Umbilic cylinders in General Relativity or the very weird path of trapped photons

Carla Cederbaum

Universität Tübingen

European Women in Mathematics @ Schloss Rauischholzhausen 2015

< 回 > < 回 > < 回 >

Light rays (aka null geodesics) are affected by spacetime curvature. They can get deflected, attracted, or "trapped".

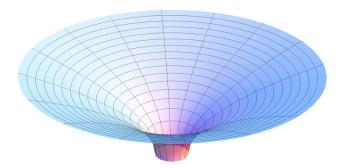
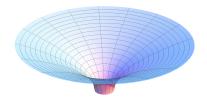


Image credit: Wikipedia.org

A (10) A (10)

- deflected light rays: can be detected → gravitational lensing
- attracted light rays: cannot be detected
- trapped light rays: cannot be detected



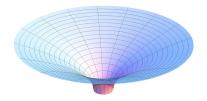
The black hole horizon is one of the centered spheres of area radius

 $r_{\rm BH}=\frac{2GM}{c^2},$

where M > 0 is the mass of the black hole.

 \rightarrow This means that the area is $4\pi r_{BH}^2$.

G is the gravitational constant, *c* is the speed of light.



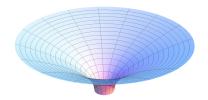
A > + = + + =

The trapped light rays form the

photon sphere.

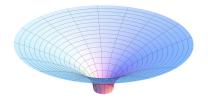
It is one of the centered spheres of area radius

$$r = \frac{3GM}{c^2} = 1.5r_{\rm BH}.$$

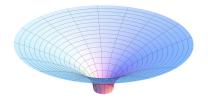


A (10) > A (10) > A (10)

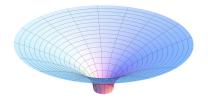
- intrinsically round: constant Gauß curvature *K*
- extrinsically round: trace free second fundamental form *h*
- constant mean curvature H
- constant static lapse function N
- constant normal derivative $\nu(N)$



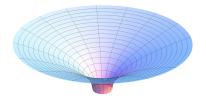
- intrinsically round: constant Gauß curvature *K*
- extrinsically round: trace free second fundamental form *h*
- constant mean curvature H
- constant static lapse function N
- constant normal derivative $\nu(N)$



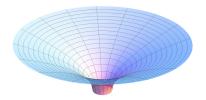
- intrinsically round: constant Gauß curvature *K*
- extrinsically round: trace free second fundamental form *h*
- constant mean curvature H
- constant static lapse function N
- constant normal derivative $\nu(N)$



- intrinsically round: constant Gauß curvature *K*
- extrinsically round: trace free second fundamental form *h*
- constant mean curvature H
- constant static lapse function N
- constant normal derivative $\nu(N)$



- intrinsically round: constant Gauß curvature *K*
- extrinsically round: trace free second fundamental form *h*
- constant mean curvature H
- constant static lapse function N
- constant normal derivative $\nu(N)$



Photon spheres in more generality

Do photon spheres exist in more general spacetimes?

 \rightarrow Yes! Astrophysical expectation:

Photon spheres form around any astrophysical object that is suitably compact: $r < \frac{3GM}{c^2}$

- Why are they relevant?
 - ightarrow Central in gravitational lensing.

Winding number \cong number of gravitational images.

- → Crucial for dynamical stability of the Kerr black hole spacetime. Long term fate of the universe.
- Do they have hair?
 → No

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Photon spheres in more generality

Do photon spheres exist in more general spacetimes?

 \rightarrow Yes! Astrophysical expectation:

Photon spheres form around any astrophysical object that is suitably compact: $r < \frac{3GM}{c^2}$

- Why are they relevant?
 - \rightarrow Central in gravitational lensing.

Winding number \cong number of gravitational images.

 \rightarrow Crucial for dynamical stability of the Kerr black hole spacetime. Long term fate of the universe.

Do they have hair?
 → No ...

Photon spheres in more generality

Do photon spheres exist in more general spacetimes?

 \rightarrow Yes! Astrophysical expectation:

Photon spheres form around any astrophysical object that is suitably compact: $r < \frac{3GM}{c^2}$

- Why are they relevant?
 - \rightarrow Central in gravitational lensing.

Winding number \cong number of gravitational images.

- \rightarrow Crucial for dynamical stability of the Kerr black hole spacetime. Long term fate of the universe.
- Do they have hair?

 $\rightarrow No \dots$

A (10) A (10)

Uniqueness of photon spheres

Theorem (C. 2014)

The Schwarzschild spacetime is the only regularly *N*-foliated static vacuum asymptotically flat spacetime permitting a photon sphere (up to isometry).

Theorem (C. & Galloway 2015)

There cannot be multiple photon spheres and black holes in a static vacuum asymptotically flat spacetime. The existence of one photon sphere or one black hole already *implies* that the spacetime is isometric to the Schwarzschild spacetime.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contents

2 Sketch of proofs

Carla Cederbaum (Tübingen)

э

Setup: mathematical model

Proposition

Generic static spacetimes can be canonically decomposed into

$$M^4 = \mathbb{R} \times M^3$$
$$ds^2 = -N^2 c^2 dt^2 + {}^3g$$

with induced Riemannian metric ³g and lapse function

$$N:=\frac{1}{c}\sqrt{-ds^2(\partial_t,\partial_t)}>0.$$

周 ト イ ヨ ト イ ヨ ト

Static geometry: the facts

- All time-slices $\{t = \text{const.}\} = (M^3, {}^3g)$ are isometric.
- They are embedded into $(M^4 = \mathbb{R} \times M^3, ds^2)$ with vanishing second fundamental form.
- The lapse function $N: M^3 \to \mathbb{R}^+$ is independent of "time".

 \Rightarrow We think of a static spacetime as a static system: tuple $(M^3, {}^3g, N)$.

Photon spheres

Definition (C. 2014)

Let $(M^3, {}^3g, N)$ be a static system.

A smooth closed surface $\Sigma \subset M^3$ is a photon sphere if $N|_{\Sigma} \equiv \text{const.}$ and if any null geodesic in the corresponding spacetime

$$(\mathbb{R} \times M^3, ds^2 = -c^2 N^2 + {}^3g)$$

which is initially tangent to the cylinder $\mathbb{R} \times \Sigma$ remains tangent to it.

More generally:

- Def.: photon surface: umbilic timelike hypersurface $\mathfrak{P}^3 \hookrightarrow \mathbb{R} \times M^3$
- Def.: trapped: $N|_{\mathfrak{P}^3} \equiv \text{const.} (\cong \text{energy conservation}).$

Photon spheres

Definition (C. 2014)

Let $(M^3, {}^3g, N)$ be a static system.

A smooth closed surface $\Sigma \subset M^3$ is a photon sphere if $N|_{\Sigma} \equiv \text{const.}$ and if any null geodesic in the corresponding spacetime

$$(\mathbb{R} \times M^3, ds^2 = -c^2 N^2 + {}^3g)$$

which is initially tangent to the cylinder $\mathbb{R} \times \Sigma$ remains tangent to it. More generally:

- Def.: photon surface: umbilic timelike hypersurface $\mathfrak{P}^3 \hookrightarrow \mathbb{R} \times M^3$
- Def.: trapped: $N|_{\mathfrak{P}^3} \equiv \text{const.} \ (\cong \text{energy conservation}).$

Static vacuum equations

Einstein's equations in vacuum reduce to the

Vacuum static metric equations ${}^{3} \triangle N = 0$ $N {}^{3} \text{Ric} = {}^{3} \nabla^{2} N$

outside the support of the matter.

A (10) A (10)

Asymptotically flatness

A static system (M^3, g, N) is called asymptotically flat if

- M^3 is diffeomorphic to $\mathbb{R}^3 \setminus K$, *K* a union of pairwise disjoint balls.
- g, N satisfy fall-off conditions as $r \to \infty$
- Formulated as deviations from the flat (special relativity/ Minkowski) spacetime:

$$g_{ij} = \delta_{ij} + \frac{2m}{r} \delta_{ij} + \mathcal{O}(r^{-1}),$$

$$N = 1 - \frac{m}{r} + \mathcal{O}(r^{-1})$$

• Everything worded in weighted Sobolev spaces.

4 **A** N A **B** N A **B** N

Asymptotically flatness

A static system (M^3, g, N) is called asymptotically flat if

- M^3 is diffeomorphic to $\mathbb{R}^3 \setminus K$, *K* a union of pairwise disjoint balls.
- g, N satisfy fall-off conditions as $r \to \infty$
- Formulated as deviations from the Schwarzschild black hole spacetime ($m := MG/c^2$):

$$g_{ij} = \delta_{ij} + \frac{2m}{r} \delta_{ij} + \mathcal{O}(r^{-1}),$$

$$N = 1 - \frac{m}{r} + \mathcal{O}(r^{-1})$$

• Everything worded in weighted Sobolev spaces.

A (10) A (10)

Regular N-foliation

Definition

A static asymptotically flat system $(M^3, {}^3g, N)$ is called regularly *N*-foliated if M^3 is foliated by (spherical) level sets of *N*.

Remark: This is guaranteed asymptotically by $N = 1 - \frac{m}{r} + O(\frac{1}{r^2})$ as $r \to \infty$ if $m \neq 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contents

э

The theorems once more

Theorem (C. 2014)

The Schwarzschild spacetime is the only regularly *N*-foliated static vacuum asymptotically flat spacetime permitting a photon sphere (up to isometry).

Theorem (C. & Galloway 2015)

There cannot be multiple photon spheres and black holes in a static vacuum asymptotically flat spacetime. The existence of one photon sphere or one black hole already *implies* that the spacetime is isometric to the Schwarzschild spacetime.

Step 1: Derive (quasi-)local geometric properties of photon spheres in vacuum:

Proposition C. 2014

Let (M^3, g, N) be a vacuum static system with a (connected) embedded photon sphere $\Sigma \hookrightarrow M^3$. Then

- the mean curvature H of $\Sigma \hookrightarrow (M^3, g)$ is constant,
- the embedding $\Sigma \hookrightarrow (M^3,g)$ is totally umbilic: $\overset{\circ}{h} = 0$,
- the Gauß curvature K of Σ is constant
- *N* and its normal derivative $\nu(N)$ are constant on Σ . Moreover, we find the algebraic identities

$$NH = 2\nu(N), \quad (rH)^2 = \frac{4}{3}, \quad \frac{1}{r^2} = K = \frac{3}{4}H^2,$$

where $r := \sqrt{|\Sigma|/4\pi}$ is the area radius.

Theorem (C. 2014)

The Schwarzschild spacetime is the only regularly *N*-foliated static vacuum asymptotically flat spacetime permitting a photon sphere (up to isometry).

- Rewrite static vacuum equations as equations on the leaves $\{N \equiv \text{const.}\}$ (via Gauß- and Codazzi-equations).
- Drop terms of the form $|\mathring{h}|^2 \ge 0$ and $|\nabla(\nu(N))|^2 \ge 0$.
- Integrate resulting inequalities over $\{N \equiv \text{const.}\}\$ and $N \in [N_{\Sigma}, 1]$.
- Use Fubini's theorem to obtain algebraic inequalities.
- Use asymptotic decay information about N and g and the quasi-local properties of the photon sphere to conclude rigidity.
- Deduce $\ddot{h} = 0$, $\nu(N) \equiv$ const. on each leaf and thus spherical symmetry of the spacetime.

< ロ > < 同 > < 回 > < 回 >

Theorem (C. 2014)

The Schwarzschild spacetime is the only regularly *N*-foliated static vacuum asymptotically flat spacetime permitting a photon sphere (up to isometry).

- Rewrite static vacuum equations as equations on the leaves $\{N \equiv \text{const.}\}$ (via Gauß- and Codazzi-equations).
- Drop terms of the form $|\mathring{h}|^2 \ge 0$ and $|\nabla(\nu(N))|^2 \ge 0$.
- Integrate resulting inequalities over $\{N \equiv \text{const.}\}\$ and $N \in [N_{\Sigma}, 1]$.
- Use Fubini's theorem to obtain algebraic inequalities.
- Use asymptotic decay information about *N* and *g* and the quasi-local properties of the photon sphere to conclude rigidity.
- Deduce $\ddot{h} = 0$, $\nu(N) \equiv$ const. on each leaf and thus spherical symmetry of the spacetime.

Theorem (C. 2014)

The Schwarzschild spacetime is the only regularly *N*-foliated static vacuum asymptotically flat spacetime permitting a photon sphere (up to isometry).

- Rewrite static vacuum equations as equations on the leaves $\{N \equiv \text{const.}\}$ (via Gauß- and Codazzi-equations).
- Drop terms of the form $|\mathring{h}|^2 \ge 0$ and $|\nabla(\nu(N))|^2 \ge 0$.
- Integrate resulting inequalities over $\{N \equiv \text{const.}\}$ and $N \in [N_{\Sigma}, 1]$.
- Use Fubini's theorem to obtain algebraic inequalities.
- Use asymptotic decay information about *N* and *g* and the quasi-local properties of the photon sphere to conclude rigidity.
- Deduce $\ddot{h} = 0$, $\nu(N) \equiv$ const. on each leaf and thus spherical symmetry of the spacetime.

Theorem (C. 2014)

The Schwarzschild spacetime is the only regularly *N*-foliated static vacuum asymptotically flat spacetime permitting a photon sphere (up to isometry).

- Rewrite static vacuum equations as equations on the leaves $\{N \equiv \text{const.}\}$ (via Gauß- and Codazzi-equations).
- Drop terms of the form $|\mathring{h}|^2 \ge 0$ and $|\nabla(\nu(N))|^2 \ge 0$.
- Integrate resulting inequalities over $\{N \equiv \text{const.}\}$ and $N \in [N_{\Sigma}, 1]$.
- Use Fubini's theorem to obtain algebraic inequalities.
- Use asymptotic decay information about *N* and *g* and the quasi-local properties of the photon sphere to conclude rigidity.
- Deduce $\ddot{h} = 0$, $\nu(N) \equiv$ const. on each leaf and thus spherical symmetry of the spacetime.

Theorem (C. 2014)

The Schwarzschild spacetime is the only regularly *N*-foliated static vacuum asymptotically flat spacetime permitting a photon sphere (up to isometry).

- Rewrite static vacuum equations as equations on the leaves $\{N \equiv \text{const.}\}$ (via Gauß- and Codazzi-equations).
- Drop terms of the form $|\mathring{h}|^2 \ge 0$ and $|\nabla(\nu(N))|^2 \ge 0$.
- Integrate resulting inequalities over $\{N \equiv \text{const.}\}$ and $N \in [N_{\Sigma}, 1]$.
- Use Fubini's theorem to obtain algebraic inequalities.
- Use asymptotic decay information about N and g and the quasi-local properties of the photon sphere to conclude rigidity.
- Deduce $\check{h} = 0$, $\nu(N) \equiv \text{const.}$ on each leaf and thus spherical symmetry of the spacetime.

Theorem (C. 2014)

The Schwarzschild spacetime is the only regularly *N*-foliated static vacuum asymptotically flat spacetime permitting a photon sphere (up to isometry).

- Rewrite static vacuum equations as equations on the leaves $\{N \equiv \text{const.}\}$ (via Gauß- and Codazzi-equations).
- Drop terms of the form $|\mathring{h}|^2 \ge 0$ and $|\nabla(\nu(N))|^2 \ge 0$.
- Integrate resulting inequalities over $\{N \equiv \text{const.}\}$ and $N \in [N_{\Sigma}, 1]$.
- Use Fubini's theorem to obtain algebraic inequalities.
- Use asymptotic decay information about *N* and *g* and the quasi-local properties of the photon sphere to conclude rigidity.
- Deduce $\ddot{h} = 0$, $\nu(N) \equiv$ const. on each leaf and thus spherical symmetry of the spacetime.

< ロ > < 同 > < 回 > < 回 >

Remark

Similar to Israel's black hole uniqueness proof:

Theorem (Israel 1967)

The Schwarzschild black hole is the only regularly *N*-foliated static vacuum asymptotically flat spacetime permitting a horizon (N = 0, H = 0) (up to isometry).

Theorem (C. & Galloway 2015)

There cannot be multiple photon spheres and black holes in a static vacuum asymptotically flat spacetime. The existence of one photon sphere or one black hole already *implies* that the spacetime is isometric to the Schwarzschild spacetime.

- In each photon sphere, glue in a neck piece of a very carefully chosen Schwarzschild (up to the horizon).
- Double the manifold across its horizon boundary.
- Verify the glued manifold is $C^{1,1}$ across the gluing surfaces.
- Conformally modify & one-point-compactify (∞) , achieving:
 - non-negative scalar curvature, geodesically complete
 - one AF end with vanishing ADM-mass,
 - enough (Sobolev weak) regularity across gluing surfaces and ∞ .
- Apply rigidity case of positive mass theorem (weak version).

ヘロン 人間 とくほ とくほ とう

Theorem (C. & Galloway 2015)

There cannot be multiple photon spheres and black holes in a static vacuum asymptotically flat spacetime. The existence of one photon sphere or one black hole already *implies* that the spacetime is isometric to the Schwarzschild spacetime.

- In each photon sphere, glue in a neck piece of a very carefully chosen Schwarzschild (up to the horizon).
- Double the manifold across its horizon boundary.
- Verify the glued manifold is C^{1,1} across the gluing surfaces.
- Conformally modify & one-point-compactify (∞) , achieving:
 - non-negative scalar curvature, geodesically complete
 - one AF end with vanishing ADM-mass,
 - enough (Sobolev weak) regularity across gluing surfaces and ∞ .

• Apply rigidity case of positive mass theorem (weak version).

ヘロン 人間 とくほ とくほ とう

Theorem (C. & Galloway 2015)

There cannot be multiple photon spheres and black holes in a static vacuum asymptotically flat spacetime. The existence of one photon sphere or one black hole already implies that the spacetime is isometric to the Schwarzschild spacetime.

- In each photon sphere, glue in a neck piece of a very carefully chosen Schwarzschild (up to the horizon).
- Double the manifold across its horizon boundary.
- Verify the glued manifold is $C^{1,1}$ across the gluing surfaces.
- Conformally modify & one-point-compactify (∞) , achieving:
 - non-negative scalar curvature, geodesically complete
 - one AF end with vanishing ADM-mass,
 - enough (Sobolev weak) regularity across gluing surfaces and ∞ .
- Apply rigidity case of positive mass theorem (weak version).

ヘロト ヘ回ト ヘヨト ヘヨト

Theorem (C. & Galloway 2015)

There cannot be multiple photon spheres and black holes in a static vacuum asymptotically flat spacetime. The existence of one photon sphere or one black hole already *implies* that the spacetime is isometric to the Schwarzschild spacetime.

- In each photon sphere, glue in a neck piece of a very carefully chosen Schwarzschild (up to the horizon).
- Double the manifold across its horizon boundary.
- Verify the glued manifold is $C^{1,1}$ across the gluing surfaces.
- Conformally modify & one-point-compactify (∞) , achieving:
 - non-negative scalar curvature, geodesically complete
 - one AF end with vanishing ADM-mass,
 - enough (Sobolev weak) regularity across gluing surfaces and ∞ .
- Apply rigidity case of positive mass theorem (weak version).

ヘロン 人間 とくほ とくほ とう

Theorem (C. & Galloway 2015)

There cannot be multiple photon spheres and black holes in a static vacuum asymptotically flat spacetime. The existence of one photon sphere or one black hole already *implies* that the spacetime is isometric to the Schwarzschild spacetime.

- In each photon sphere, glue in a neck piece of a very carefully chosen Schwarzschild (up to the horizon).
- Double the manifold across its horizon boundary.
- Verify the glued manifold is $C^{1,1}$ across the gluing surfaces.
- Conformally modify & one-point-compactify (∞) , achieving:
 - non-negative scalar curvature, geodesically complete
 - one AF end with vanishing ADM-mass,
 - enough (Sobolev weak) regularity across gluing surfaces and ∞ .
- Apply rigidity case of positive mass theorem (weak version).

Theorem (C. & Galloway 2015)

There cannot be multiple photon spheres and black holes in a static vacuum asymptotically flat spacetime. The existence of one photon sphere or one black hole already *implies* that the spacetime is isometric to the Schwarzschild spacetime.

- In each photon sphere, glue in a neck piece of a very carefully chosen Schwarzschild (up to the horizon).
- Double the manifold across its horizon boundary.
- Verify the glued manifold is $C^{1,1}$ across the gluing surfaces.
- Conformally modify & one-point-compactify (∞) , achieving:
 - non-negative scalar curvature, geodesically complete
 - one AF end with vanishing ADM-mass,
 - enough (Sobolev weak) regularity across gluing surfaces and ∞ .

• Apply rigidity case of positive mass theorem (weak version).

Theorem (C. & Galloway 2015)

There cannot be multiple photon spheres and black holes in a static vacuum asymptotically flat spacetime. The existence of one photon sphere or one black hole already *implies* that the spacetime is isometric to the Schwarzschild spacetime.

- In each photon sphere, glue in a neck piece of a very carefully chosen Schwarzschild (up to the horizon).
- Double the manifold across its horizon boundary.
- Verify the glued manifold is $C^{1,1}$ across the gluing surfaces.
- Conformally modify & one-point-compactify (∞) , achieving:
 - non-negative scalar curvature, geodesically complete
 - one AF end with vanishing ADM-mass,
 - enough (Sobolev weak) regularity across gluing surfaces and ∞ .

• Apply rigidity case of positive mass theorem (weak version).

Theorem (C. & Galloway 2015)

There cannot be multiple photon spheres and black holes in a static vacuum asymptotically flat spacetime. The existence of one photon sphere or one black hole already *implies* that the spacetime is isometric to the Schwarzschild spacetime.

- In each photon sphere, glue in a neck piece of a very carefully chosen Schwarzschild (up to the horizon).
- Double the manifold across its horizon boundary.
- Verify the glued manifold is $C^{1,1}$ across the gluing surfaces.
- Conformally modify & one-point-compactify (∞) , achieving:
 - non-negative scalar curvature, geodesically complete
 - one AF end with vanishing ADM-mass,
 - enough (Sobolev weak) regularity across gluing surfaces and ∞ .
- Apply rigidity case of positive mass theorem (weak version).

Remark

Extending Bunting and Masood-ul-Alam's black hole uniqueness proof:

Theorem (Bunting & Masood-ul-Alam 1987)

There cannot be multiple black holes in a static vacuum asymptotically flat spacetime. The existence of one black hole already implies that the spacetime is isometric to the Schwarzschild spacetime.

A (10) A (10)

Consequence for the static *n*-body problem

Theorem (C. & Galloway 2015)

There are no static equilibrium configurations of *n* bodies and *k* black holes with $n + k \ge 1$ in which each body is surrounded by its own photon sphere.

< 同 ト < 三 ト < 三 ト