Moduli spaces, integrable systems and applications to surface theory

Lynn Heller
(joint work with S. Heller and N. Schmitt, pictures by N. Schmitt and U. Wagner)

Schloss Rauischholzhausen, May 2nd, 2015
Surface Theory

M smooth, compact and Riemann surface
M smooth, compact and Riemann surface
$f : M \rightarrow \mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$ conformal immersion
Surface Theory

M smooth, compact and Riemann surface
$f : M \to \mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3$ conformal immersion

f is determined by induced metric, mean curvature H, and Hopf differential Q.
Surface Theory

Surfaces satisfying variational properties
Surface Theory

Surfaces satisfying variational properties

- Minimal surfaces: $H = 0$, critical points of area functional
Surfaces satisfying variational properties

- Minimal surfaces: $H = 0$, critical points of area functional
- with enclosed volume constraint
 \leadsto constant mean curvature (CMC) surfaces: $H = \text{const}$
Surface Theory

Surfaces satisfying variational properties

- Minimal surfaces: $H = 0$, critical points of area functional
- with enclosed volume constraint
 \leadsto constant mean curvature (CMC) surfaces: $H = \text{const}$
- ...

Theorem f has constant mean curvature (CMC) in \mathbb{R}^3, S^3, H^3, \ldots iff its Gauss map is harmonic.
Surface Theory

Surfaces satisfying variational properties

- Minimal surfaces: $H = 0$, critical points of area functional
- with enclosed volume constraint
 \Rightarrow constant mean curvature (CMC) surfaces: $H = \text{const}$
- ...

Theorem
f has constant mean curvature (CMC) in \mathbb{R}^3, S^3, H^3 iff its Gauß map is harmonic.
Questions concerning CMC surfaces in S^3

- Which compact CMC surfaces exist?
Questions concerning CMC surfaces in \mathbb{S}^3

- Which compact CMC surfaces exist?
- What are their properties (area, embeddedness,..)?
Questions concerning CMC surfaces in S^3

- Which compact CMC surfaces exist?
- What are their properties (area, embeddedness,..)?
- Characterize the moduli space of (compact, embedded) CMC surfaces!
State of the art

Results for compact CMC surfaces:
State of the art

Results for compact CMC surfaces:

► trivial fundamental group (genus 0): only round spheres (Hopf, Almgren)

► abelian fundamental group (genus 1):

► Pinkall & Sterling (89), Hitchin (90), Bobenko (91): all CMC tori via integrable systems

► Brendle, Andrews & Li (2012): embedded CMC tori are rotational symmetric

► non-abelian fundamental group (genus \(\geq 2 \)):

► few examples (Lawson, Karcher-Pinkall-Sterling, Kapouleas)

► no systematic methods for CMC surfaces of higher genus
State of the art

Results for compact CMC surfaces:

- trivial fundamental group (genus 0): only round spheres (Hopf, Almgren)

- abelian fundamental group (genus 1):
 - Pinkall & Sterling (89), Hitchin (90), Bobenko (91): all CMC tori via integrable systems

- non-abelian fundamental group (genus ≥ 2):
 - few examples (Lawson, Karcher-Pinkall-Sterling, Kapouleas)
 - no systematic methods for CMC surfaces of higher genus
State of the art

Results for compact CMC surfaces:

- trivial fundamental group (genus 0): only round spheres (Hopf, Almgren)
- abelian fundamental group (genus 1):
 - Pinkall & Sterling (89), Hitchin (90), Bobenko (91): all CMC tori via integrable systems
 - Brendle, Andrews & Li (2012): embedded CMC tori are rotational symmetric

- non-abelian fundamental group (genus ≥ 2): few examples (Lawson, Karcher-Pinkall-Sterling, Kapouleas)
- no systematic methods for CMC surfaces of higher genus
State of the art

Results for compact CMC surfaces:

- trivial fundamental group (genus 0): only round spheres (Hopf, Almgren)
- abelian fundamental group (genus 1):
 - Pinkall & Sterling (89), Hitchin (90), Bobenko (91): all CMC tori via integrable systems
 - Brendle, Andrews & Li (2012): embedded CMC tori are rotational symmetric
- non-abelian fundamental group (genus ≥ 2):
 - few examples (Lawson, Karcher-Pinkall-Sterling, Kapouleas)
State of the art

Results for compact CMC surfaces:

- trivial fundamental group (genus 0): only round spheres (Hopf, Almgren)

- abelian fundamental group (genus 1):
 - Pinkall & Sterling (89), Hitchin (90), Bobenko (91): all CMC tori via integrable systems
 - Brendle, Andrews & Li (2012): embedded CMC tori are rotational symmetric

- non-abelian fundamental group (genus ≥ 2):
 - few examples (Lawson, Karcher-Pinkall-Sterling, Kapouleas)
 - no systematic methods for CMC surfaces of higher genus
The space of embedded CMC tori in S^3
Gauge-theoretic description of CMC surfaces

\[f : M \rightarrow S^3 \text{ via Maurer-Cartan form } \omega = f^{-1}df \in \Omega^1(M, su(2)) \]
Gauge-theoretic description of CMC surfaces

\[f : M \to S^3 \text{ via Maurer-Cartan form } \omega = f^{-1}df \in \Omega^1(M, su(2)) \]

associated family of \(SL(2, \mathbb{C}) \)-connections on \(M \times \mathbb{C}^2 \):

- \(\Phi - \Phi^* = f^{-1}df \) and \(\lambda \in \mathbb{C}_* \)

\[
\nabla^\lambda = d + \frac{1}{2}(1 + \lambda^{-1})(1 + iH)\Phi - \frac{1}{2}(1 + \lambda)(1 - iH)\Phi^*
\]
Gauge-theoretic description of CMC surfaces

\[f : M \to S^3 \text{ via Maurer-Cartan form } \omega = f^{-1}df \in \Omega^1(M, su(2)) \]

associated family of \(SL(2, \mathbb{C}) \)-connections on \(M \times \mathbb{C}^2 \):

\[\Phi - \Phi^* = f^{-1}df \text{ and } \lambda \in \mathbb{C}_* \]

\[\nabla^\lambda = d + \frac{1}{2}(1 + \lambda^{-1})(1 + iH)\Phi - \frac{1}{2}(1 + \lambda)(1 - iH)\Phi^* \]

\[\nabla^\lambda \text{ is flat } \forall \lambda \in \mathbb{C}_* \iff H = \text{const}. \]
Gauge-theoretic description of CMC surfaces

\(f : M \rightarrow S^3 \) via Maurer-Cartan form \(\omega = f^{-1}df \in \Omega^1(M, su(2)) \)

associated family of \(SL(2, \mathbb{C}) \)-connections on \(M \times \mathbb{C}^2 \):

- \(\Phi - \Phi^* = f^{-1}df \) and \(\lambda \in \mathbb{C}_* \)
 \[
 \nabla^\lambda = d + \frac{1}{2}(1 + \lambda^{-1})(1 + iH)\Phi - \frac{1}{2}(1 + \lambda)(1 - iH)\Phi^*
 \]

- \(\nabla^\lambda \) is flat \(\forall \lambda \in \mathbb{C}_* \) \(\iff \) \(H = \text{const.} \)

Properties:

- \(\nabla^\lambda \) is unitary for \(\lambda \in S^1 \)
Gauge-theoretic description of CMC surfaces

\[f : M \to S^3 \text{ via Maurer-Cartan form } \omega = f^{-1} df \in \Omega^1(M, su(2)) \]

associated family of \(SL(2, \mathbb{C}) \)-connections on \(M \times \mathbb{C}^2 \):

- \(\Phi - \Phi^* = f^{-1} df \) and \(\lambda \in \mathbb{C}_* \)
 \[
 \nabla^\lambda = d + \frac{1}{2}(1 + \lambda^{-1})(1 + iH)\Phi - \frac{1}{2}(1 + \lambda)(1 - iH)\Phi^*
 \]

- \(\nabla^\lambda \) is flat \(\forall \lambda \in \mathbb{C}_* \iff H = \text{const.} \)

Properties:
- \(\nabla^\lambda \) is unitary for \(\lambda \in S^1 \)
- special asymptotic behavior for \(\lambda \to 0 \)
Gauge-theoretic description of CMC surfaces

\(f : M \to S^3 \) via Maurer-Cartan form \(\omega = f^{-1}df \in \Omega^1(M, su(2)) \)

associated family of \(SL(2, \mathbb{C}) \)-connections on \(M \times \mathbb{C}^2 \):

- \(\Phi - \Phi^* = f^{-1}df \) and \(\lambda \in \mathbb{C}_* \)

\[
\nabla^\lambda = d + \frac{1}{2}(1 + \lambda^{-1})(1 + iH)\Phi - \frac{1}{2}(1 + \lambda)(1 - iH)\Phi^*
\]

- \(\nabla^\lambda \) is flat \(\forall \lambda \in \mathbb{C}_* \iff H = \text{const.} \)

Properties:

- \(\nabla^\lambda \) is unitary for \(\lambda \in S^1 \)
- special asymptotic behavior for \(\lambda \to 0 \)
- reconstruction of \(f \) as gauge between \(\nabla^{\lambda_{1/2}}, \lambda_{1/2} \in S^1 \), Sym point conditions
CMC tori (Hitchin)

\[\nabla^\lambda \text{ has abelian monodromy} \Rightarrow \nabla^\lambda \text{ splits for generic } \lambda: \]
CMC tori (Hitchin)

\(\nabla^\lambda \) has abelian monodromy \(\Rightarrow \nabla^\lambda \) splits for generic \(\lambda \):

- \(\mathbb{C}^2 = L_\lambda \oplus L^*_\lambda \)

- \(\nabla^\lambda = d + \begin{pmatrix} \alpha(\lambda)d\omega - \chi(\lambda)d\bar{\omega} & 0 \\ 0 & -\alpha(\lambda)d\omega + \chi(\lambda)d\bar{\omega} \end{pmatrix} \)

\(L_\lambda, L^*_\lambda \) intersect at finitely many points \(\lambda_i \in \mathbb{C}^* \)

\(\Rightarrow \) Spectral curve \(\Sigma : \xi^2 = \lambda \prod_i (\lambda - \lambda_i) \)

\(\Rightarrow (\chi, \alpha) \) globally well-defined and meromorphic on \(\Sigma \)

\(\Rightarrow \) finite dimensional problem

\((\Sigma, \chi, \alpha) \) are algebraic and determine \(f \) up to dressing (\(\lambda \)-dependent gauge)
CMC tori (Hitchin)

\(\nabla^\lambda \) has abelian monodromy \(\Rightarrow \nabla^\lambda \) splits for generic \(\lambda \):

- \(\mathbb{C}^2 = L_\lambda \oplus L^*_\lambda \)
- \(\nabla^\lambda = d + \begin{pmatrix} \alpha(\lambda)d\omega - \chi(\lambda)d\bar{\omega} & 0 \\ 0 & -\alpha(\lambda)d\omega + \chi(\lambda)d\bar{\omega} \end{pmatrix} \)

\(L_\lambda, L^*_\lambda \) intersect at finitely many points \(\lambda_i \in \mathbb{C}_* \)
CMC tori (Hitchin)

\(\nabla^\lambda \) has abelian monodromy \(\implies \nabla^\lambda \) splits for generic \(\lambda \):

- \(\mathbb{C}^2 = L_\lambda \oplus L_\lambda^* \)

- \(\nabla^\lambda = d + \begin{pmatrix} \alpha(\lambda) d\omega - \chi(\lambda) d\bar{\omega} & 0 \\ 0 & -\alpha(\lambda) d\omega + \chi(\lambda) d\bar{\omega} \end{pmatrix} \)

\(L_\lambda, L_\lambda^* \) intersect at finitely many points \(\lambda_i \in \mathbb{C}_* \)

\(\leadsto \) Spectral curve \(\Sigma : \xi^2 = \lambda \prod_i (\lambda - \lambda_i) \)
CMC tori (Hitchin)

\(\nabla^\lambda \) has abelian monodromy \(\Rightarrow \) \(\nabla^\lambda \) splits for generic \(\lambda \):

\(\mathbb{C}^2 = L_\lambda \oplus L^*_\lambda \)

\(\nabla^\lambda = d + \begin{pmatrix} \alpha(\lambda)d\omega - \chi(\lambda)d\bar{\omega} & 0 \\ 0 & -\alpha(\lambda)d\omega + \chi(\lambda)d\bar{\omega} \end{pmatrix} \)

\(L_\lambda, L^*_\lambda \) intersect at finitely many points \(\lambda_i \in \mathbb{C}_* \)

\(\leadsto \) Spectral curve \(\Sigma : \xi^2 = \lambda \Pi_i(\lambda - \lambda_i) \)

\(\leadsto (\chi, \alpha) \) globally well-defined and meromorphic on \(\Sigma \)

\(\leadsto \) finite dimensional problem
CMC tori (Hitchin)

\(\nabla^\lambda \) has abelian monodromy \(\Rightarrow \nabla^\lambda \) splits for generic \(\lambda \):

\[\begin{align*}
\mathbb{C}^2 &= L_\lambda \oplus L^*_\lambda \\
\nabla^\lambda &= d + \begin{pmatrix}
\alpha(\lambda)d\omega - \chi(\lambda)d\bar{\omega} \\
0 \\
-\alpha(\lambda)d\omega + \chi(\lambda)d\bar{\omega}
\end{pmatrix}
\end{align*} \]

\(L_\lambda, L^*_\lambda \) intersect at finitely many points \(\lambda_i \in \mathbb{C}_* \)

\(\rightsquigarrow \) Spectral curve \(\Sigma : \xi^2 = \lambda \prod_i (\lambda - \lambda_i) \)

\(\rightsquigarrow (\chi, \alpha) \) globally well-defined and meromorphic on \(\Sigma \)

\(\rightsquigarrow \) finite dimensional problem

\(\rightsquigarrow (\Sigma, \chi, \alpha) \) are algebraic and determine \(f \) up to dressing (\(\lambda \)-dependent gauge)
Non-abelian monodromy

Theorem (S. Heller 09)

For immersed CMC surfaces of higher genus ∇^λ is irreducible for generic $\lambda \in \mathbb{C}_*$.
Non-abelian monodromy

Theorem (S. Heller 09)

For immersed CMC surfaces of higher genus ∇^λ is irreducible for generic $\lambda \in \mathbb{C}_*$.

- no parallel eigenline bundles
Non-abelian monodromy

Theorem (S. Heller 09)

For immersed CMC surfaces of higher genus ∇^λ is irreducible for generic $\lambda \in \mathbb{C}_\ast$.

- no parallel eigenline bundles
- no straightforward generalization of the spectral curve theory
Non-abelian monodromy

Theorem (S. Heller 09)

For immersed CMC surfaces of higher genus ∇^λ is irreducible for generic $\lambda \in \mathbb{C}_*$.

- no parallel eigenline bundles
- no straight forward generalization of the spectral curve theory
- gauge equivalence classes $[\nabla^\lambda]$ determine the surface
Reduction to Fuchsian Systems

Observation: \mathbb{Z}_{g+1} symmetric CMC surface (4 fixed points)
\Rightarrow Fuchsian systems ∇ on $M/\mathbb{Z}_{g+1} \cong \mathbb{C}P^1$
Reduction to Fuchsian Systems

Observation: \mathbb{Z}_{g+1} symmetric CMC surface (4 fixed points)
\Rightarrow Fuchsian systems ∇ on $M/\mathbb{Z}_{g+1} \cong \mathbb{C}P^1$

4 singular points $\{0, 1, m, \infty\} \in \mathbb{C}P^1$

$$\nabla = d + A_0 \frac{dz}{z} + A_1 \frac{dz}{z-1}dz + A_m \frac{dz}{z-m}, \quad A_i \in sl(2, \mathbb{C})$$
Reduction to Fuchsian Systems

Observation: \mathbb{Z}_{g+1} symmetric CMC surface (4 fixed points)
\Rightarrow Fuchsian systems ∇ on $M/\mathbb{Z}_{g+1} \cong \mathbb{CP}^1$

4 singular points $\{0, 1, m, \infty\} \in \mathbb{CP}^1$

$$\nabla = d + A_0 \frac{dz}{z} + A_1 \frac{dz}{z - 1} dz + A_m \frac{dz}{z - m}, \quad A_i \in sl(2, \mathbb{C})$$

Eigenvalue $\pm \rho_i$ of $A_i \rightsquigarrow$ local monodromies conjugated to

$$\begin{pmatrix} \exp(2\pi i \rho_i) & 0 \\ 0 & \exp(-2\pi i \rho_i) \end{pmatrix}$$
Abelianization of Fuchsian Systems

arXiv:1404.7707, joint work with S. Heller

Generic Fuchsian system ∇ with $\rho_i \in] - \frac{1}{2}, \frac{1}{2}[$ gauge equivalent to

$$d + \begin{pmatrix} -\chi d\bar{\omega} + \alpha d\omega & \beta^- d\omega \\ \beta^+ d\omega & \chi d\bar{\omega} - \alpha d\omega \end{pmatrix}$$

for immersed Z_{g+1} symmetric CMC surfaces $\rho_i = \rho = g_2 g_2 + 2$.
Abelianization of Fuchsian Systems

arXiv:1404.7707, joint work with S. Heller

Generic Fuchsian system ∇ with $\rho_i \in]-\frac{1}{2}, \frac{1}{2}[$ gauge equivalent to

$$d + \begin{pmatrix} -\chi d\bar{\omega} + \alpha d\omega & \beta^- d\omega \\ \beta^+ d\omega & \chi d\bar{\omega} - \alpha d\omega \end{pmatrix}$$

with $\chi, \alpha \in \mathbb{C}$
Abelianization of Fuchsian Systems
arXiv:1404.7707, joint work with S. Heller

Generic Fuchsian system ∇ with $\rho_i \in] - \frac{1}{2}, \frac{1}{2} [$ gauge equivalent to

$$d + \begin{pmatrix} -\chi d\bar{\omega} + \alpha d\omega & \beta^- d\omega \\ \beta^+ d\omega & \chi d\bar{\omega} - \alpha d\omega \end{pmatrix}$$

with $\chi, \alpha \in \mathbb{C}$
Abelianization of Fuchsian Systems

arXiv:1404.7707, joint work with S. Heller

Generic Fuchsian system ∇ with $\rho_i \in]-\frac{1}{2}, \frac{1}{2}[\text{ gauge equivalent to}$

$$d + \begin{pmatrix}
-\chi d\bar{\omega} + \alpha d\omega & \beta^- d\omega \\
\beta^+ d\omega & \chi d\bar{\omega} - \alpha d\omega
\end{pmatrix}$$

- with $\chi, \alpha \in \mathbb{C}$
- β^\pm meromorphic sections determined by ρ_i and χ
Generic Fuchsian system ∇ with $\rho_i \in] - \frac{1}{2}, \frac{1}{2} [$ gauge equivalent to

$$d + \begin{pmatrix} -\chi d\bar{\omega} + \alpha d\omega & \beta^- d\omega \\ \beta^+ d\omega & \chi d\bar{\omega} - \alpha d\omega \end{pmatrix}$$

- with $\chi, \alpha \in \mathbb{C}$
- β^\pm meromorphic sections determined by ρ_i and χ
- $d\omega = \frac{dz}{y}$ holomorphic 1–form on $T^2 : y^2 = z(z - 1)(z - m)$
Abelianization of Fuchsian Systems

arXiv:1404.7707, joint work with S. Heller

Generic Fuchsian system ∇ with $\rho_i \in] - \frac{1}{2}, \frac{1}{2} [$ gauge equivalent to

$$d + \begin{pmatrix} -\chi d\bar{\omega} + \alpha d\omega & \beta^- d\omega \\ \beta^+ d\omega & \chi d\bar{\omega} - \alpha d\omega \end{pmatrix}$$

- with $\chi, \alpha \in \mathbb{C}$
- β^\pm meromorphic sections determined by ρ_i and χ
- $d\omega = \frac{dz}{y}$ holomorphic 1–form on $T^2 : y^2 = z(z - 1)(z - m)$
- for immersed \mathbb{C}_{g+1} symmetric CMC surfaces $\rho_i = \rho = \frac{g}{2g + 2}$
How to obtain CMC surfaces

In order to construct CMC surfaces we need to satisfy:

- Unitarity condition for ∇^λ along $\lambda \in S^1$,
- Asymptotic at $\lambda \to 0$,
- Existence of two connections with trivial monodromy on S^1.

Unitary connections given by Narasimhan-Seshadri section α_{NS}:

Jac(T^2) $\to \mathbb{A}^1$ $\xrightarrow{\alpha}$ is uniquely determined by χ.

Family of Fuchsian systems determined by spectral data (Σ, χ, α) induces CMC surface with boundary f: $T^2 \setminus l_1 \cup l_2 \to S^3$.

α
How to obtain CMC surfaces

In order to construct CMC surfaces we need to satisfy:

- Unitarity condition for ∇^λ along $\lambda \in S^1$,
- Asymptotic at $\lambda \to 0$,
- Existence of two connections with trivial monodromy on S^1.

Unitary connections given by Narasimhan-Seshadri section $\alpha^{NS} : \text{Jac}(T^2) \to A^1 \leadsto \alpha$ is uniquely determined by χ.
How to obtain CMC surfaces

In order to construct CMC surfaces we need to satisfy:

▶ Unitarity condition for ∇^λ along $\lambda \in S^1$,
▶ Asymptotic at $\lambda \to 0$,
▶ Existence of two connections with trivial monodromy on S^1.

Unitary connections given by *Narasimhan-Seshadri* section $\alpha^{NS} : \text{Jac}(T^2) \to \mathcal{A}^1 \leadsto \alpha$ is uniquely determined by χ.

Family of Fuchsian systems determined by spectral data (Σ, χ, α) induces CMC surface with boundary $f : T^2 \setminus l_1 \cup l_2 \to S^3$.
Construction of spectral data

arXiv:1501.01929, joint work with S. Heller, N. Schmitt

Idea: deform spectral data of known surfaces (CMC tori) towards higher genus using $t = 2\rho - \frac{1}{2}$ as parameter!
Construction of spectral data

arXiv:1501.01929, joint work with S. Heller, N. Schmitt

Idea: deform spectral data of known surfaces (CMC tori) towards higher genus using $t = 2\rho - \frac{1}{2}$ as parameter!

Geometric visualisation:

- cut torus along curvature lines
- open the angle $4\pi t$ between curvature lines
Flow of spectral data

t-deformation induces deformation of spectral data:
Flow of spectral data

t-deformation induces deformation of spectral data:

- consider $\chi + x : \Sigma^0 \to \text{Jac}(T^2) \cong \mathbb{C}/\Gamma$,
 x in a Banach space of hol. functions on an open RS Σ^0
Flow of spectral data

t-deformation induces deformation of spectral data:

- consider $\chi + x: \Sigma^0 \rightarrow Jac(T^2) \cong \mathbb{C}/\Gamma$, x in a Banach space of hol. functions on an open RS Σ^0

- unitarity + asymptotic behavior + closing conditions gives rise to a non-linear equation on x (depending on t)
Flow of spectral data

t-deformation induces deformation of spectral data:

- consider $\chi + x : \Sigma^0 \rightarrow Jac(T^2) \cong \mathbb{C}/\Gamma$,
 x in a Banach space of hol. functions on an open RS Σ^0

- unitarity + asymptotic behavior + closing conditions gives rise to a non-linear equation on x (depending on t)

- for CMC tori: differential invertible
t-deformation induces deformation of spectral data:

- consider $\chi + x : \Sigma^0 \to \text{Jac}(T^2) \cong \mathbb{C}/\Gamma$,
 x in a Banach space of hol. functions on an open RS Σ^0

- unitarity + asymptotic behavior + closing conditions gives rise to a non-linear equation on x (depending on t)

- for CMC tori: differential invertible

- application of implicit function theorem for Banach spaces
Results

Short time existence of spectral data flow:
- for (stable) homogeneous CMC tori,
Results

Short time existence of spectral data flow:

- for (stable) homogeneous CMC tori,
- for 2-lobed Delaunay tori exists two different initial directions.
Results

Short time existence of spectral data flow:
 - for (stable) homogeneous CMC tori,
 - for 2-lobed Delaunay tori exists two different initial directions.

For small rational t there exists (new) families of compact (branched) CMC surfaces.
Results

Short time existence of spectral data flow:
 - for (stable) homogeneous CMC tori,
 - for 2-lobed Delaunay tori exists two different initial directions.

For small rational t there exists (new) families of compact (branched) CMC surfaces.

*If the flow exits until $\rho = \frac{g}{2g+2}$, we obtain closed immersed CMC surfaces of genus g with 4 umbilics of order $g - 1$.
Experimental flows from 2-lobed Delaunay tori

Figure: Deformation of 2-lobed CMC tori in stable direction
Experimental flows from 2-lobed Delaunay tori

Figure: Deformation of 2-lobed CMC tori in stable direction

Figure: Deformation of 2-lobed CMC tori in unstable direction
Experimental moduli space of embedded CMC surfaces

arXiv: 1503.07838, joint work with S. Heller, N. Schmitt
Lawson $\xi_{k,l}$ surfaces