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Surfaces satisfying variational properties
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 constant mean curvature (CMC) surfaces: H = const

I ...

Theorem
f has constant mean curvature (CMC) in R3,S3,H3 iff its
Gauß map is harmonic.
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State of the art

Results for compact CMC surfaces:

I trivial fundamental group (genus 0): only round spheres
(Hopf, Almgren)

I abelian fundamental group (genus 1):

I Pinkall & Sterling (89), Hitchin (90), Bobenko (91): all CMC
tori via integrable systems

I Brendle, Andrews & Li (2012): embedded CMC tori are
rotational symmetric

I non-abelian fundamental group (genus ≥ 2):
I few examples (Lawson, Karcher-Pinkall-Sterling, Kapouleas)

I no systematic methods for CMC surfaces of higher genus
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The space of embedded CMC tori in S3



Gauge-theoretic description of CMC surfaces

f : M → S3 via Maurer-Cartan form ω = f −1df ∈ Ω1(M, su(2))

associated family of SL(2,C)-connections on M × C2:

I Φ− Φ∗ = f −1df and λ ∈ C∗

∇λ = d + 1
2(1 + λ−1)(1 + iH)Φ− 1

2(1 + λ)(1− iH)Φ∗

I ∇λ is flat ∀λ ∈ C∗ ⇐⇒ H = const.

Properties:

I ∇λ is unitary for λ ∈ S1

I special asymptotic behavior for λ→ 0

I reconstruction of f as gauge between ∇λ1,2 , λ1/2 ∈ S1, Sym
point conditions
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CMC tori (Hitchin)

∇λ has abelian monodromy ⇒ ∇λ splits for generic λ:

I C2 = Lλ ⊕ L∗λ

I ∇λ = d +

(
α(λ)dω − χ(λ)d ω̄ 0

0 −α(λ)dω + χ(λ)d ω̄

)
Lλ, L

∗
λ intersect at finitely many points λi ∈ C∗

 Spectral curve Σ : ξ2 = λΠi (λ− λi )
I (χ, α) globally well-defined and meromorphic on Σ
 finite dimensional problem

I (Σ, χ, α) are algebraic and determine f up to dressing
(λ-dependent gauge)
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Non-abelian monodromy

Theorem (S. Heller 09)

For immersed CMC surfaces of higher genus ∇λ is irreducible for
generic λ ∈ C∗.

I no parallel eigenline bundles

I no straight forward generalization of the spectral curve theory

I gauge equivalence classes [∇λ] determine the surface
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Reduction to Fuchsian Systems

Observation: Zg+1 symmetric CMC surface (4 fixed points)
⇒ Fuchsian systems ∇ on M/Zg+1

∼= CP1

4 singular points {0, 1,m,∞} ∈ CP1

∇ = d + A0
dz

z
+ A1

dz

z − 1
dz + Am

dz

z −m
, Ai ∈ sl(2,C)

Eigenvalue ±ρi of Ai  local monodromies conjugated to(
exp (2πiρi ) 0

0 exp (−2πiρi )
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Abelianization of Fuchsian Systems
arXiv:1404.7707, joint work with S. Heller

Generic Fuchsian system ∇ with ρi ∈]− 1
2 ,

1
2 [ gauge equivalent to

d +

(
−χd ω̄ + αdω β−dω

β+dω χd ω̄ − αdω

)

I with χ, α ∈ C

I β± meromorphic sections determined by ρi and χ

I dω = dz
y holomorphic 1−form on T 2 : y2 = z(z − 1)(z −m)

I for immersed Zg+1 symmetric CMC surfaces ρi = ρ = g
2g+2
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How to obtain CMC surfaces
In order to construct CMC surfaces we need to satisfy:

I Unitarity condition for ∇λ along λ ∈ S1,
I Asymptotic at λ→ 0,
I Existence of two connections with trivial monodromy on S1.

Unitary connections given by Narasimhan-Seshadri section
αNS : Jac(T 2)→ A1  α is uniquely determined by χ.

Family of Fuchsian systems determined by spectral data (Σ, χ, α)
induces CMC surface with boundary f : T 2 \ l1 ∪ l2 → S3.
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Construction of spectral data
arXiv:1501.01929, joint work with S. Heller, N. Schmitt

Idea: deform spectral data of known surfaces (CMC tori) towards
higher genus using t = 2ρ− 1

2 as parameter!

Geometric visualisation:

I cut torus along curvature lines

I open the angle 4πt between curvature lines
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Flow of spectral data

t-deformation induces deformation of spectral data:

I consider χ+ x : Σ0 → Jac(T 2) ∼= C/Γ,
x in a Banach space of hol. functions on an open RS Σ0

I unitarity + asymptotic behavior + closing conditions gives rise
to a non-linear equation on x (depending on t)

I for CMC tori: differential invertible

I application of implicit function theorem for Banach spaces
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Results

Theorem (H., S. Heller, N. Schmitt, 2015)

Short time existence of spectral data flow:

I for (stable) homogeneous CMC tori,

I for 2-lobed Delaunay tori exists two different initial directions.

Theorem (H., S. Heller, N. Schmitt, 2015)

For small rational t there exists (new) families of compact
(branched) CMC surfaces.

If the flow exits until ρ = g
2g+2 , we obtain closed immersed CMC

surfaces of genus g with 4 umbilics of order g − 1.
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Experimental flows from 2-lobed Delaunay tori

Figure: Deformation of 2−lobed CMC tori in stable direction

Figure: Deformation of 2−lobed CMC tori in unstable direction
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Experimental moduli space of embedded CMC surfaces

arXiv: 1503.07838, joint work with S. Heller, N. Schmitt



Lawson ξk,l surfaces

arXiv: 1503.00969, joint work with S. Heller, N. Schmitt


