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Classical obstacle problem

Suppose we want to wrap a meatloaf in a plastic wrap.
Here the meatloaf is the obstacle, and the configuration of the plastic
wrap, after it adjusts to the geometry of the meatloaf, represents the
solution to the obstacle problem.
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Formulation of the classical obstacle problem

We are given:

φ ∈ C 2(D), the obstacle;

ψ ∈W 1,2(D) with φ ≤ ψ on ∂D, the boundary values;

f ∈ L∞(D) , the source term.

We want to minimize ∫
D

(|∇u|2 + 2fu)dx

over K = {u ∈W 1,2(D) : u = ψ on ∂D, u ≥ φ a.e. in D}.
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There exists a unique minimizer u which satisfies:

∆u = f in {u > φ}

∆u = ∆φ a.e. on {u = φ}.

Coincidence set: Λφ(u) = {x ∈ D | u(x) = φ(x)}.
Free boundary: Γφ(u) = ∂{x ∈ D | u(x) = φ(x)}.

First fundamental question: How smooth is the solution? The optimal
regularity of the solution is u ∈ C 1,1

loc (D) ∼= W 2,∞
loc (D).

Second fundamental question: How smooth is the free boundary? In 1977
Kinderlherer and Nirenberg proved that, if the free boundary is a C 1

hypersurface, then it is Cω (real analytic). In the same year Caffarelli
developed his theory of the regularity of the free boundary and proved
Lipschitz regularity, and then proved how to go from Lipschitz to C 1,α.
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The thin obstacle problem

We are given:

D ⊂ Rn: bounded domain;

M: smooth (n − 1)-dimensional manifold in Rn, that divides D into
two parts, D+ and D−;

φ :M→ R, the obstacle;

ψ : ∂D → R with ψ > φ on M∩ ∂D;

A(x) = [aij(x)] in D.

We want to minimize ∫
D
〈A(x)∇u,∇u〉dx , (0.1)

over the convex set

K = {u ∈W 1,2(D) | u = ψ on ∂D, u ≥ φ on M∩ D}. (0.2)
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The thin obstacle problem
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Where does the thin obstacle problem appear?

In elasticity (Signorini), when an elastic body is at rest, partially
laying on a surface M.

It models the flow of a saline concentration through a semipermeable
membrane.

In mathematical finance, when the random variation of an underlying
asset changes discontinuously.
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Notations, definitions

B1 ⊂ Rn: unit ball; M = B ′1 = B1 ∩ {xn = 0};

S1 ⊂ Rn: unit sphere;

the obstacle ϕ ∈ C 1,1(B ′1);

ψ : S1 → R such that ψ > ϕ on S1 ∩ B ′1

A(x) = [aij(x)] defined in B1.

Definitions

Λφ(u) = {x ∈M∩ D | u(x) = φ(x)} coincidence set

Γφ(u) = ∂MΛφ(u) free boundary
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Assumptions on A(x)

A(0) = I ;

(symmetry) aij(x) = aji (x),∀x ∈ B1, ∀i , j = 1, ..., n;

(ellipticity) ∃λ > 0 such that

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ λ−1|ξ|2,∀x ∈ B1,∀ξ ∈ Rn;

Lipschitz continuity of the aij , |aij(x)− aij(y)| ≤ M|x − y |,∀i , j .
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Properties of u

Signorini conditions:

Lu := div(A∇u) = 0 in B+
1 ∪ B−1 ,

u ≥ ϕ in B ′1,

〈A∇u, ν+〉+ 〈A∇u, ν−〉 ≥ 0 in B ′1,

(u − ϕ)(〈A∇u, ν+〉+ 〈A∇u, ν−〉) = 0 in B ′1.
ambiguous boundary conditions
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Regularity of the solution

Caffarelli (1979):

When M is a hyperplane, φ is C 2,α for some 0 < α < 1
2 and aij ∈ C 1,1

loc :

solution is C 1,α
loc (D± ∪M).

Arkhipova and Uraltseva (1985-87):

Same conclusion when aij ∈W 1,p
loc and φ ∈W 2,p

loc , for some p > n. This

includes, in particular, aij ∈W 1,∞
loc = C 0,1

loc .
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What about optimal regularity?

Even when A(x) ≡ I , M is flat and φ = 0 the best one can hope for is

C
1, 1

2
loc (D± ∪M). One has in fact the following global solution to the

Signorini problem with M = {xn = 0}, and φ ≡ 0

u(x) = <(x1 + i |xn|)3/2∈ C
1, 1

2
loc (D± ∪M).
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Optimal Regularity

Athanasopoulos & Caffarelli (2004): case A(x) ≡ I

Major breakthrough: they proved that when M is flat and φ = 0, then the

solution u to the Signorini problem is C
1, 1

2
loc (D± ∪M) for any n ≥ 2.

Richardson (1978, Ph.D. Dissertation): again, A(x) ≡ I

Had already proved this result when n = 2. His method is based on
complex analysis and does not extend to n ≥ 3.

Guillen (2009): A(x) ∈ C 1,γ
loc , for some γ > 0

Proved C
1, 1

2
loc (D± ∪M) regularity when M is flat and φ in C 1,β for some

β > 1
2 .
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Garofalo & Smit Vega Garcia (2013), A(x) ∈ C 0,1
loc

By means of some new monotonicity formulas, we have established the

C
1, 1

2
loc (D± ∪M) regularity when φ ∈ C 1,1 and the manifold M is flat.

Theorem (Garofalo & Smit Vega Garcia:)

Let u be the solution of the Signorini problem (0.1), (0.2) in B1, with
A(x) ∈ C 0,1(B1), and φ ∈ C 1,1(B ′1). If 0 ∈ Γφ(u), then

u ∈ C
1, 1

2
loc (B±1 ∪ B ′1) and

||u||
C1, 1

2 (B±1
2

∪B′1
2

)
≤ C (n, λ,M, ||u||W 1,2(B1)).
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Historical background: Almgren’s monotonicity formula

The crucial tool introduced to study the regularity of the minimizer is a
fundamental monotonicity formula proved in 1979 by F. Almgren, who
proved that if ∆u = 0 in B1, then the frequency of u, given by

r → N(u, r) =
rD(r)

H(r)
=

r
∫
Br
|∇u|2∫

Sr
u2

,

is increasing in (0, 1). Furthermore, N(r) ≡ κ ⇐⇒ u is homogeneous of
degree κ, i.e., u(rx) = rκu(x).

Theorem (Athanasopoulos, Caffarelli and Salsa (2007))

Let u be the solution of the Signorini problem in B1 when A(x) ≡ I , with
zero obstacle and flat thin manifold M. Then, the frequency r → N(u, r)
is increasing in (0, 1). Moreover, N(u, r) ≡ κ for 0 < r < 1 ⇐⇒ u is
homogeneous of degree κ in B1.
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Structure of the proof in the zero obstacle case

Let us consider the general Signorini problem (0.1), (0.2), with
A(x) ∈ C 0,1(B1). When the obstacle is zero, we introduce the following

Frequency function: N(r) =
rI (r)

H(r)
, 0 < r < 1,

where

I (r) =

∫
Sr

u〈A(x)∇u, ν〉 =

∫
Br

〈A(x)∇u,∇u〉,

H(r) =

∫
Sr

u2µdσ, µ(x) =
〈A(x)x , x〉
|x |2

.

Recall the original frequency function:

N(r) =
r
∫
Br
|∇u|2∫

Sr
u2

.
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Crucial result:

Theorem (Monotonicity formula for zero obstacle)

There exists a universal C > 0 such that r → Ñ(r) = eCrN(r) is
monotone nondecreasing for 0 < r < 1.

Important observation: the above theorem is not true for a general
Lipschitz matrix A(x). We prove it under the assumption that

ain(x ′, 0) = 0, i < n. (0.3)

However, we show that there exists a local C 1,1 diffeomorphism which
reduces the general Signorini problem (0.1), (0.2) to one for which (0.3)
holds. So (0.3) is not restrictive!
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Blow-ups

Assume 0 ∈ Γ(u).
Non-homogeneous rescalings of u:

ur (x) =
u(rx)

dr
, x ∈ B 1

r
, where dr =

(
1

rn−1

∫
Sr

u2µ

)1/2

Using the monotonicity of eCrN(r): ∃u0 ∈W 1,2(B1) such that (up to a
subsequence),

urj → u0 weakly in W 1,2(B1),

urj → u0 in L2(S1, dσ) and

urj → u0 in C 1
loc(B±1 ∪ B ′1)
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Properties of the limit

∆u0 = 0 in B+
1 ∪ B−1 ;

u0 ≥ 0 on B ′1,

〈∇u0, ν+〉+ 〈∇u0, ν−〉 ≥ 0 on B ′1,

u0(〈∇u0, ν+〉+ 〈∇u0, ν−〉) = 0 on B ′1;

u0 is homogeneous of degree N(0+).

N(0+) = 3
2 or N(0+) ≥ 2 (Petrosyan, Shahgholian & Uraltseva).

Mariana Smit Vega Garcia (DUE) The thin obstacle problem 01/05/2015 19 / 35



Properties of the limit

∆u0 = 0 in B+
1 ∪ B−1 ;

u0 ≥ 0 on B ′1,

〈∇u0, ν+〉+ 〈∇u0, ν−〉 ≥ 0 on B ′1,

u0(〈∇u0, ν+〉+ 〈∇u0, ν−〉) = 0 on B ′1;

u0 is homogeneous of degree N(0+).

N(0+) = 3
2 or N(0+) ≥ 2 (Petrosyan, Shahgholian & Uraltseva).

Mariana Smit Vega Garcia (DUE) The thin obstacle problem 01/05/2015 19 / 35



Properties of the limit

∆u0 = 0 in B+
1 ∪ B−1 ;

u0 ≥ 0 on B ′1,

〈∇u0, ν+〉+ 〈∇u0, ν−〉 ≥ 0 on B ′1,

u0(〈∇u0, ν+〉+ 〈∇u0, ν−〉) = 0 on B ′1;

u0 is homogeneous of degree N(0+).

N(0+) = 3
2 or N(0+) ≥ 2 (Petrosyan, Shahgholian & Uraltseva).

Mariana Smit Vega Garcia (DUE) The thin obstacle problem 01/05/2015 19 / 35



Blow up and optimal regularity

Lemma

Let u solve the thin obstacle problem in B1 with ϕ = 0, 0 ∈ Γ(u) and
N(0+) ≥ κ. Then ∃C0 = C0(n, λ,M, ||u||W 1,2(B1)) > 0 such that

sup
Br

|u| ≤ C0r
κ, 0 < r < r0.

Now recall that we have κ ≥ 3
2 !
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Challenges of the non-zero obstacle case

When ϕ ≡ 0, then Lu = 0 outside of B ′1, so Ñ(r) = eCrN(r)↗ which
gives optimal regularity.

Natural idea in the case of non zero obstacle is to subtract the obstacle,
and consider v(x) = u(x)− ϕ(x ′)− ∂ν+u(0)xn.

Now Lv = f outside B ′1, with f ∈ L∞ and life is not so easy...
When L = ∆, then

r

2

d

dr
logH(r) = N(r) +

n − 1

2
. (0.4)
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Challenges of the non-zero obstacle case

For a general L one has

r

2

d

dr
logH(r) =

rI (r)

H(r)
+

r

2

∫
Sr
v2L|x |
H(r)

The term
r

2

∫
Sr
v2L|x |
H(r)

is the one to be tamed. Its potential bad oscillations could destroy the
monotonicity of the adjusted frequency.
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Challenges of the non-zero obstacle case

New idea: work with a truncated version of a suitable normalization of
H(r).

We introduce functions:

ψ(r), σ(r) : (0, 1]→ (0,∞),

where the role of ψ(r) is to kill the term

r

2

∫
Sr
v2L|x |
H(r)

,

whereas the role of the function σ(r) is to clean up the blood introduced
in the process.
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A new frequency function

We define the renormalized height and energy

M(r) =
1

ψ(r)
H(r), J(r) =

1

ψ(r)
I (r)

and introduce the generalized frequency of v

Φ(r) =
σ(r)J(r)

M(r)
=
σ(r)I (r)

H(r)
,
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Partial Monotonicity

Recall that

Φ(r) =
σ(r)J(r)

M(r)
=
σ(r)I (r)

H(r)
.

Theorem (Partial monotonicity of the generalized frequency)

Given δ ∈ (0, 1), there exist r0,K > 0 such that r → eKr
1−δ

2 Φ(r) is
non-decreasing in the open set{

r ∈ (0, r0) | M(r) > r3+δ
}
.
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Full Monotonicity

Theorem (Monotonicity of the truncated frequency)

Given δ ∈ (0, 1), there exist r0,K > 0 (depending on δ and ||f ||L∞), such
that

N(r) =
σ(r)

2
eKr

1−δ
2 d

dr
log max

{
M(r), r3+δ

}
.

is monotone non-decreasing on (0, r0).

Define
Ñ(r) =

r

σ(r)
N(r).

Since lim
r→0+

r
σ(r) = α > 0, Ñ(0+) exists.
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First we prove, by studying the blow ups, that Ñ(0+) ≥ 3
2 .

Then, since Ñ(0+) ≥ 3
2 , we obtain that

sup
Br

|v | ≤ Cr
3
2 ,

which gives optimal regularity.
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Regularity of the regular part of the free boundary

With v as before and x0 ∈ Γ(v), denote

vx0(x) = v(x0 + A1/2(x0)x)− bx0xn,

bx0 = 〈A1/2(x0)∇v(x0), en〉.

Definition

Γ3/2(v) =
{
x0 ∈ Γ(v) : Ñ(0+, vx0) =

3

2

}
is the regular set.

Mariana Smit Vega Garcia (DUE) The thin obstacle problem 01/05/2015 28 / 35



The regular set

In the Laplacian case, the regular set is C 1,α regular:

Proposition (Caffarelli, Salsa, Silvestre, 2008:)

Let u solve the thin obstable problem in B1 with A ≡ I and ϕ ∈ C 2,1.
Then Γ3/2(u) is locally a C 1,α-regular (n − 2)-dimensional surface.
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Weiss monotonicity formula

We introduce a functional suited for the study of the blowups at regular
free boundary points by analysing the homogeneous rescallings of v :
Cr (x) = v(rx)

r3/2 .

Weiss type functional: WL(v , r) =
σ(r)

r3

{
JL(v , r)− 3

2r
ML(v , r)

}
.

Theorem (Garofalo, Petrosyan & Smit Vega Garcia)

Assume 0 ∈ Γ3/2(v). There exists a universal constant C > 0 such that

d

dr

(
WL(v , r) + Cr1/2

)
≥ 2

rn+1

∫
Sr

(
〈A∇v , ν〉
√
µ

−
3
√
µ

2r
v

)2

. (0.5)

Hence, r 7→WL(v , r) + Cr1/2 is monotone nondecreasing, therefore the

limit WL(0+, v)
def
= lim

r→0
WL(v , r) exists.
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We recall the definition of the homogeneous rescallings of v :

Cr (x) =
v(rx)

r3/2
.

Lemma

Let 0 ∈ Γ3/2(v). Given rj → 0, ∃C0 ∈ C 1,α
loc ((Rn)± ∪ {0}),∀α ∈ (0, 1/2),

such that
Crj → C0 in C 1,α

loc ((Rn)± ∪ {0}).

C0 is a global solution in Rn of the Signorini problem with zero thin
obstacle, homogeneous of degree 3/2.
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Epiperimetric inequality

Let
h(x) = <(x1 + i |xn|)

3
2 .

In the Laplacian case, our Weiss functional takes an easier form:

W∆(v) := W∆(v , 1) =

∫
B1

|∇v |2 − 3

2

∫
S1

v2dHn−1.

Theorem (Garofalo, Petrosyan, Smit Vega Garcia)

There exists κ ∈ (0, 1) and θ ∈ (0, 1) such that if w ∈W 1,2(B1) is
homogeneous of degree 3

2 , w ≥ 0 on B ′1 and ‖w − h‖W 1,2(B1) ≤ θ, then

there exists ζ ∈W 1,2(B1) such that ζ = w on S1, ζ ≥ 0 on B ′1 and

W∆(ζ) ≤ (1− κ)W∆(w).
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Uniquess of blowups

For r > 0 and x0 ∈ Γ3/2(v), we define the homogeneous rescalings

Cx0,r (x) = v(x0+A1/2(x0)x)

r3/2 .

Proposition

Let v be as before with x0 ∈ Γ3/2(v). Then,
∃ r0 = r0(x0), η0 = η0(x0) > 0 such that

Γ(v) ∩ B ′η0
(x0) ⊂ Γ3/2(v).

Moreover, if Cx̄ ,0 is any blow up of v at x̄ ∈ Γ(u) ∩ B ′η0
(x0), then∫

S1

|Cx̄ ,r − Cx̄ ,0| ≤ Crγ , for all r ∈ (0, r0),

where C and γ > 0 are universal constants.
In particular, the blow-up limit Cx̄ ,0 is unique.
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Regularity of the regular set

Theorem (Garofalo, Petrosyan, Smit Vega Garcia, 2015)

Let v be a solution of the thin obstacle problem with x0 ∈ Γ3/2(v). Then
there exists η0 = η0(x0) > 0 such that

B ′η0
(x0) ∩ Γ(v) ⊂ Γ3/2(v)

and
B ′η0

(x0) ∩ Λ(v) = B ′η0
(x0) ∩ {xn−1 ≤ g(x ′′)}

for g ∈ C 1,β(Rn−2) with a universal exponent β ∈ (0, 1), after a possible
rotation of coordinate axes in Rn−1.
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Thank you!
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