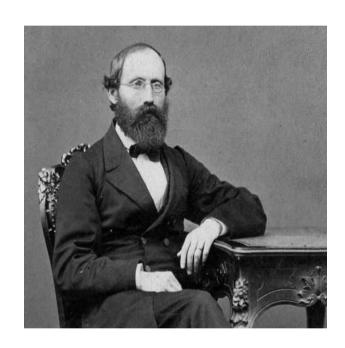


Riemannian Geometry with Skew Torsion

Ana Cristina Ferreira Universidade do Minho & Philipps-Universität Marburg

European Women in Mathematics – Rauischholzhausen – 2nd May 2015

Three major players...



Three major players...



Bernhard Riemann (1826-1866)

Albert Einstein (1879-1955)

Élie Cartan (1869-1951)

Small fish in a big shark tank...

Riemannian geometry with skew torsion

Ana Cristina Castro Ferreira St Cross College University of Oxford

A thesis submitted for the degree of Doctor of Philosophy Hilary Term 2010

Small fish in a big shark tank...

Riemannian geometry with skew torsion

Ana Cristina Castro Ferreira St Cross College University of Oxford

A thesis submitted for the degree of Doctor of Philosophy Hilary Term 2010

The center of the world...

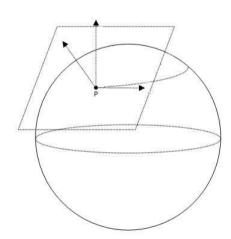
The center of the world...

Philipps-Universität Marburg

Basic ingredients

Riemannian manifolds (M^n, g)

B. Riemann's Habilitationsvortrag (Göttingen, 1854) "Über die Hypothesen, welche der Geometrie zugrunde liegen"



 M^n – a manifold of dimension n g – a metric, i.e. a scalar product on each tangent space

Connections

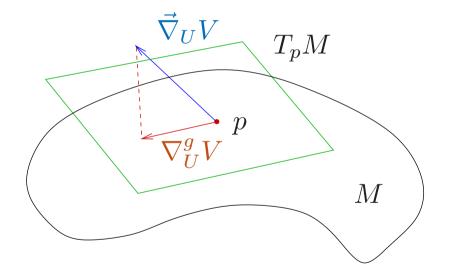
Throwback to calculus: Directional derivative of vector-valued smooth functions $f: \mathbb{R}^p \longrightarrow \mathbb{R}^q \longleftrightarrow \vec{\nabla}$

Connection ∇ : abstract derivation rule satisfying all formal properties of dir. derivative

different name: 'covariant derivative'

Ex. Projection $\nabla_U^g V$ of dir. derivative $\vec{\nabla}_U V$ to tangent plane

= 'Levi-Civita connection' ∇^g



 $[\nabla^g$: completely determined by g]

Connections

However... not only possibility

-- connection with torsion

[Dfn: Cartan, 1925]

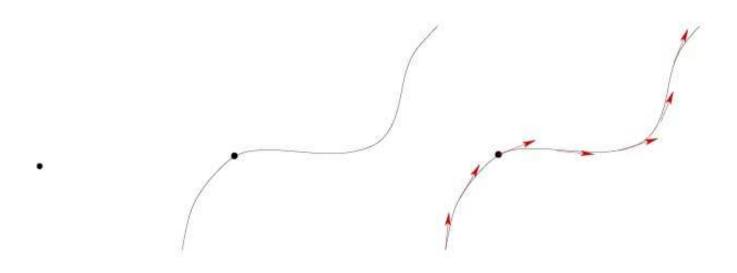
Ex. Electrodynamics: $\nabla_U V := \vec{\nabla}_U V + \frac{ie}{\hbar} A(U) V \iff \nabla_\mu = \partial_\mu + \frac{ie}{\hbar} A_\mu$)

A: gauge potential = electromagnetic potential

Ex. If n = 3: $\nabla_U V := \vec{\nabla}_U V + U \times V$ additional term gives space an 'internal angular momentum', a torsion

Fact: 3 types of torsion: vectorial, skew symmetric, and [something else].

Classical general relativity and electromagnetism



point particle

 $\begin{array}{c} \text{moves along} \\ \text{a curve } \gamma \end{array}$

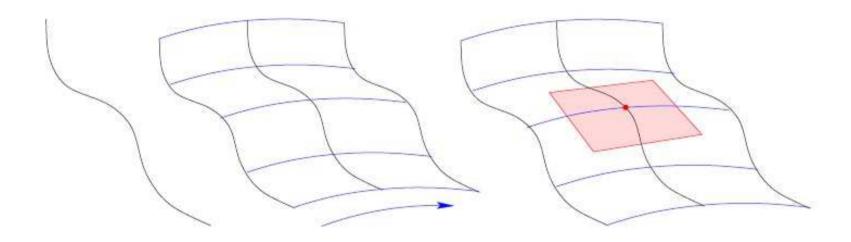
physical action: $\int_{\gamma} A$

for a potential A: 1-form

field strength F = dA : 2-form

geometric concept of curvature

Modern unified models



string particle

moves along a surface S

physical action: $\int \tilde{A}$ for

a higher order potential $\tilde{A}:$ 2-Form

higher order field strength

$$F = d\tilde{A} : 3$$
-form

geometric concept of torsion

Torsion and curvature

 x_1, \dots, x_n coordinates on M^n ; vector fields $\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}$

$$T\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right) = \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} - \nabla_{\frac{\partial}{\partial x_j}} \frac{\partial}{\partial x_i}$$

$$R\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right) = \nabla_{\frac{\partial}{\partial x_i}} \nabla_{\frac{\partial}{\partial x_j}} - \nabla_{\frac{\partial}{\partial x_j}} \nabla_{\frac{\partial}{\partial x_i}} \qquad \left[\frac{\partial^2}{\partial x_i \partial x_j} \stackrel{?}{=} \frac{\partial^2}{\partial x_j \partial x_i}\right]$$

Also: Ricci curvature, scalar curvature...

New data: (M^n, g, T)

More adapted to certain geometries:

- Lie groups, KT manifolds, Generalized geometry, Homogeneous spaces
- Almost Hermitian manifolds almost Kähler, nearly Kähler almost contact metric manifolds quasi-Sasaki cocalibrated G2

Einstein metrics

Field Equations: M^4 spacetime, g signature (3,1)

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} R + g_{\mu\nu}\Lambda = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Mathematical Einstein equations:

 (M^n, g) Riemannian manifold

$$R_{\mu\nu} = \frac{R}{n} g_{\mu\nu}$$

Topological obstruction – known only in dimension 4

Hitchin-Thorpe Inequality: $2\chi \geq 3|\tau|$

Einstein metrics with skew torsion

Dfn: In dimension 4, based on the phenomenon of self-duality [F. '11]

- Hitchin-Thorpe Inequality holds $\sqrt{}$
- *T is a Killing field

Question: How to generalize to higher dimensions?

Einstein metrics with skew torsion

Dfn: In dimension 4, based on the phenomenon of self-duality

[F. '11]

- Hitchin-Thorpe Inequality holds $\sqrt{}$
- *T is a Killing field

Question: How to generalize to higher dimensions?

$$R_{\mu\nu} = \frac{R}{n} g_{\mu\nu}$$

Einstein metrics with skew torsion

Dfn: In dimension 4, based on the phenomenon of self-duality

[F. '11]

- Hitchin-Thorpe Inequality holds $\sqrt{}$
- *T is a Killing field

Question: How to generalize to higher dimensions?

$$R_{\mu\nu} = \frac{R}{n} g_{\mu\nu}$$
 ?

Einstein metrics with parallel skew torsion

Assume $\nabla T = 0$. Then

[Agricola-F. '13]

- $\rightarrow R_{\mu\nu}$ is symmetric
- \rightarrow scalar curvature is a constant
- $\rightarrow R > 0 \Rightarrow M \text{ compact and } \pi_1 \text{ finite}$
 - → Best possible analogy with the Riemannian case ←
- Hordes of examples of manifolds with parallel torsion: Sasaki, nearly Kähler, nearly parallel G_2 , naturally reductive spaces...
- Systematic investigation of such examples $\sqrt{}$

Homogeneous spaces

- →Links algebraic theory of Lie groups and geometric notions such as isometry and curvature
- →good examples in Riemannian geometry
- →classification of (Riemannian) symmetric spaces

[Cartan 1926]

However classification without further assumptions is impossible

• very small dimensions

- positive curvature
- isotropy irreducible (examples of Einstein manifolds)

Our class:

naturally reductive homogeneous spaces

Homogeneous spaces

• (M,g) plus $G \subseteq \text{Iso}(M)$ s.t. G acts on M transitively. K stabilizer of a point $p \in M \longrightarrow M = G/K$.

Thm.

[Ambrose-Singer 1958]

(M,g) is homogeneous iff exists torsion T s.t. $\nabla T = \nabla \mathcal{R} = 0$

T skew symmetric \longleftrightarrow (M,g) naturally reductive

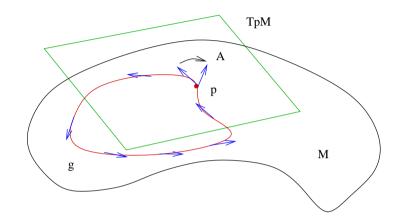
Previous classifications of nat. red. spaces

- →Dim 3 (Tricerri-Vanhecke, 1983)
- →Dim 4 and 5 (Kowalski-Vanhecke, 1983, 1985)

Our methods

[Agricola-F.-Friedrich '2015]

- Look at the parallel torsion as the fundamental object.
- Use recent development in the holonomy theory of connections with parallel skew torsion.
- Determine the "geometric nature" of M



An important tool

•
$$\sigma_T := \frac{1}{2} \sum_{i=1}^n (e_i \, \rfloor \, T) \wedge (e_i \, \rfloor \, T) = \mathop{\mathfrak{S}}^{X,Y,Z} g(T(X,Y), T(Z,V)) \quad (= 0 \text{ if } n \le 4)$$

→For "non-degenerate" torsion, the connection in (AS) is the characteristic connection for some known geometry (almost contact, almost Hermitian...).

Classifications

 $\sigma_T = 0$: $(n \ge 5) \ M$ is a compact simple Lie group or its dual noncompact symmetric space

 $\sigma_T \neq 0$:

dim.	space	remarks
	$\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$ $\mathrm{SU}(2), \mathrm{SL}(2, \mathbb{R}), H^3$	$T \sim \text{dvol}$ spaces forms left. inv. metric
4	$N^3 imes \mathbb{R}$	$*T$ parallel field N^3 nat. red.
5	H^{5} $(G_{1} \times G_{2})/SO(2)$ $SU(3)/SU(2), SU(2,1)/SU(2)$	$*\sigma_T$ Reeb field quasi-Sasaki α -Sasaki

Classifications

dim.	space	remarks	
6		$*\sigma_T$ skew-sym. endomorph.	
	$G_1 \times G_2$	$rk(*\sigma_T) = 2$	
	cannot occur	$rk(*\sigma_T) = 4$	
		$rk(*\sigma_T) = 6$	
	$S^6, S^3 \times S^3, \mathbb{C}P^3, \mathrm{U}(3)/U(1)^3$	type \mathcal{W}_1	
	$\mathbb{R}^3 \times \mathbb{R}^3, \mathbb{S}^3 \times \mathbb{R}^3, \mathbb{S}^3 \ltimes \mathbb{R}^3$	type $\mathcal{W}_1 \oplus \mathcal{W}_3$	
	$\mathbb{S}^3 \times \mathbb{S}^3, \mathrm{SL}(2, \mathbb{C})$		

¡ Vielen Dank für Ihre Aufmerksamkeit!