omega_T, \\ u = u_O & \text{on } \partial_P \Omega_T. \end{cases}$$

Existence results by Andreu, Ballester, Caselles, Mazón.

Variational inequality:

$$\iint_{\Omega_{T}} |Du| \, dx dt \leq \iint_{\Omega_{T}} \left[\partial_{t} v(v-u) + |Dv| \right] dx dt \\
- \frac{1}{2} \|v(T) - u(T)\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \|v(0) - u_{o}\|_{L^{2}(\Omega)}^{2}$$

for any (sufficiently regular) comparison function $v: \Omega_T \to \mathbb{R}$ with $v = u_o$ on the lateral boundary $\partial \Omega \times (0, T)$.

Initial-boundary value preoblem for the total variation flow

$$\begin{cases} \partial_t u - \operatorname{div}\left(\frac{Du}{|Du|}\right) = 0 & \text{in } \Omega_T, \\ u = u_o & \text{on } \partial_P \Omega_T. \end{cases}$$

Existence results by Andreu, Ballester, Caselles, Mazón.

Variational inequality:

$$\iint_{\Omega_T} |Du| \, dx dt \le \iint_{\Omega_T} \left[\partial_t v(v - u) + |Dv| \right] dx dt \\
- \frac{1}{2} \|v(T) - u(T)\|_{L^2(\Omega)}^2 + \frac{1}{2} \|v(0) - u_o\|_{L^2(\Omega)}^2$$

for any (sufficiently regular) comparison function $v: \Omega_T \to \mathbb{R}$ with $v = u_o$ on the lateral boundary $\partial \Omega \times (0, T)$.

Existence of variational solutions to the obstacle problem for the total variation flow

Theorem (B., Duzaar, Scheven).

Assume that

$$\psi \in L^2(\Omega_T) \cap L^1_{w^*}(0,T;\mathrm{BV}_{u_o}(\Omega)).$$

Then, there exists a variational solution u of the obstacle problem to the total variation flow with $u \ge \psi$ a.e. in Ω_T .

Assume that ψ is upper semicontinuous. Then, there exists a (generalized) variational solution u of the obstacle problem to the total variation flow with $u(t) \ge \psi(t)$ at least outside a set of Hausdorff-dimension $\le n-1$ for a.e. $t \in (0,T)$.

Existence of variational solutions to the obstacle problem for the total variation flow

Theorem (B., Duzaar, Scheven).

Assume that

$$\psi \in L^2(\Omega_T) \cap L^1_{w^*}(0,T;\mathrm{BV}_{u_o}(\Omega)).$$

Then, there exists a variational solution u of the obstacle problem to the total variation flow with $u \ge \psi$ a.e. in Ω_T .

Assume that ψ is upper semicontinuous. Then, there exists a (generalized) variational solution u of the obstacle problem to the total variation flow with $u(t) \ge \psi(t)$ at least outside a set of Hausdorff-dimension $\le n-1$ for a.e. $t \in (0,T)$.