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Three major players...
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Bernhard Riemann Albert Einstein Élie Cartan

(1826-1866) (1879-1955) (1869-1951)



2

Small fish in a big shark tank...
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The center of the world...
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The center of the world...

Philipps-Universität Marburg
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Basic ingredients

Riemannian manifolds (Mn, g)

B. Riemann’s Habilitationsvortrag (Göttingen, 1854) “ Über die Hypothesen,

welche der Geometrie zugrunde liegen”

Mn – a manifold of dimension n
g – a metric, i.e. a scalar product on each tangent space
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Connections

Throwback to calculus: Direccional derivative of vector-valued smooth

functions f : Rp −→ Rq ←→ ~∇

Connection ∇: abstract derivation rule

satisfying all formal properties of dir.

derivative

different name: ‘covariant derivative’

Ex. Projection∇g
UV of dir. derivative ~∇UV

to tangent plane

= ‘Levi-Civita connection’ ∇g

p

TpM
~∇UV

∇g
UV

M

[∇g: completely determined by g]
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Connections

However... not only possibility

connection with torsion [Dfn: Cartan, 1925]

Ex. Electrodynamics: ∇UV := ~∇UV + ie
~
A(U)V (⇔ ∇µ = ∂µ + ie

~
Aµ)

A: gauge potential = electromagnetic potential

Ex. If n = 3: ∇UV := ~∇UV + U × V
additional term gives space an ‘internal angular momentum’, a torsion

Fact: 3 types of torsion: vectorial, skew symmetric, and [something else].
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Classical general relativity and electromagnetism

point particle
moves along

a curve γ

physical action:
∫

γ

A

for a potential A : 1-form

field strength

F = dA : 2-form
⇔

geometric concept

of curvature

curvature measures deviation from vacuum !
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Modern unified models

string particle
moves along

a surface S

physical action:
∫

S

Ã for

a higher order potential Ã : 2-Form

higher order field strength

F = dÃ : 3-form
⇔

geometric concept

of torsion

torsion measures deviation from vacuum (“integrable case”) !
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Torsion and curvature

x1, · · · , xn coordinates on Mn; vector fields ∂
∂x1

, · · · , ∂
∂xn

T
(

∂
∂xi

, ∂
∂xj

)

= ∇ ∂
∂xi

∂
∂xj
−∇ ∂

∂xj

∂
∂xi

R
(

∂
∂xi

, ∂
∂xj

)

= ∇ ∂
∂xi

∇ ∂
∂xj

−∇ ∂
∂xj

∇ ∂
∂xi

[

∂2

∂xi∂xj

?
= ∂2

∂xj∂xi

]

Also: Ricci curvature, scalar curvature...

New data: (Mn, g, T )

More adapted to certain geometries:

• Lie groups, KT manifolds, Generalized geometry, Homogeneous spaces

• Almost Hermitian manifolds – almost Kähler, nearly Kähler – almost contact metric

manifolds – quasi-Sasaki – cocalibrated G2
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Einstein metrics

Field Equations: M4 spacetime, g signature (3,1)

Mathematical Einstein equations:

(Mn, g) Riemannian manifold

Rµν =
R

n
gµν

Topological obstruction – known only in dimension 4

Hitchin-Thorpe Inequality: 2χ ≥ 3|τ | [1969/1974]
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Einstein metrics with skew torsion

Dfn: In dimension 4, based on the phenomenon of self-duality [F. ‘11]

• Hitchin-Thorpe Inequality holds
√

• ∗T is a Killing field

Question: How to generalize to higher dimensions?
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Einstein metrics with skew torsion

Dfn: In dimension 4, based on the phenomenon of self-duality [F. ‘11]

• Hitchin-Thorpe Inequality holds
√

• ∗T is a Killing field

Question: How to generalize to higher dimensions?

Rµν =
R

n
gµν
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Einstein metrics with skew torsion

Dfn: In dimension 4, based on the phenomenon of self-duality [F. ‘11]

• Hitchin-Thorpe Inequality holds
√

• ∗T is a Killing field

Question: How to generalize to higher dimensions?

¿ Rµν =
R

n
gµν ?

→some ‘issues’ with this definition...
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Einstein metrics with parallel skew torsion

Assume∇T = 0. Then [Agricola-F. ‘13]

→ Rµν is symmetric

→ scalar curvature is a constant

→ R > 0⇒M compact and π1 finite

−→ Best possible analogy with the Riemannian case←−

• Hordes of examples of manifolds with parallel torsion:

Sasaki, nearly Kähler, nearly parallel G2, naturally reductive spaces...

• Systematic investigation of such examples
√
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Homogeneous spaces

→Links algebraic theory of Lie groups and geometric notions such as isometry

and curvature

→good examples in Riemannian geometry

→classification of (Riemannian) symmetric spaces [Cartan 1926]

However classification without further assumptions is impossible

• very small dimensions • positive curvature

• isotropy irreducible (examples of Einstein manifolds)

Our class:

naturally reductive homogeneous spaces
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Homogeneous spaces

• (M, g) plus G ⊆ Iso(M) s.t. G acts on M transitively.

K stabilizer of a point p ∈M −→M = G/K.

Thm. [Ambrose-Singer 1958]

(M, g) is homogeneous iff exists torsion T s.t. ∇T = ∇R = 0

T skew symmetric←→ (M, g) naturally reductive

Previous classifications of nat. red. spaces

→Dim 3 (Tricerri-Vanhecke, 1983)

→Dim 4 and 5 (Kowalski-Vanhecke, 1983, 1985)
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Our methods [Agricola-F.-Friedrich ‘2015]

• Look at the parallel torsion as the

fundamental object.

• Use recent development in the

holonomy theory of connections with

parallel skew torsion.

• Determine the “geometric nature” of M

M

TpM

p

g

A

An important tool

• σT := 1
2

∑n
i=1(ei T ) ∧ (ei T ) =

X,Y,Z

S g(T (X, Y ), T (Z, V )) (= 0 if n ≤ 4)

→For “non-degenerate” torsion, the connection in (AS) is the characteristic connection for some

known geometry (almost contact, almost Hermitian...).
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Classifications

σT = 0: (n ≥ 5) M is a compact simple Lie group or its dual noncompact

symmetric space

σT 6= 0:

dim. space remarks

T ∼ dvol
R

3,S3,H3 spaces forms

SU(2), SL(2,R), H3 left. inv. metric

4 ∗T parallel field

N3 × R N3 nat. red.

5 ∗σT Reeb field

H5 quasi-Sasaki

(G1 ×G2)/SO(2)
SU(3)/SU(2), SU(2, 1)/SU(2) α-Sasaki
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Classifications

dim. space remarks

6 ∗σT skew-sym. endomorph.

G1 ×G2 rk(∗σT ) = 2

cannot occur rk(∗σT ) = 4

rk(∗σT ) = 6

S6, S3 × S3, CP 3, U(3)/U(1)3 typeW1

R3 × R3, S3 × R3, S3 ⋉R3 typeW1 ⊕W3

S
3 × S

3,SL(2,C)
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