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Introduction: Schwarzschild black hole

Light rays (aka null geodesics) are affected by spacetime curvature.
They can get deflected, attracted, or “trapped”.

Image credit: Wikipedia.org
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Introduction: Schwarzschild black hole ctd.

deflected light rays: can be
detected→ gravitational lensing
attracted light rays: cannot be
detected
trapped light rays: cannot be
detected
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Introduction: Schwarzschild black hole ctd.

The black hole horizon is one of the
centered spheres of area radius

rBH =
2GM

c2 ,

where M > 0 is the mass
of the black hole.

→ This means that the area is 4πr2
BH.

G is the gravitational constant,
c is the speed of light.
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Introduction: Schwarzschild black hole ctd.

The trapped light rays form the

photon sphere.

It is one of the centered spheres
of area radius

r =
3GM

c2 = 1.5rBH.
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Introduction: Schwarzschild black hole ctd.

Geometric properties of photon sphere:

intrinsically round: constant Gauß
curvature K

extrinsically round: trace free
second fundamental form h

constant mean curvature H

constant static lapse function N

constant normal derivative ν(N)
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Photon spheres in more generality

Do photon spheres exist in more general spacetimes?
→ Yes! Astrophysical expectation:

Photon spheres form around any astrophysical object that is
suitably compact: r < 3GM

c2

Why are they relevant?
→ Central in gravitational lensing.

Winding number ∼= number of gravitational images.
→ Crucial for dynamical stability of the Kerr black hole spacetime.

Long term fate of the universe.

Do they have hair?
→ No . . .
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Uniqueness of photon spheres

Theorem (C. 2014)
The Schwarzschild spacetime is the only regularly N-foliated static
vacuum asymptotically flat spacetime permitting a photon sphere
(up to isometry).

Theorem (C. & Galloway 2015)
There cannot be multiple photon spheres and black holes in a static
vacuum asymptotically flat spacetime. The existence of one photon
sphere or one black hole already implies that the spacetime is
isometric to the Schwarzschild spacetime.
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Mathematical setup

Contents

1 Mathematical setup

2 Sketch of proofs
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Mathematical setup

Setup: mathematical model

Proposition
Generic static spacetimes can be canonically decomposed into

M4 = R×M3

ds2 = −N2c2dt2 + 3g

with induced Riemannian metric 3g and lapse function

N :=
1
c

√
−ds2(∂t, ∂t) > 0.
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Mathematical setup

Static geometry: the facts

All time-slices {t = const.} = (M3, 3g) are isometric.
They are embedded into (M4 = R×M3, ds2) with vanishing
second fundamental form.
The lapse function N : M3 → R+ is independent of “time”.

⇒We think of a static spacetime as a static system: tuple (M3, 3g,N).
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Mathematical setup

Photon spheres

Definition (C. 2014)
Let (M3, 3g,N) be a static system.

A smooth closed surface Σ ⊂ M3 is a photon sphere if N|Σ ≡ const.
and if any null geodesic in the corresponding spacetime

(R×M3, ds2 = −c2N2 + 3g)

which is initially tangent to the cylinder R× Σ remains tangent to it.

More generally:
Def.: photon surface: umbilic timelike hypersurface P3 ↪→ R×M3

Def.: trapped: N|P3 ≡ const. (∼= energy conservation).
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Mathematical setup

Static vacuum equations

Einstein’s equations in vacuum reduce to the

Vacuum static metric equations
34N = 0

N 3Ric = 3∇2N

outside the support of the matter.
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Mathematical setup

Asymptotically flatness

A static system (M3, g,N) is called asymptotically flat if
M3 is diffeomorphic to R3 \ K, K a union of pairwise disjoint balls.
g,N satisfy fall-off conditions as r →∞
Formulated as deviations from the flat (special relativity/
Minkowski) spacetime:

gij = δij +
2m
r
δij +O(r−1),

N = 1 − m
r

+O(r−1)

Everything worded in weighted Sobolev spaces.
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Mathematical setup

Regular N-foliation

Definition
A static asymptotically flat system (M3, 3g,N) is called regularly
N-foliated if M3 is foliated by (spherical) level sets of N.

Remark: This is guaranteed asymptotically by N = 1− m
r +O( 1

r2 ) as
r →∞ if m 6= 0.
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Sketch of proofs
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Sketch of proofs

The theorems once more

Theorem (C. 2014)
The Schwarzschild spacetime is the only regularly N-foliated static
vacuum asymptotically flat spacetime permitting a photon sphere
(up to isometry).

Theorem (C. & Galloway 2015)
There cannot be multiple photon spheres and black holes in a static
vacuum asymptotically flat spacetime. The existence of one photon
sphere or one black hole already implies that the spacetime is
isometric to the Schwarzschild spacetime.
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Sketch of proofs

Step 1: Derive (quasi-)local geometric properties of
photon spheres in vacuum:
Proposition C. 2014
Let (M3, g,N) be a vacuum static system with a (connected) embedded
photon sphere Σ ↪→ M3. Then

the mean curvature H of Σ ↪→ (M3, g) is constant,

the embedding Σ ↪→ (M3, g) is totally umbilic:
◦
h = 0,

the Gauß curvature K of Σ is constant
N and its normal derivative ν(N) are constant on Σ.

Moreover, we find the algebraic identities

NH = 2ν(N), (rH)2 =
4
3
,

1
r2 = K =

3
4

H2,

where r :=
√
|Σ|/4π is the area radius.
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Sketch of proofs

Step 2 for first theorem:

Theorem (C. 2014)
The Schwarzschild spacetime is the only regularly N-foliated static vacuum
asymptotically flat spacetime permitting a photon sphere (up to isometry).

Rewrite static vacuum equations as equations on the leaves
{N ≡ const.} (via Gauß- and Codazzi-equations).

Drop terms of the form |
◦
h|2 ≥ 0 and |∇(ν(N))|2 ≥ 0.

Integrate resulting inequalities over {N ≡ const.} and N ∈ [NΣ, 1].
Use Fubini’s theorem to obtain algebraic inequalities.
Use asymptotic decay information about N and g and the
quasi-local properties of the photon sphere to conclude rigidity.

Deduce
◦
h = 0, ν(N) ≡ const. on each leaf and thus spherical

symmetry of the spacetime.
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Sketch of proofs

Remark

Similar to Israel’s black hole uniqueness proof:

Theorem (Israel 1967)
The Schwarzschild black hole is the only regularly N-foliated static
vacuum asymptotically flat spacetime permitting a horizon
(N = 0,H = 0) (up to isometry).
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Sketch of proofs

Step 2 for second theorem:

Theorem (C. & Galloway 2015)
There cannot be multiple photon spheres and black holes in a static vacuum
asymptotically flat spacetime. The existence of one photon sphere or one black hole
already implies that the spacetime is isometric to the Schwarzschild spacetime.

In each photon sphere, glue in a neck piece of a very carefully
chosen Schwarzschild (up to the horizon).
Double the manifold across its horizon boundary.
Verify the glued manifold is C1,1 across the gluing surfaces.
Conformally modify & one-point-compactify (∞), achieving:

I non-negative scalar curvature, geodesically complete
I one AF end with vanishing ADM-mass,
I enough (Sobolev weak) regularity across gluing surfaces and∞.

Apply rigidity case of positive mass theorem (weak version).
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Sketch of proofs

Remark

Extending Bunting and Masood-ul-Alam’s black hole uniqueness proof:

Theorem (Bunting & Masood-ul-Alam 1987)
There cannot be multiple black holes in a static vacuum asymptotically
flat spacetime. The existence of one black hole already implies that the
spacetime is isometric to the Schwarzschild spacetime.
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Sketch of proofs

Consequence for the static n-body problem

Theorem (C. & Galloway 2015)
There are no static equilibrium configurations of n bodies and k black
holes with n + k ≥ 1 in which each body is surrounded by its own
photon sphere.
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