Locally conformal symplectic Lie groups

Giovanni Bazzoni

Ludwig-Maximilians-Universität München j. w. with J. C. Marrero, Universidad de La Laguna Schloß Rauischholzhausen, 9/3/16

Giovanni Bazzoni Locally conformal symplectic Lie groups

What is this about?

- 1 Locally conformal symplectic geometry
- 2 Structure results for lcs manifolds of the 1st kind
- 3 Locally conformal symplectic Lie groups and Lie algebras
- 4 An example

Goal of the talk

Goal

The aim of the talk is the study of **locally conformal symplectic structures** (lcs), with a particular emphasis on Lie groups and Lie algebras. We will show that there is an interplay between

symplectic, contact and lcs structures of the 1st kind

A locally conformal symplectic structure (lcs) on a manifold $M^{\geq 4}$ consists of a non-degenerate 2-form $\omega \in \Omega^2(M)$ and an open covering $\{U_\alpha\}$ of M such that there exist $f_\alpha \in C^\infty(U_\alpha)$ such that $d(e^{f_\alpha}\omega|_{U_\alpha}) = 0$. Equivalently, $d\omega = \theta \wedge \omega$ for some closed $\theta \in \Omega^1(M)$, the Lee form. We denote the lcs structure by (ω, θ) .

- Since ω is non-degenerate, dim M = 2n
- We always assume that θ is non-zero
- If (ω, θ) is a lcs structure with θ exact, then (ω, θ) is globally conformal to a symplectic structure
- Lcs manifolds can be seen as generalized phase spaces of Hamiltonian dynamical systems

Lichnerowicz cohomology

If *M* is a manifold and $\theta \in \Omega^1(M)$ is closed, define the Lichnerowicz differential $d_{\theta} \colon \Omega^*(M) \to \Omega^{*+1}(M)$ by

$$\mathbf{d}_{\theta}\alpha = \mathbf{d}\alpha - \theta \wedge \alpha$$

- $\omega \in \Omega^*(M^{2n})$ with $\omega^n \neq 0$ defines a lcs structure $\Leftrightarrow \exists \ \theta \in \Omega^1(M)$, closed, with $d_{\theta}(\omega) = 0$
- (ω, θ) is exact if $\exists \eta \in \Omega^1(M)$ with $d_{\theta}(\eta) = \omega$; non-exact otherwise
- (ω, θ) is of the first kind if $\exists U \in \mathfrak{X}(M)$, the anti-Lee field, with $L_U \omega = 0$ and $\theta(U) = 1$; of the second kind otherwise
- Being exact is not an invariant of the conformal class of the lcs structure

Proposition

Let (ω, θ) be a lcs structure of the first kind on M^{2n} and let $U \in \mathfrak{X}(M)$ be the anti-Lee field. Set $\eta = -i_U \omega$. Then

• $d\eta$ has rank 2n-2

•
$$\theta \wedge \eta \wedge (d\eta)^{n-1} \neq 0$$

•
$$\omega = d\eta - \theta \wedge \eta$$

Conversely, let M^{2n} be a manifold endowed with two nowhere zero 1-forms θ and η with $d\theta = 0$, rank $(d\eta) < 2n$ and such that $\theta \wedge \eta \wedge (d\eta)^{n-1} \neq 0$. If we set $\omega = d\eta - \theta \wedge \eta$, then (ω, θ) is a lcs structure of the first kind on M.

Examples

- Let Q be a manifold, let $\hat{\theta} \in \Omega^1(Q)$ be closed and let $\pi: T^*Q \to Q$ be the projection. If $\lambda_{can} \in \Omega^1(T^*Q)$ is the canonical 1-form, $\omega = -d\lambda_{can} + \theta \wedge \lambda_{can}$ defines a lcs structure on T^*Q ; here $\theta = \pi^*\hat{\theta}$
- even-dimensional leaves of a transitive Jacobi structure have a lcs structure
- Let (g, J) be a Hermitian structure on M^{2n} , with Kähler form ω and Lee form $\theta = \frac{1}{n-1}(\delta\omega) \circ J$. (g, J) is locally conformal Kähler (lcK) if $\theta \neq 0$, $d\theta = 0$ and $d\omega = \theta \wedge \omega$. It is Vaisman if, in addition, $\nabla \theta = 0$. Every lcK structure has an underlying lcs structure.

Locally conformal Kähler structures

- LcK metrics on compact complex surfaces have been studied by Belgun
- LcK homogeneous structures are Vaisman (Alekseevski et al.)
- No known topological obstructions to the existence of lcK metrics on a compact manifold
- If M carries a Vaisman structure, then $b_1(M)$ is odd
- There exist IcK manifolds with b₁ even (Oeljeklaus Toma)

Question (Ornea - Verbitski)

Are there compact manifolds with lcs structure but no lcK metrics?

Let P be a smooth manifold and let $\varphi \colon P \to P$ be a diffeomorphism. The \mathbb{Z} -action $(p, t) \mapsto (\varphi^m(p), t + m)$ on $P \times \mathbb{R}$ is free and properly discontinuous, hence the quotient space P_{φ} is a smooth manifold.

Definition

 P_{φ} is the mapping torus of P and φ . $P \to P_{\varphi} \to S^1$ is a fiber bundle.

Proposition

Let (P, η) be a contact manifold and let $\varphi \colon P \to P$ be a strict contactomorphism. Then the mapping torus P_{φ} has a lcs structure of the first kind.

More examples and a question

More examples

- The product of a compact contact manifold and a circle has a lcs structure of the first kind
- In particular, $S^3 \times S^1$ is a compact manifold with a lcs structure, but no symplectic structures
- [Bande-Kotschick] One can choose a 3-manifold P in such a way that P × S¹ has no complex structure ⇒ Positive answer to Ornea-Verbitski

Question

Are there compact **non-product** manifolds with a lcs structure but no lcK metrics?

Theorem (Banyaga)

Let (ω, θ) be a lcs structure of the first kind on M compact and let U be the anti-Lee field. Then M is fibered over S^1 and the restriction of $\eta = -i_U \omega$ to each fiber is a contact form.

- A compact manifold fibering over S¹ is diffeomorphic to a mapping torus
- Banyaga proves that *M* is diffeomorphic to the mapping torus of a strict contactomorphism of a fiber.

Let (ω, θ) be a lcs structure on M. The Lee vector field is $V \in \mathfrak{X}(M)$, defined by $\imath_V \omega = \theta$.

Theorem (Vaisman)

Let (ω, θ) be a lcs structure of the first kind on M compact; let Uand V be the anti-Lee and Lee field. The distribution $\mathcal{D} = \langle U, V \rangle$ integrates to a foliation \mathcal{G} on M. Under certain regularity assumptions, the space of leaves $N = M/\mathcal{G}$ has a symplectic structure and $p: M \to N$ is a principal T^2 -bundle.

Theorem (-, Marrero)

Let M be a compact connected manifold endowed with a lcs structure of the first kind (ω, θ) , let U be the anti-Lee vector field and write $\omega = d_{\theta}(\eta)$. If

• U is complete

• $\mathcal{F} = \{\theta = 0\}$ has a compact leaf *L* with inclusion $i: L \to M$, then

- $i^*\eta$ is a contact form on L
- there exists a strict contactomorphism $\varphi \colon L \to L$
- the flow of U induces an isomorphism between L_{φ} and M.

A Lie group G of dimension 2n ($n \ge 2$) is a locally conformal symplectic (lcs) Lie group if there exist

- $\omega \in \Omega^2(G)^G$ with $\omega^n \neq 0$ and
- $heta \in \Omega^1(G)^G$ closed

with $d\omega = \theta \wedge \omega$. (ω, θ) is of the first kind if there exists $U \in \mathfrak{X}(G)^G$ with $L_U \omega = 0$ and $\theta(U) = 1$. Then $\eta = -i_U \omega \in \Omega^1(G)^G$ satisfies $\omega = d\eta - \theta \wedge \eta$.

A Lie algebra g of dimension 2n ($n \ge 2$) is a locally conformal symplectic (lcs) Lie algebra if there exist

• $\omega \in \Lambda^2 \mathfrak{g}^*$ with $\omega^n \neq 0$ and

•
$$\theta \in \mathfrak{g}^*$$
 with $d\theta = 0$

with $d\omega = \theta \wedge \omega$.

The lcs structure is of the first kind if there exists $U \in \mathfrak{g}$ with $L_U \omega = 0$ and $\theta(U) = 1$. Then $\eta = -i_U \omega \in \mathfrak{g}^*$ satisfies $\omega = d\eta - \theta \wedge \eta$.

Let \mathfrak{s} be a Lie algebra, dim $\mathfrak{s} = 2n$. A symplectic structure on \mathfrak{s} is $\sigma \in \Lambda^2 \mathfrak{s}^*$, closed and non-degenerate, i. e. $\sigma^n \neq 0$

Definition

Let \mathfrak{h} be a Lie algebra, dim $\mathfrak{h} = 2n - 1$. A contact structure on \mathfrak{h} is $\eta \in \mathfrak{h}^*$ such that $\eta \wedge (d\eta)^{n-1} \neq 0$. The Reeb vector is $R \in \mathfrak{h}$, defined by $\iota_R d\eta = 0$ and $\eta(R) = 1$.

A few facts

- A unimodular symplectic Lie algebra is solvable.
- The only semisimple Lie algebras admitting contact structures are su(2) and sl(2).

Proposition (Angella, -, Parton)

Let $(\mathfrak{g}, \omega, \theta)$ be a reductive lcs Lie algebra. Then \mathfrak{g} is 4-dimensional. If \mathfrak{g} is unimodular, then $\mathfrak{g} = \mathfrak{su}(2) \oplus \mathbb{R}$, otherwise $\mathfrak{g} = \mathfrak{sl}(2) \oplus \mathbb{R}$.

 $\mathfrak{su}(2)\oplus\mathbb{R}$ is the Lie algebra of $S^3 imes S^1.$

Where to look for?

We concentrate therefore on **nilpotent** and, more generally, **solvable** lcs Lie algebras.

Proposition (-, Marrero)

Lcs Lie algebras of the first kind are in 1-1 correspondence with contact Lie algebras endowed with a contact derivation.

- If (\mathfrak{h},η) is a contact Lie algebra and $D: \mathfrak{h} \to \mathfrak{h}$ is a derivation with $D^*\eta = 0$, then $\mathfrak{g} = \mathfrak{h} \rtimes_D \mathbb{R}$ is endowed with a lcs structure of the first kind.
- Suppose (g, ω, θ) is a lcs Lie algebra of the first kind with dim g = 2n; let U be the anti-Lee field and η = -iUω. Set h = ker(θ) and let η be the restriction of η to h. Then (h, η) is a contact Lie algebra, endowed with a derivation D with D*η = 0. Moreover, g ≅ h ⋊_D ℝ.

Contact Lie algebras from symplectic Lie algebras

If (\mathfrak{h},η) is a contact Lie algebra, then:

•
$$\mathfrak{Z}(\mathfrak{h}) = \langle R \rangle$$

We consider contact Lie algebras with non-trivial center.

Proposition

Contact Lie algebras with non-trivial center are in 1-1 correspondence with central extensions of symplectic Lie algebras.

- If $\sigma \in \Lambda^2 \mathfrak{s}^*$ is a symplectic structure on \mathfrak{s} , the central extension $\mathfrak{h} = \mathbb{R} \odot_{\sigma} \mathfrak{s}$ of \mathfrak{s} by $\sigma \in Z^2(\mathfrak{s}, \mathbb{R})$ has a contact structure
- if (𝔥, η) is a contact Lie algebra with Reeb vector R such that Z(𝔥) = ⟨R⟩, then the Lie algebra 𝔅 = 𝔥/⟨R⟩ has a symplectic structure σ and 𝔥 is isomorphic to ℝ ⊙σ 𝔅.

Lcs extensions

symplectic \longleftrightarrow contact \longleftrightarrow lcs of the 1^{st} kind

Definition

A derivation D of (\mathfrak{s}, σ) is symplectic if

$$\sigma(DX, Y) + \sigma(X, DY) = 0 \quad \forall X, Y \in \mathfrak{s}.$$

Theorem (-, Marrero)

There exists a 1-1 correspondence between lcs Lie algebras of the first kind $(\mathfrak{g}, \omega, \theta)$ of dimension 2n + 2 with central Lee vector and symplectic Lie algebras (\mathfrak{s}, σ) of dimension 2n endowed with a symplectic derivation.

Take a symplectic Lie algebra (\mathfrak{s}, σ) and a symplectic derivation $D \colon \mathfrak{s} \to \mathfrak{s}$. On $\mathfrak{g} = \mathbb{R} \oplus \mathfrak{s} \oplus \mathbb{R}$ define the Lie bracket

$$[(a, X, \alpha), (b, Y, \beta)]_{\mathfrak{g}} = (\sigma(X, Y), \alpha D(Y) - \beta D(X) + [X, Y]_{\mathfrak{s}}, 0).$$
(1)
(1)

Then $(\mathfrak{g}, [\;,\;]_\mathfrak{g})$ is a Lie algebra. Define $heta, \eta \in \mathfrak{g}^*$ by

$$\theta(a, X, \alpha) = \alpha$$
 and $\eta(a, X, \alpha) = a.$ (2)

Then (ω, θ) , where $\omega = d_{\theta}(\eta)$, is a lcs structure of the first kind on \mathfrak{g} with central Lee vector $V = (1, 0, 0) \in \mathfrak{g}$.

Definition

 $\mathfrak{g} = \mathbb{R} \oplus \mathfrak{s} \oplus \mathbb{R}$ endowed with the Lie algebra structure (1) and the lcs structure of the first kind (2) is the lcs extension of (\mathfrak{s}, σ) by the derivation D.

You need:

- a symplectic Lie algebra $(\mathfrak{s}_0, \sigma_0)$
- a derivation $D_0 \colon \mathfrak{s}_0 \to \mathfrak{s}_0$
- a vector $Z_0 \in \mathfrak{s}_0$

Recipe:

- $D_0^*\sigma_0 \in Z^2(\mathfrak{s}_0,\mathbb{R})$; put $\mathfrak{h}_0 = \mathbb{R} \odot_{D_0^*\sigma_0} \mathfrak{s}_0$
- the linear map $A \colon \mathfrak{h}_0 \to \mathfrak{h}_0$, $(a, X) \mapsto (-\sigma_0(Z_0, X), -D_0(X))$ is a derivation $\Leftrightarrow d(i_{Z_0}\sigma_0) = -(D_0^*)^2\sigma_0$
- assuming it is so, $\mathfrak{s}=\mathfrak{h}_0\rtimes_A\mathbb{R}$ is a symplectic Lie algebra with symplectic form

$$\sigma((a, X, \alpha), (b, Y, \beta)) = a\beta - \alpha b + \sigma_0(X, Y)$$

 (\mathfrak{s}, σ) is the symplectic double extension of $(\mathfrak{s}_0, \sigma_0)$ by D_0 and Z_0 .

Theorem (Dardié, Medina, Revoy)

Every symplectic Lie algebra can be obtained by a sequence of symplectic double extensions starting with the abelian Lie algebra \mathbb{R}^2 .

Facts

- If ${\mathfrak g}$ is a nilpotent Lie algebra, ${\mathfrak Z}({\mathfrak g}) \neq 0$
- if $(\omega, heta)$ is a lcs structure on \mathfrak{g} nilpotent, $V \in \mathfrak{Z}(\mathfrak{g})$
- every lcs structure on a nilpotent Lie algebra is of the first kind

Theorem (–, Marrero)

- Every lcs nilpotent Lie algebra of dimension 2n + 2 may be obtained as the lcs extension of a 2n-dimensional symplectic nilpotent Lie algebra s by a symplectic nilpotent derivation.
- ② In turn, the symplectic nilpotent Lie algebra \mathfrak{s} may obtained by a sequence of n-1 symplectic double extensions by nilpotent derivations from the abelian Lie algebra of dimension 2.

An example

• Start with the abelian Lie algebra \mathbb{R}^2 with symplectic form σ and symplectic derivation

$$D = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

- let \mathfrak{g} be the lcs extension of \mathbb{R}^2 by D: $\mathfrak{g} = (\mathbb{R} \odot_\sigma \mathbb{R}^2) \rtimes_D \mathbb{R}$
- *G*, the unique connected, simply connected Lie group with Lie algebra g, has a lcs structure of the first kind
- the structure constants of g are rational numbers. By a results of Malcev, there exists a lattice $\Gamma \subset G$. Then $N = \Gamma \setminus G$ is a nilmanifold with a lcs structure of the first kind.

Theorem (-, Marrero)

 $N = \Gamma \setminus G$ is a 4-dimensional nilmanifold endowed with a lcs structure of the first kind. It is not homeomorphic to a product $P \times S^1$. Moreover, it carries no locally conformally Kähler metric.

Final remarks

- The first example of a symplectic manifold with no Kähler structure (Thurston, 1976) is also a nilmanifold
- Conjecture: a nilmanifold N^{2n} with a lcK structure is a quotient of $H^{2n-1} \times \mathbb{R}$.

Thank you very much!

slides available at https://sites.google.com/site/gbazzoni/

- D. Angella, G. Bazzoni and M. Parton, Four dimensional locally conformal symplectic Lie algebras, in preparation
- G. Bazzoni and J. C. Marrero, *On locally conformal symplectic manifolds of the first kind, preprint,* arXiv:1510.04947