Castle Rauischholzhausen – March 2016

LIE THEORY AND GEOMETRY

Spin and metaplectic structures on homogeneous spaces

(arXiv:1602.07968)

(joint work with D. V. Alekseevsky)

Ioannis Chrysikos

Masaryk University – Department of Mathematics and Statistics

- (M^n,g) connected oriented pseudo-Riemannian mnfd, signature (p,q)
- $\pi: P = SO(M) \to M$ the $SO_{p,q}$ -principal bundle of positively oriented orthonormal frames.

$$TM = SO(M) \times_{SO_{p,q}} \mathbb{R}^n = \eta_- \oplus \eta_+,$$

Def. (M^n, g) is called *time-oriented* (resp. *space-oriented*) if η_- (resp. η_+) is oriented.

- *time-oriented:* if and only if $H^1(M; \mathbb{Z}_2) \ni w_1(\eta_-) = 0$
- space-oriented: if and only if $H^1(M; \mathbb{Z}_2) \ni w_1(\eta_+) = 0$
- oriented: if and only if $H^1(M; \mathbb{Z}_2) \ni w_1(M) := w_1(TM) = w_1(\eta_-) + w_1(\eta_+) = 0$

Examples: \Rightarrow **Trivial line bundle** $M = S^1 \times \mathbb{R}$, $w_1(M) = 0$, \Rightarrow **Torus** $\mathbb{T}^2 = S^1 \times S^1$, $w_1(\mathbb{T}^2) = 0$ \Rightarrow **Möbius strip** $S = S^1 \times_G \mathbb{R} \to S^1$, $G = \mathbb{Z}_2$, $w_1(S) \neq 0$

Remark: Since $H^1(M; \mathbb{Z}_2) \cong \operatorname{Hom}(\pi_1(M); \mathbb{Z}_2) \Rightarrow$ if M is simply-connected then it is oriented

• $C\ell_{p,q} = C\ell(\mathbb{R}^{p,q}) = \sum_{r=0}^{\infty} \otimes^r \mathbb{R}^{p,q} / \langle x \otimes x - \langle x, x \rangle \cdot 1 \rangle$

•
$$\mathrm{C}\ell_{p,q} = \mathrm{C}\ell_{p,q}^0 + \mathrm{C}\ell_{p,q}^1$$

• $\operatorname{Spin}_{p,q} := \{x_1 \cdots x_{2k} \in \operatorname{C}\ell^0_{p,q} : x_j \in \mathbb{R}^{p,q}, \langle x_j, x_j \rangle = \pm 1\} \subset \operatorname{C}\ell^0_{p,q}$

• Ad :
$$\operatorname{Spin}_{p,q} \to \operatorname{SO}_{p,q}$$
 double covering

Def. A Spin_{p,q}-structure (shortly *spin structure*) on (M^n, g)

- a $\operatorname{Spin}_{p,q}$ -principal bundle $\tilde{\pi}: Q = \operatorname{Spin}(M) \to M$ over M,
- a \mathbb{Z}_2 -cover $\Lambda : \operatorname{Spin}(M) \to \operatorname{SO}(M)$ of $\pi : \operatorname{SO}(M) \to M$, such that:

$$\begin{array}{c} \operatorname{Spin}(M) \times \operatorname{Spin}_{p,q} \longrightarrow \operatorname{Spin}(M) \\ & & & & & & & & \\ & & & & & & & \\ \operatorname{SO}(M) \times \operatorname{SO}_{p,q} \longrightarrow \operatorname{SO}(M) \xrightarrow{\tilde{\pi}} M \end{array}$$

• If such a pair (Q, Λ) exists, we shall call (M^n, g) a **pseudo-Riemannian spin manifold.**

• if the manifold is *time-oriented* and *space-oriented*, then a Spin^+ -structure is a reduction Q^+ of the $\text{SO}^+(n,k)$ -principal bundle P^+ of positively time- and space-oriented orthonormal frames, onto the spin group $\text{Spin}^+(n,k) = \text{Ad}^{-1}(\text{SO}^+(n,k))$, with $Q^+ \to P^+$ being the double covering.

Obstructions

• (M, g) oriented pseudo-Riemannian manifold [Karoubi'68, Baum'81]

 \exists spin structure $\Leftrightarrow w_2(\eta_-) + w_2(\eta_+) = 0$ (*)

$$\Leftrightarrow w_2(M) = w_1(\eta_-) \smile w_1(\eta_+) \quad (**)$$

Remark: If (*) or (**) holds, \implies set of spin structures on $(M, g) \iff$ elements in $H^1(M; \mathbb{Z}_2)$ a bit more special cases:

• (M,g) time-oriented + space oriented pseudo-Riemannian manifold

 \exists spin structure $\Leftrightarrow w_2(M) = 0$

• (M, g) oriented Riemannian manifold

 \exists spin structure $\Leftrightarrow w_2(M) = 0$

• (M, J) compact (almost) complex mnfd. Then, $c_1(M) := c_1(TM, J) = w_2(TM) \pmod{2}$ \exists spin structure $\Leftrightarrow c_1(M)$ is even in $H^2(M; \mathbb{Z})$.

Examples

$$\underbrace{\mathbb{C}P^{1} = \mathrm{SU}_{2} / \mathrm{U}_{1}, \ \mathbb{C}P^{3}_{\mathrm{irr}} = \mathrm{SU}_{4} / \mathrm{U}_{3}, \ \mathbb{C}P^{3} = \mathrm{SO}_{5} / \mathrm{U}_{2}, \ \mathbb{F}_{1,2} = \mathrm{SU}_{3} / \mathrm{T}_{\mathrm{max}}, \ \mathrm{G}_{2} / \mathrm{T}_{\mathrm{max}}, \ldots}_{\Rightarrow \ w_{1} = w_{2} = 0}$$

• Riemannian, $\mathbb{C}P^2 = \mathrm{SU}_3 / \mathrm{U}_2$ $\mathbb{C}P^2 - \mathsf{point}$ Lorentzian, $\mathrm{G}_2 / \mathrm{U}_2, \ldots \Rightarrow w_1 = 0$ but $w_2 \neq 0$

• parallelizable mnfds (e.g. Lie groups), etc

Classification results

special structures often imply existence of a spin structure, e.g. G₂-mndfs, nearly-Kähler mnfds, Einstein-Sasaki mnfds, 3-Sasakian mnfds ⇒ spin
 [Friedrich-Kath-Moroianu-Semmelmann '97, Boyer-Galicki '90]

(but: also the spin structure defines the special structure, sometimes!)

- classification of spin symmetric spaces [Cahen-Gutt-Trautman '90]
- classification of spin pseudo-symmetric spaces & non-symmetric cyclic Riemannian mnfds (G/L,g) [Gadea-González-Dávila-Oubiña '15]

 $\mathfrak{S}_{X,Y,Z}\langle [X,Y]_{\mathfrak{m}}, Z \rangle = 0, \quad \forall X, Y, Z \in \mathfrak{m} \cong T_o G/K$ $\Leftrightarrow \quad \mathsf{type} \ \mathcal{T}_1 \oplus \mathcal{T}_2 \quad (\mathsf{Vanhecke-Tricceri\ classification})$

• What new we can say? \implies Classification of spin flag manifolds

Invariant spin structures

Def. A spin structure $\tilde{\pi} : Q \to M$ on a homogeneous pseudo-Riemannian manifold (M = G/L, g) is called *G*-invariant if the natural action of *G* on the bundle $\pi : P \to M$ of positively oriented orthonormal frames, can be extended to an action on the $\operatorname{Spin}_{p,q} \equiv \operatorname{Spin}(\mathfrak{q})$ -principal bundle $\tilde{\pi} : Q \to M$. Similarly for spin^+ structures.

• Fix (M = G/L, g) oriented homogeneous pseudo-Riemannian manifold with a reductive decomposition $\mathfrak{g} = \mathfrak{l} + \mathfrak{q}$.

• Ad : $\operatorname{Spin}(\mathfrak{q}) \to \operatorname{SO}(\mathfrak{q})$.

Thm. [Cahen-Gutt '91] (a) Given a lift of the isotropy representation onto the spin group $\text{Spin}(\mathfrak{q})$, i.e. a homomorphism $\tilde{\vartheta} : L \to \text{Spin}(\mathfrak{q})$ which makes the following diagram commutative, then M admits a G-invariant spin structure given by $Q = G \times_{\tilde{\vartheta}} \text{Spin}(\mathfrak{q})$.

(b) Conversely, if G is simply-connected and (M = G/L, g) has a spin structure, then ϑ lifts to $\text{Spin}(\mathfrak{q})$, i.e. the spin structure is G-invariant. Hence in this case there is a one-to-one correspondence between the set of spin structures on (M = G/L, g) and the set of lifts of ϑ onto $\text{Spin}(\mathfrak{q})$.

Metaplectic structures

- $(V=\mathbb{R}^{2n},\,\omega)$ symplectic vector space
- $\operatorname{Sp}(V) = \operatorname{Sp}_n(\mathbb{R}) := \operatorname{Aut}(V, \omega)$ the symplectic group.
- $\operatorname{Sp}_n(\mathbb{R})$ is a connected Lie group, with $\pi_1(\operatorname{Sp}_n(\mathbb{R})) = \mathbb{Z}$.
- Metaplectic group $Mp_n(\mathbb{R})$ is the unique connected (double) covering of $Sp_n(\mathbb{R})$
- (M^{2n}, ω) symplectic manifold, $\mathrm{Sp}(M) \to M$ is the $\mathrm{Sp}_n(\mathbb{R})$ -principal bundle of symplectic frames

Def. A metaplectic structure on a symplectic manifold (M^{2n}, ω) is a $Mp_n(\mathbb{R})$ -equivariant lift of the symplectic frame bundle $Sp(M) \to M$ with respect to the double covering $\rho : Mp_n \mathbb{R} \to$ $Sp_n \mathbb{R}$.

• (M^{2n}, ω) symplectic manifold

 \exists metaplectic structure $\Leftrightarrow w_2(M) = 0$

 \Leftrightarrow $c_1(M)$ is even

Remark: Then, the set of metaplectic structures on $(M^{2n}, \omega) \iff$ elements in $H^1(M; \mathbb{Z}_2)$.

Compact homogeneous symplectic manifolds

• compact homogeneous symplectic manifold $(M^{2n}=G/H,\omega)+{\rm alomost}$ effective action of G connected. Then \Rightarrow

- $G = G' \times R$, G' =compact, semisimple, R = solvable \implies
- $M = F \times N$, N =flag manifold, N = solvmanifold with symplectic structure

 \rightarrow In particular, any simply-connected compact homogeneous symplectic manifold ($M = G/H, \omega$) is symplectomorphic to a flag manifold.

Prop. Simply-connected compact homogeneous symplectic manifolds admitting a metaplectic structure, are exhausted by **flag manifolds** F = G/H of a compact simply-connected semisimple Lie group G such that $w_2(F) = 0$, or equivalently $c_1(F; J) = \text{even}$, for some ω -compatible complex structure J.

• This is equivalent to say that the isotropy representation $\vartheta : H \to \operatorname{Sp}(\mathfrak{m})$ lifts to $\operatorname{Mt}(\mathfrak{m})$, i.e. there exists (*unique*) homomorphism $\tilde{\vartheta} : H \to \operatorname{Mt}(\mathfrak{m})$ such that

Homogeneous fibrations and spin structures

... in the spirit of Borel-Hirzebruch

- Let $L \subset H \subset G$ be *compact & connected* subgroups of a compact connected Lie group G.
- π : M = G/L → F = G/H (homogeneous fibration), base space F = G/H, fibre H/K.
 Fix an Ad_L-invariant reductive decomposition for M = G/L,

$$\mathfrak{g} = \mathfrak{l} + \mathfrak{q} = \mathfrak{l} + (\mathfrak{n} + \mathfrak{m}), \quad \mathfrak{q} := \mathfrak{n} + \mathfrak{m} = T_{eL}M.$$

such that:

- $\mathfrak{h} = \mathfrak{l} + \mathfrak{n}$ is a reductive decomposition of H/L,
- $\mathfrak{g} = \mathfrak{h} + \mathfrak{m} = (\mathfrak{l} + \mathfrak{n}) + \mathfrak{m}$ is a reductive decomposition of F = G/H.
- An Ad_L -invariant (pseudo-Euclidean) metric $g_{\mathfrak{n}}$ in $\mathfrak{n} \Rightarrow a$ (pseudo-Riemannian) invariant metric in H/L
- An Ad_H -invariant (pseudo-Euclidean) metric $g_{\mathfrak{m}}$ in $\mathfrak{m} \Rightarrow a$ (pseudo-Riemannian) invariant metric in the base F = G/H.

 \Rightarrow The direct sum metric $g_{\mathfrak{q}} = g_{\mathfrak{n}} \oplus g_{\mathfrak{m}}$ in $\mathfrak{q} \Rightarrow$ an invariant pseudo-Riemannian metric in M = G/L such that $\pi : G/L \to G/H$ is a pseudo-Riemannian submersion with totally geodesic fibres.

• $N := H/L \stackrel{\imath}{\hookrightarrow} M := G/L \stackrel{\pi}{\to} F := G/H$

Prop. (i) The bundles $i^*(TM)$ and TN are stably equivalent.

(ii) The Stiefel-Whitney classes of the fiber N = H/L are in the image of the homomorphism $i^*: H^*(M; \mathbb{Z}_2) \to H^*(N; \mathbb{Z}_2)$, induced by the inclusion map $i: N = H/L \hookrightarrow M = G/L$, and (iii)

$$w_1(TM) = 0, \quad w_2(TM) = w_2(\tau_N) + \pi^*(w_2(TF)),$$

Hints:

• $\tau_N := G \times_L \mathfrak{n} \to G/L$ is the tangent bundle along the fibres (with fibres, the tangent spaces $\mathfrak{n} \cong T_{eL}N$ of the fibres $\pi^{-1}(x) \cong H/L := N \ (x \in F)$).

$$TM = G \times_L \mathfrak{q} = G \times_L (\mathfrak{n} + \mathfrak{m}) = (G \times_L \mathfrak{n}) \oplus (G \times_L \mathfrak{m}) := \tau_N \oplus \pi^*(TF)$$

 $\Rightarrow TN = H imes_L \mathfrak{n} \cong i^*(\tau_N)$, and

$$(i^* \circ \pi^*)(TF) = (\pi \circ i)^*(TF) = \epsilon^{\dim F},$$

 $\epsilon^t := trivial$ real vector bundle of rank t. Thus,

$$i^*(TM) = \epsilon^{\dim F} \oplus TN.$$

Due to naturality of Stiefel-Whitney classes we get that

$$w_j(i^*(TM)) = i^*(w_j(TM)) = w_j(TN),$$

or equivalently, $i^*(w_j(M)) = w_j(N)$. Final step:

$$w_2(TM) = w_2(\tau_N \oplus \pi^*(TF)) = w_2(\tau_N) + w_1(\tau_N) \smile w_1(\pi^*(TF)) + w_2(\pi^*(TF)) \\ = w_2(\tau_N) + w_2(\pi^*(TF)) = w_2(\tau_N) + \pi^*(w_2(TF)).$$

Corol. Let $N := H/L \xrightarrow{i} M := G/L \xrightarrow{\pi} F := G/H$, as above. Then:

 $\alpha) \ \ \, {\rm If} \ F=G/H \ \, {\rm is \ spin, \ then } \ M=G/L \ \, {\rm is \ spin \ if \ and \ only \ if \ N=H/L \ \, {\rm is \ spin.}$

- $$\begin{split} \beta) \mbox{ If } N &= H/L \mbox{ is spin, then } M &= G/L \mbox{ is spin if and only if } \\ & w_2(G/H) \equiv w_2(TF) \in \ker \pi^* \subset H^2(F;\mathbb{Z}_2), \\ \mbox{ where } \pi^* : H^2(F;\mathbb{Z}_2) \to H^2(M;\mathbb{Z}_2) \mbox{ is the induced homomorphism by } \pi. \end{split}$$
 - In particular, if N and F are spin, so is M with respect to any pseudo-Riemannian metric.

Hints: Consider the injection $i: N \hookrightarrow M$. Then $i^*(\tau_N) = TN$, $\tau_N = i_*(TN)$ and

$$TM = \tau_N \oplus \pi^* TF = i_*(TN) \oplus \pi^* TF.$$

Remark: If M is G-spin and N is H-spin, then $\pi^*(w_2(TF)) = w_2(\pi^*(TF)) = 0$, which in general does not imply the relation $w_2(TF) = 0$, i.e. F is not necessarily spin.

Example: Hopf fibration

$$S^1 \to S^{2n+1} = SU_{n+1} / SU_n \to \mathbb{C}P^n = SU_{n+1} / S(U_1 \times U_n)$$

 \longrightarrow Although the sphere S^{2n+1} is a spin manifold for any n (its tangent bundle is stably trivial), $\mathbb{C}P^n$ is spin only for n = odd.

Generalized Flag manifolds: $F = G/H = G^{\mathbb{C}}/P$

• G compact, connected, semisimple Lie group

$$\mathfrak{g}=\mathfrak{h}+\mathfrak{m}=(Z(\mathfrak{h})+\mathfrak{h}')+\mathfrak{m}$$

- $T^{\ell} \subset \mathbf{H} \subset \mathbf{G}$ maximal torus.
- $H := \text{centralizer of torus } S \subset G$
- $\mathfrak{a} = \operatorname{Lie}(\mathbf{T}^{\ell}) = T_e \mathbf{T}^{\ell} = \mathsf{max.}$ abelian subalgebra $\Rightarrow \mathfrak{a}^{\mathbb{C}}$ is a common CSA
- Set:

$$\mathfrak{a}_0 := i\mathfrak{a}, \quad \mathfrak{z} := Z(\mathfrak{h}), \quad \mathfrak{t} := i\mathfrak{z} \subset \mathfrak{a}_0$$

- Let R, R_H be the root systems of $(\mathfrak{g}^\mathbb{C},\mathfrak{a}^\mathbb{C})$, $(\mathfrak{h}^\mathbb{C},\mathfrak{a}^\mathbb{C})$, respectively.
- $\Pi_{\mathbf{W}} = \{\alpha_1, \ldots, \alpha_{\mathbf{u}}\}$ fundamental system of $\mathbf{R}_{\mathbf{H}}$.
- Extend to a fundamental system Π of \mathbf{R} ,

$$\mathbf{\Pi} = \mathbf{\Pi}_{\mathbf{W}} \sqcup \mathbf{\Pi}_{\mathbf{B}} = \{\alpha_1, \dots, \alpha_{\mathbf{u}}\} \sqcup \{\beta_1, \dots, \beta_{\mathbf{v}}\}, \quad \boldsymbol{\ell} = \mathbf{u} + \mathbf{v}.$$

• Consider the corresponding systems of positive roots \mathbf{R}^+ and $\mathbf{R}_{\mathbf{H}}^+$.

Def.

- $\Pi_{\mathrm{B}} := \Pi \setminus \Pi_{\mathrm{W}} = \text{black (simple) roots.}$
- $\mathbf{R}_{\mathbf{F}} := \mathbf{R} \setminus \mathbf{R}_{\mathbf{H}} =$ complementary roots.
- $\mathfrak{h}^{\mathbb{C}} = Z(\mathfrak{h}^{\mathbb{C}}) \oplus \mathfrak{h}_{ss}^{\mathbb{C}} = \mathfrak{t}^{\mathbb{C}} \oplus (\mathfrak{h}')^{\mathbb{C}}$, where

$$\implies (\mathfrak{h}')^{\mathbb{C}} = \mathfrak{g}(\mathbf{R}_{\mathbf{H}}) = \mathfrak{a}' + \sum_{\alpha \in \mathbf{R}_{\mathbf{H}}} \mathfrak{g}_{\alpha}, \quad \mathfrak{a}' := \sum_{\alpha \in \Pi_{\mathbf{W}}} \mathbb{C}H_{\alpha} \subset \mathfrak{a}^{\mathbb{C}}.$$

 \to Then $\mathfrak{h} = i\mathfrak{t} + \mathfrak{h}'$ is the standard compact real form of the complex reductive Lie algebra $\mathfrak{h}^{\mathbb{C}}$.

• Let Λ_{β_i} (or simply by Λ_i) be the fundamental weights associated to the black simple roots $\beta_i \in \Pi_B$.

• In terms of the splitting $\Pi = \Pi_W \sqcup \Pi_B$

$$(\Lambda_i|\beta_j) := \frac{2(\Lambda_i, \beta_j)}{(\beta_j, \beta_j)} = \delta_{ij}, \quad (\Lambda_i|\alpha_k) = 0.$$

Lemma. The fundamental weights $(\Lambda_1, \dots, \Lambda_v)$ associated with the black simple roots Π_B , form a basis of the space $\mathfrak{t}^* \cong \mathfrak{t}$

Def. By painting black in the Dynkin diagram of G the nodes corresponding to the black roots from Π_B we get the **painted Dynkin diagram** (PDD) of the flag manifold F = G/H.

• The PDD graphically represents the splitting $\Pi = \Pi_W \sqcup \Pi_B$. The subdiagram generated by the white nodes, i.e. the simple roots in Π_W , defines the semisimple part H' of H.

Example. Let $G = E_7$ and consider the painted Dynkin diagram

• It defines the flag manifold $F = E_7 / SU_3 \times SU_2 \times U_1^4$, with $\Pi_W = \{\alpha_2, \alpha_4, \alpha_5\}$ and $\Pi_B = \{\alpha_1, \alpha_3, \alpha_6, \alpha_7\}$, respectively. Hence dim $\mathfrak{t} = 4 = \operatorname{rnk} R_T = b_2(F)$.

• Roots from $\mathbf{R}_{\mathbf{F}} = \mathbf{R}_{\mathbf{F}}^+ \sqcup (-\mathbf{R}_{\mathbf{F}}^+)$ determine the complexified tangent space $(T_o F)^{\mathbb{C}} = \mathfrak{m}^{\mathbb{C}}$

$$\mathfrak{m}^{\mathbb{C}} := \mathfrak{m}^{10} + \mathfrak{m}^{01} = \sum_{\alpha \in \mathbf{R}_{\mathbf{F}}^+} \mathbb{C} E_{\alpha} + \sum_{\alpha \in \mathbf{R}_{\mathbf{F}}^-} \mathbb{C} E_{\alpha}, \quad \text{with} \ \overline{\mathfrak{m}^{10}} = \mathfrak{m}^{01}, \ \overline{\mathfrak{m}^{01}} = \mathfrak{m}^{10}.$$

• This defines an (integrable) invariant complex structure J

$$J_o E_{\pm \alpha} = \pm i E_{\pm \alpha}, \quad \forall \alpha \in \mathbf{R}_{\mathbf{F}}^+,$$

 \implies We identify $F = G/H = G^{\mathbb{C}}/P$, where $H = P \cap G$, $P \subset G^{\mathbb{C}}$ parabolic subgroup

$$\begin{split} \mathfrak{p}_{\Pi_{\mathbf{W}}} &:= \mathfrak{a}^{\mathbb{C}} + \sum_{\alpha \in \mathbf{R}_{\mathbf{H}} \cup \mathbf{R}_{\mathbf{F}}^+} \mathfrak{g}_{\alpha} \quad = \quad \mathfrak{a}^{\mathbb{C}} + \sum_{\alpha \in \mathbf{R}_{\mathbf{H}}} \mathfrak{g}_{\alpha} + \sum_{\alpha \in \mathbf{R}_{\mathbf{F}}^+} \mathfrak{g}_{\alpha} \\ &= \quad \mathfrak{h}^{\mathbb{C}} + \mathfrak{n}_+. \end{split}$$

 $\implies B_+ \subset G^{\mathbb{C}}$ the Borel subgroup corresponding to the maximal solvable subalgebra

$$\mathfrak{b}^+ := \mathfrak{a}^{\mathbb{C}} + \sum_{\alpha \in \mathbf{R}^+} \mathfrak{g}_{\alpha} = \mathfrak{a}^{\mathbb{C}} + \mathfrak{g}(\mathbf{R}^+) \subset \mathfrak{g}^{\mathbb{C}}.$$

 $\implies \Pi_W = \emptyset \text{ and } \Pi_W = \Pi \text{ define the spaces } \mathfrak{b}^+ \text{ and } \mathfrak{g}^\mathbb{C}\text{, respectively.}$

Prop. [Borel-Hirzebruch '51, Alekseevsky '76] There is a 1-1 bijective correspondence between,

- Invariant complex structures on a flag manifold $F = G/H = G^{\mathbb{C}}/P$
- extensions of a fixed fundamental system Π_W of the subalgebra $\mathfrak{h}^{\mathbb{C}}$ to a fundamental system Π of the Lie algebra $\mathfrak{g}^{\mathbb{C}}$.

• papabolic subalgebras
$$\mathfrak{p}_{\Pi_{\mathbf{W}}} = \mathfrak{h}^{\mathbb{C}} + \mathfrak{n}_{+}$$
 with reductive part $\mathfrak{h}^{\mathbb{C}}$

T-roots and applications

$$\mathfrak{t} := i\mathfrak{z} \subset \mathfrak{a}_0 \text{ where } \mathfrak{z} := Z(\mathfrak{h}) = \{ X \in \mathfrak{a}_0 : \alpha_i(X) = 0, \text{ for all } \alpha_i \in \Pi_{\mathbf{W}} \}.$$

 \implies Consider the linear restriction map

$$\kappa : \mathfrak{a}^* \to \mathfrak{t}^*, \ \alpha \mapsto \alpha|_{\mathfrak{t}}$$

• Then:
$$\mathbf{R}_{\mathbf{H}} = \{ \alpha \in \mathbf{R}, \ \kappa(\alpha) = 0 \}.$$

Def.

$$R_T := \mathsf{the} \ \mathsf{restriction} \ \mathsf{of} \ \mathbf{R}_{\mathbf{F}} \ \mathsf{on} \ \mathfrak{t} = \kappa(\mathbf{R}_{\mathbf{F}}) = \kappa(\mathbf{R}).$$

Elements in R_T are called *T*-roots. Notice that: $\mathbf{v} := \sharp(\mathbf{\Pi}_{\mathbf{B}}) = \operatorname{rnk} R_T$.

Thm. [Siebenthal '64, Alekseevsky '76]

There exists an 1-1 correspondence between t-roots and complex irreducible H-submodules \mathfrak{f}_{ξ} of $\mathfrak{m}^{\mathbb{C}}$. This correspondence is given by

$$R_T \ni \xi \quad \leftrightarrow \quad \mathfrak{f}_{\xi} := \sum_{\alpha \in \mathbf{R}_{\mathbf{F}}: \kappa(\alpha) = \xi} \mathbb{C} E_{\alpha}$$

• Moreover, there is a natural 1-1 correspondence between positive T-roots $\xi \in R_T^+ = \kappa(\mathbf{R}_F^+)$ and real pairwise inequivalent irreducible H-submodules $\mathfrak{m}_{\xi} \subset \mathfrak{m}$, given by

$$R_T^+ \ni \xi \quad \longleftrightarrow \quad \mathfrak{m}_{\xi} := (\mathfrak{f}_{\xi} + \mathfrak{f}_{-\xi}) \cap \mathfrak{m} = (\mathfrak{f}_{\xi} + \mathfrak{f}_{-\xi})^{\tau}.$$

• Moreover, $\dim_{\mathbb{C}} \mathfrak{f}_{\xi} = \dim_{\mathbb{R}} \mathfrak{m}_{\xi} = d_{\xi}$ where $d_{\xi} := \sharp(\kappa^{-1}(\xi))$ is the cardinality of $\kappa^{-1}(\xi)$.

Invariant pseudo-Riemannian metrics

Corol. Any *G*-invariant pseudo-Riemannian metric g on a flag manifold F = G/H is defined by an Ad_H-invariant pseudo-Euclidean metric on \mathfrak{m} , given by

$$g_o := \sum_{i=1}^{d:=R_T^+} x_{\xi_i} B_{\xi_i}, \qquad (B_{\xi_i} := -B|_{\mathfrak{m}_i}),$$

where $x_{\xi_i} \neq 0$ are real numbers, for any $i = 1, \ldots, d := R_T^+$. The signature of the metric g is $(2N_-, 2N_+)$, where

$$N_{-} := \sum_{\xi_i \in R_T^+ : x_{\xi_i} < 0} d_{\xi_i}, \ N_{+} := \sum_{\xi_i \in R_T^+ : x_{\xi_i} > 0} d_{\xi_i}.$$

• In particular, the metric g is Riemannian if all $x_{\xi_i} > 0$, and no metric is *Lorentzian*.

How we deduce that a flag manifold has a spin structure or not?

... by computing the first Chern class for an invariant complex structure

• Consider the weight lattice associated to **R**, that is

$$\mathcal{P} = \{\Lambda \in \mathfrak{a}_0^* : <\Lambda | \alpha > \in \mathbb{Z}, \ \forall \alpha \in \mathbf{R}\} = \operatorname{span}_{\mathbb{Z}}(\Lambda_1, \cdots, \Lambda_\ell) \subset \mathfrak{a}_0^*.$$

• Then set

$$\mathcal{P}_T := \{ \lambda \in \mathcal{P}, \, (\lambda, \alpha) = 0, \, \forall \, \alpha \in \mathbf{R}_{\mathbf{H}} \}$$

Lemma. The *T*-weight lattice \mathcal{P}_T is generated by the fundamental weights $\Lambda_1, \dots, \Lambda_v$ corresponding to the black simple roots $\Pi_B = \Pi \setminus \Pi_W$.

Classical result: The group of characters $\mathcal{X}(T^{\ell}) = \operatorname{Hom}(T^{\ell}, T^1) = \mathcal{X}(B_+)$ of the maximal torus $T^{\ell} \subset \mathbf{H} \subset \mathbf{G}$ is identified (when \mathbf{G} is simply-connected) with the weight lattice $\mathcal{P} \subset \mathfrak{a}_0^*$, via the map

$$\mathcal{P} \ni \lambda \mapsto \chi_{\lambda} \in \mathcal{X}(\mathbb{T}^{\ell}) = \mathcal{X}(B_{+}), \text{ with } \chi_{\lambda}(\exp X) = \exp(\frac{i\lambda(X)}{2\pi}), \quad \forall X \in \mathfrak{a}_{0}.$$

. . / - -

Extension: The following map is an isomorphism:

$$\mathcal{P}_T \ni \lambda \mapsto \chi_\lambda \in \mathcal{X}(\mathbf{H}) := \operatorname{Hom}(\mathbf{H}, \mathrm{T}^1).$$

• In particular, since $\mathbf{P} = \mathbf{H}^{\mathbb{C}} \cdot N_+$ any character $\chi = \chi_{\lambda} : \mathbf{H} \to \mathbf{T}^1$ has a natural extension to a character of the parabolic subgroup $\chi_{\lambda}^{\mathbb{C}} : \mathbf{P} \to \mathbb{C}^*$ and we get

$$\mathcal{P}_T \ni \lambda \mapsto \chi_{\lambda}^{\mathbb{C}} \in \mathcal{X}(\mathbf{P})$$

Line bundles and circle bundles

• For any *T*-weight $\lambda \in \mathcal{P}_T$ we assign a 1-dimensional **P**-module \mathbb{C}_{λ} , where **P** acts on \mathbb{C}_{λ} by the associated holomorphic character $\chi_{\lambda}^{\mathbb{C}} \in \mathcal{X}(\mathbf{P})$.

• We define the line bundle

$$\mathcal{L}_{\lambda} = \mathbf{G}^{\mathbb{C}} \times_{\mathbf{P}} \mathbb{C}_{\lambda} = (\mathbf{G}^{\mathbb{C}} \times \mathbb{C}_{\lambda}) / \sim$$

$$(g,z) \sim (gp, \chi_{\lambda}^{\mathbb{C}}(p^{-1})z), \quad (g,z) \in \mathbf{G}^{\mathbb{C}} \times \mathbb{C}_{\lambda}, \, p \in \mathbf{P}.$$

• We also introduce the homogeneous circle bundle associated with the character $\chi: \mathbf{H} \to \mathrm{T}^1$,

$$F_{\chi} = G/H_{\chi} \to F = G/\mathbf{H}, \qquad H_{\chi} := \ker(\chi)$$

Prop. Let $F = G/H = G^{\mathbb{C}}/P$ be a flag manifold endowed with a complex structure associated to a splitting $\Pi = \Pi_W \sqcup \Pi_B$. Then, \exists 1-1 correspondence between

- elements $\lambda \in \mathcal{P}_T = \operatorname{span}_{\mathbb{Z}} \{\Lambda_1, \dots, \Lambda_v\}$ of the *T*-weight lattice
- real characters $\chi = \chi_{\lambda} : \mathbf{H} \to \mathbf{T}^1$ (up to congugation),
- complex characters $\chi_{\lambda}^{\mathbb{C}} : \mathbf{P} \to \mathbb{C}^*$ (up to conjugation),
- holomorphic line bundles $\mathcal{L}_{\lambda} := \mathbf{G}^{\mathbb{C}} \times_{\mathbf{P}} \mathbb{C}_{\lambda} \to F = \mathbf{G}^{\mathbb{C}}/\mathbf{P}$ (up to conjugation)
- and homogeneous circle bundles $F_{\chi} := G/H_{\chi} \rightarrow F = G/H$ (up to conjugation).

Prop. There is a natural isomorphism

$$\tau: \mathfrak{t}^* \to \Lambda^2_{cl}(\mathfrak{m}^*)^{\mathbf{H}} \cong H^2(\mathfrak{m}^*)^{\mathbf{H}} \simeq H^2(F, \mathbb{R})$$

between the space \mathfrak{t}^* and the space $\Lambda^2_{cl}(\mathfrak{m}^*)^{\mathbf{H}}$ of $\mathrm{Ad}_{\mathbf{H}}$ -invariant closed real 2-forms on \mathfrak{m} (identified with the space of closed *G*-invariant real 2-forms on *F*), given by

$$\mathfrak{a}_0^* \supset \mathfrak{t}^* \ni \xi \mapsto \omega_{\xi} := \frac{i}{2\pi} d\xi = \frac{i}{2\pi} \sum_{\alpha \in \mathbf{R}_{\mathbf{F}^+}} (\xi | \alpha) \omega^{\alpha} \wedge \omega^{-\alpha} \in \Lambda^2_{cl}(\mathfrak{m}^*)^{\mathbf{H}}$$

• $\tau(\mathcal{P}_T) \cong H^2(F,\mathbb{Z})$. Thus second Betti number of F equals to $b_2(F) = \dim \mathfrak{t} = \mathbf{v} = \operatorname{rnk} R_T$.

• In particular, the following maps are isomorphisms

$$\mathcal{P}_T \ni \lambda \mapsto \mathcal{L}_\lambda \in \mathcal{P}ic(F) := H^1(\mathbf{G}^{\mathbb{C}}/\mathbf{P}, \underline{\mathbb{C}}^*) \ni \mathcal{L}_\lambda \xrightarrow{c_1} c_1(\mathcal{L}_\lambda) \in H^2(F, \mathbb{Z})$$

• The first Chern class $c_1(\mathcal{L}_{\xi_j})$ of the holomorphic line bundle \mathcal{L}_{ξ_j} is the cohomology class of the associated curvature two-form

$$\omega_{\xi_j} = \frac{i}{2\pi} d\xi_j = \frac{i}{2\pi} \sum_{\alpha \in \mathbf{R}_{\mathbf{F}}^+} (\xi_j | \alpha) \omega^\alpha \wedge \omega^{-\alpha} \in \Lambda^2(\mathfrak{m}^*)^{\mathbf{H}} = \Omega_{cl}^2(F).$$

The first Chern class

• Let $\mathcal{P}^+ \subset \mathcal{P}$ be the subset of *strictly positive dominant weights*, and consider the 1-forms

$$\begin{split} \sigma_{\boldsymbol{G}} &= \frac{1}{2} \sum_{\alpha \in \mathbf{R}^+} \alpha, \quad \sigma_{\mathbf{H}} = \frac{1}{2} \sum_{\alpha \in \mathbf{R}_{\mathbf{H}}^+} \alpha \\ \text{Recall that } \sigma_{\boldsymbol{G}} &= \sum_{i=1}^{\ell} \Lambda_i \in \mathcal{P}^+. \end{split}$$

• We define the Koszul form associated to the flag manifold $(F = G^{\mathbb{C}}/\mathbf{P} = G/\mathbf{H}, J)$, by

$$\sigma^J := 2(\sigma_G - \sigma_H) = \sum_{\alpha \in \mathbf{R}_{\mathbf{F}}^+} \alpha.$$

 \implies The first Chern class $c_1(J) \in H^2(F;\mathbb{Z})$ of the invariant complex structure J in F, associated with the decomposition $\Pi = \Pi_W \sqcup \Pi_B$, is represented by the closed invariant 2-form $\gamma_J := \omega_{\sigma^J}$, i.e. the Chern form of the complex manifold (F, J).

Thm. [Alekseevsky '76, Alekseevsky-Perelomov '86] The Koszul form is a linear combination of the fundamental weights $\Lambda_1, \dots, \Lambda_v$ associated to the black roots, with positive integers coefficients, given as follows:

$$\sigma^{J} = \sum_{j=1}^{\mathbf{v}} k_{j} \Lambda_{j} = \sum_{j=1}^{\mathbf{v}} (2+b_{j}) \Lambda_{j} \in \mathcal{P}_{T}^{+}, \text{ where } k_{j} = \frac{2(\sigma^{J}, \beta_{j})}{(\beta_{j}, \beta_{j})}, b_{j} = -\frac{2(2\sigma_{\mathbf{H}}, \beta_{j})}{(\beta_{j}, \beta_{j})} \ge 0.$$

Def. The integers $k_j \in \mathbb{Z}_+$ are called **Koszul numbers** associated to the complex structure Jon $F = G^{\mathbb{C}}/\mathbf{P} = G/\mathbf{H}$. They form the vector $\vec{k} := (k_1, \ldots, k_v) \in \mathbb{Z}_+^v$, which we shall call the **Koszul vector** associated to J.

Invariant spin structures

Thm. A flag manifold $F = G/H = G^{\mathbb{C}}/P$ admits a *G*-invariant spin or metaplectic structure, if and only is the first Chern class $c_1(J)$ of an invariant complex structure *J* on *F* is **even**, that is all Koszul numbers are **even**. If this is the case, then such a structure will be unique.

Example Consider the manifold of full flags $F = G/T^{\ell} = G^{\mathbb{C}}/B_+$.

- The Weyl group acts transitively on Weyl chambers $\implies \exists$ unique (up to conjugation) invariant complex structure J.
- The canonical line bundle $\Lambda^n TF$ corresponds to the dominant weight $\sum_{\alpha \in R^+} \alpha = 2\sigma_G = 2(\Lambda_1 + \cdots + \Lambda_\ell).$
- hence all the Koszul numbers equal to 2 and F admits a unique spin structure.

Corol. The divisibility by two of the Koszul numbers of an invariant complex structure J on a (pseudo-Riemannian) flag manifold $F = G/H = G^{\mathbb{C}}/P$, does not depend on the complex structure.

Corol. On a spin or metaplectic flag manifold $F = G/H = G^{\mathbb{C}}/P$ with a fixed invariant complex structure J, there is a unique isomorphism class of holomorphic line bundles \mathcal{L} such that $\mathcal{L}^{\otimes 2} = K_F$.

The computation of Koszul numbers-classical flag manifolds

Classical flag manifolds

• Flag manifolds of the groups $A_n = SU_{n+1}, B_n = SO_{2n+1}, C_n = Sp_n, D_n = SO_{2n}$ fall into four classes:

$$\begin{array}{rcl} \mathbf{A}(\vec{n}) &=& \mathrm{SU}_{n+1} / \mathrm{U}_1^{n_0} \times \mathrm{S}(\mathrm{U}_{n_1} \times \cdots \times \mathrm{U}_{n_s}), \\ \vec{n} &=& (n_0, n_1, \cdots, n_s), \quad \sum n_j = n+1, \, n_0 \geqslant 0, n_j > 1; \end{array}$$

$$B(\vec{n}) = SO_{2n+1} / U_1^{n_0} \times U_{n_1} \times \cdots \times U_{n_s} \times SO_{2r+1}, \vec{n} = \sum n_j + r, n_0 \ge 0, n_j > 1, r \ge 0;$$

$$C(\vec{n}) = \operatorname{Sp}_n / \operatorname{U}_1^{n_0} \times \operatorname{U}_{n_1} \times \cdots \times \operatorname{U}_{n_s} \times \operatorname{Sp}_r, \vec{n} = \sum n_j + r, n_0 \ge 0, n_j > 1, r \ge 0;$$

$$\begin{aligned} \mathbf{D}(\vec{n}) &= \operatorname{SO}_{2n} / \operatorname{U}_{1}^{n_{0}} \times \operatorname{U}_{n_{1}} \times \cdots \times \operatorname{U}_{n_{s}} \times \operatorname{SO}_{2r}, \\ \vec{n} &= \sum n_{j} + r, \, n_{0} \geqslant 0, n_{0} \geqslant 0, n_{j} > 1, r \neq 1, \end{aligned}$$

with $\vec{n} = (n_0, n_1, \cdots, n_s, r)$ for the groups B_n, C_n and D_n .

The Koszul vector of classical flag manifolds

Example: Consider the flag manifold $F = SO_9 / U_1^2 \times SU_2 \times SU_2 = SO_9 / U_2 \times U_2$

• It is
$$\Pi_{\mathbf{B}} = \{\alpha_2, \alpha_4\}$$
 and $\Pi_{\mathbf{W}} = \mathbf{R}_{\mathbf{H}}^+ = \{\alpha_1, \alpha_3\}.$
 $\Rightarrow 2\sigma_{\mathbf{H}} = \alpha_1 + \alpha_3.$ Since $2\sigma_{\mathrm{SO}_9} = 7\alpha_1 + 12\alpha_2 + 15\alpha_3 + 16\alpha_4$, we conclude that
 $\sigma^{J_0} = 6\alpha_1 + 12\alpha_2 + 14\alpha_3 + 16\alpha_4.$

 \rightarrow

• By the Cartan matrix of SO_9 we finally get $\sigma^{J_0} = 4\Lambda_2 + 4\Lambda_4$. Thus F admits a unique spin structure.

Thm. The Koszul vector $\vec{k} := (k_1, \dots, k_v) \in \mathbb{Z}_+^v$ associated to the standard complex structure J_0 on a flag manifold $G(\vec{n})$ of classical type, is given by

If r = 0, then the last Koszul number (over the end black root) is $2n_s$ for $B(\vec{n})$, $n_s + 1$ for $C(\vec{n})$ and $2(n_s - 1)$ for $D(\vec{n})$. Hence we conclude that (the same conclusions apply also for G-metaplectic structures):

Thm. (classification of spin or metaplectic structures)

- α) The flag manifold $A(\vec{n})$ with $n_0 > 0$ is *G*-spin if and only if all the numbers n_1, \ldots, n_s are odd. If $n_0 = 0$, then $A(\vec{n})$ is *G*-spin, if and only if the numbers n_1, \ldots, n_s have the same parity, i.e. they are all odd or all even.
- β) The flag manifold $B(\vec{n})$ with $n_0 > 0$ and r > 0 does not admit a (*G*-invariant) spin structure. If $n_0 > 0$ and r = 0, then $B(\vec{n})$ is *G*-spin, if and only if all the numbers n_1, \ldots, n_s are odd. If $n_0 = 0$ and r > 0, then $B(\vec{n})$ is *G*-spin if and only if all the numbers n_1, \ldots, n_s are even. Finally, for $n_0 = 0 = r$, the flag manifold $B(\vec{n})$ is *G*-spin if and only if all the numbers all the numbers n_1, \ldots, n_s are even. Finally, for $n_0 = 0 = r$, the flag manifold $B(\vec{n})$ is *G*-spin if and only if all the numbers n_1, \ldots, n_s have the same parity.
- γ) The flag manifold $C(\vec{n})$ with $n_0 > 0$ is *G*-spin, if and only if all the numbers n_1, \ldots, n_s are odd, independently of r. The same holds if $n_0 = 0$.
- δ) The flag manifold $D(\vec{n})$ with $n_0 > 0$ is *G*-spin, if and only if all the numbers n_1, \ldots, n_s are odd, independently of r. If $n_0 = 0$ and r > 0, then $D(\vec{n})$ is *G*-spin, if and only if all the numbers n_1, \ldots, n_s are odd. Finally, for $n_0 = 0 = r$, the flag manifold $D(\vec{n})$ is *G*-spin, if and only if the numbers n_1, \ldots, n_s have the same parity.

$F = G/\mathbf{H}$ with $b_2(F) = 1$	conditions	d	$k_{\alpha_{i_o}} \in \mathbb{Z}_+$	G -spin (\Leftrightarrow)
$\operatorname{SU}_n / \operatorname{S}(\operatorname{U}_p \times \operatorname{U}_{n-p})$	$n \geqslant 2, 1 \leqslant p \leqslant n-1$	1	(n)	$n \operatorname{even} \geqslant 2$
$\operatorname{Sp}_n / \operatorname{U}_n$	$n \geqslant 3$	1	(n+1)	$n \operatorname{odd} \geqslant 3$
$\operatorname{SO}_{2n}/\operatorname{SO}_2 \times \operatorname{SO}_{2n-2}$	$n \ge 4$	1	(2n-2)	$\forall \ n \geqslant 4$
$\mathrm{SO}_{2n} / \mathrm{U}_n$	$n \geqslant 3$	1	(2n-4)	$\forall \ n \geqslant 3$
$\operatorname{SO}_{2n+1} / \operatorname{U}_p \times \operatorname{SO}_{2(n-p)+1}$	$n \geqslant 2, 2 \leqslant p < n$	2	(2n-p)	$p \operatorname{even} \geqslant 2$
SO_{2n+1} / U_n (special case)	$n \ge 2$	2	(2n)	$\forall \ n \geqslant 2$
$\operatorname{Sp}_n / \operatorname{U}_p \times \operatorname{Sp}_{n-p}$	$n \geqslant 3, 1 \leqslant p \leqslant n-1$	2	(2n - p + 1)	$p \operatorname{odd} \geqslant 1$
$\operatorname{Sp}_n / \operatorname{U}_1 \times \operatorname{Sp}_{n-1} =: \mathbb{C}P^{2n-1}$	$n \ge 3$	2	(2n)	$\forall \ n \geqslant 3$
$\operatorname{SO}_{2n}/\operatorname{U}_p\times\operatorname{SO}_{2(n-p)}$	$n \ge 4, 2 \leqslant p \leqslant n-2$	2	(2n-p-1)	$p \text{ odd} \geqslant 2$
$F=old G/{f H}$ with $b_2(F)=2$	conditions	d	$\vec{k} \in \mathbb{Z}^2_+$	G -spin (\Leftrightarrow)
$SU_n / U_1 \times S(U_{p-1} \times U_{n-p})$	$n \ge 3, 2 \leqslant p \leqslant n-2$	3	(p, n-1)	n odd & p even
SU_3/T^2 (special case)	-	3	(2,2)	yes
$SU_n / S(U_p \times U_q \times U_{n-p-q})$	$n \ge 5, 2 \le p \le n-2$	3	(p+q, n-p)	p, q, n same parity
	$4 \leqslant p + q \leqslant n$			
$\mathrm{SO}_5 / \mathrm{T}^2$ (special case)	-	4	(2,2)	yes
$SO_{2n+1}/U_1 \times U_{n-1}$	$n \geqslant 3$	5	(n, 2(n-1))	$n \operatorname{even}$
$SO_{2n+1} / U_p \times U_{n-p}$	$n \ge 4, 2 \leqslant p \leqslant n$	6	(n, 2(n-p))	$n \operatorname{even}$
$\operatorname{SO}_{2n+1}/\operatorname{U}_p\times\operatorname{U}_q\times\operatorname{SO}_{2(n-p-q)+1}$	$n \ge 4, 2 \leqslant p \leqslant n-1$	6	(p+q, 2n-2p-q)	$p \And q$ even
	$4 \leqslant p + q \leqslant n - 1$			
$\overline{\operatorname{Sp}_n/\operatorname{U}_p\times\operatorname{U}_{n-p}}$	$n \geqslant 3, 1 \leqslant p \leqslant n-1$	4	(n, n-p+1)	n even & p odd
Sp_3/T^2 (special case)	-	4	(2,2)	yes
$\operatorname{Sp}_n/\operatorname{U}_1 \times \operatorname{U}_1 \times \operatorname{Sp}_{n-2}$	$n \ge 3$	6	(2,2(n-1))	$\forall n \ge 3$
$\operatorname{Sp}_n / \operatorname{U}_p \times \operatorname{U}_q \times \operatorname{Sp}_{n-p-q}$	$n \geqslant 3, 1 \leqslant p \leqslant n-3$	6	(p+q, 2n-2p-q+1)	$p \ \& \ q \ odd$
	$3 \leqslant p + q \leqslant n - 1$			
$\overline{\mathrm{SO}_{2n} / \mathrm{U}_1 \times \mathrm{U}_{n-1}}$	$n \ge 4$	3	(n, 2(n-2))	$n \operatorname{even}$
$\operatorname{SO}_{2n} / \operatorname{U}_1 \times \operatorname{U}_1 \times \operatorname{SO}_{2(n-2)}$	$n \ge 4$	4	(2, 2(n-2))	$\forall \ n \geqslant 4$
$SO_{2n} / U_p \times U_{n-p}$	$n \ge 4, 2 \leqslant p \leqslant n-2$	4	(n, 2(n-p-1))	$n \operatorname{even}$
$\operatorname{SO}_{2n} / \operatorname{U}_1 \times \operatorname{U}_p \times \operatorname{SO}_{2(n-p-1)}$	$n \geqslant 4, 2 \leqslant p \leqslant n-3$	5	(1+p, 2n-p-3)	p odd
$SO_{2n} / U_p \times U_q \times SO_{2(n-p-q)}$	$n \geqslant 5, 2 \leqslant p \leqslant n-4$	6	(p+q,2n-2p-q-1)	$p \ \& \ q \ odd$
(1)	$4 \leqslant p + q \leqslant n - 2$			

Table 1. Spin or metaplectic classical flag manifolds with $b_2 = 1, 2$.

Spin structures on exceptional flag manifolds

• Given an exceptional Lie group $G \in \{G_2, F_4, E_6, E_7, E_8\}$ with root system \mathbb{R} and a basis of simple roots $\Pi = \{\alpha_1, \ldots, \alpha_\ell\}$, we shall denote by

$$G(\alpha_1,\ldots,\alpha_{\mathbf{u}}) \equiv G(1,\ldots,\mathbf{u})$$

to denote the exceptional flag manifold $F = G/\mathbf{H}$ where the semisimple part \mathfrak{h}' of the stability subalgebra $\mathfrak{h} = T_e \mathbf{H}$ corresponds to the simple roots $\Pi_{\mathbf{W}} := \{\alpha_1, \ldots, \alpha_{\mathbf{u}}\}.$

- The remaining $\mathbf{v} := \boldsymbol{\ell} \mathbf{u}$ nodes in the Dynkin diagram $\Gamma(\Pi)$ of \boldsymbol{G} have been painted black such that $\boldsymbol{\mathfrak{h}} = \boldsymbol{\mathfrak{u}}(1) \oplus \cdots \oplus \boldsymbol{\mathfrak{u}}(1) \oplus \boldsymbol{\mathfrak{h}}'$.
- There are 101 non-isomorphic flag manifolds F = G/H corresponding to a simple exceptional Lie group G.

G	$F = G/\mathbf{H}$	$b_2(F)$	$d = \sharp(R_T^+)$	σ^J
G_2	$G_2(0) = G_2 / T^2$	2	6	$2(\Lambda_1 + \Lambda_2)$
	$G_2(1) = G_2 / U_2^l$	1	3	$5\Lambda_2$
	$G_2(2) = G_2 / U_2^3$	1	2	$3\Lambda_1$
F_4	$F_4(0) = F_4 / T^4$	4	24	$2(\Lambda_1 + \Lambda_2 + \Lambda_3 + \Lambda_4)$
	$F_4(1) = F_4 / A_1^l \times T^3$	3	16	$3\Lambda_2 + 2(\Lambda_3 + \Lambda_4)$
	$\mathbf{F}_4(4) = \mathbf{F}_4 / \mathbf{A}_1^{\hat{s}} \times \mathbf{T}^3$	3	13	$2(\Lambda_1 + \Lambda_2) + \Lambda_3$
	$F_4(1,2) = F_4 / A_2^l \times T^2$	2	9	$6\Lambda_3 + 2\Lambda_4$
	$F_4(1,4) = F_4 / A_1 \times A_1 \times T^2$	2	8	$3\Lambda_2 + 3\Lambda_3$
	$F_4(2,3) = F_4 / B_2 \times T^2$	2	6	$5\Lambda_1 + 6\Lambda_4$
	$F_4(3,4) = F_4 / A_2^s \times T^2$	2	6	$2\Lambda_1 + 4\Lambda_2$
	$\mathbf{F}_4(1,2,4) = \mathbf{F}_4 / \mathbf{A}_2^l \times \mathbf{A}_1^s \times \mathbf{T}$	1	4	$7\Lambda_3$
	$F_4(1,3,4) = F_4 / A_2^s \times A_1^l \times T$	1	3	$5\Lambda_2$
	$F_4(1,2,3) = F_4 / B_3 \times T^{-1}$	1	2	$11\Lambda_4$
	$F_4(2,3,4) = F_4 / C_3 \times T$	1	2	$8\Lambda_1$
E_6	$E_6(0) = E_6 / T^6$	6	36	$2(\Lambda_1 + \cdots + \Lambda_6)$
	$E_6(1) = E_6 / A_1 \times T^5$	5	25	$3\Lambda_2 + 2(\Lambda_3 + \dots + \Lambda_6)$
	$E_6(3,5) = E_6 / A_1 \times A_1 \times T^4$	4	17	$2\Lambda_1 + 3\Lambda_2 + 4\Lambda_4 + 3\Lambda_6$
	$E_6(4,5) = E_6 / A_2 \times T^4$	4	15	$2(\Lambda_1 + \Lambda_2 + 2\Lambda_3 + \Lambda_6)$
	$E_6(1,3,5) = E_6 / A_1 \times A_1 \times A_1 \times T^3$	3	11	$4(\Lambda_2 + \Lambda_4) + 3\Lambda_6$
	$E_6(2,4,5) = E_6 / A_2 \times A_1 \times T^3$	3	10	$3\Lambda_1 + 5\Lambda_3 + 2\Lambda_6$
	$E_6(3,4,5) = E_6 / A_3 \times T^3$	3	8	$2\Lambda_1 + 5(\Lambda_2 + \Lambda_6)$
	$E_6(2,3,4,5) = E_6 / A_4 \times T^2$	2	4	$6\Lambda_1 + 8\Lambda_6$
	$E_6(1,3,4,5) = E_6 / A_3 \times A_1 \times T_2^2$	2	5	$6\Lambda_2 + 5\Lambda_6$
	$E_6(1, 2, 4, 5) = E_6 / A_2 \times A_2 \times T^2$	2	6	$6\Lambda_3 + 2\Lambda_6$
	$E_6(2, 4, 5, 6) = E_6 / A_2 \times A_1 \times A_1 \times T^2$	2	6	$3\Lambda_1 + 6\Lambda_3$
	$E_6(2,3,4,6) = E_6 / D_4 \times T^2$	2	3	$8(\Lambda_1 + \Lambda_5)$
	$E_6(1, 2, 4, 5, 6) = E_6 / A_2 \times A_2 \times A_1 \times T$			$\Gamma \Lambda_3$
	$E_{6}(1, 2, 3, 4, 5) = E_{6} / A_{5} \times T$ $E_{4}(1, 2, 4, 5, 6) = E_{6} / A_{5} \times A_{5} \times T$			$11\Lambda_6$
		<u>1</u> 1	∠ 1	$\begin{array}{c} 9/\Lambda_2 \\ 12\Lambda_2 \end{array}$
	$D_6(2, 0, 4, 0, 0) = D_6 / D_5 \times 1$	1	1	12111

G	$F = G/\mathbf{H}$	$b_2(F)$	$d = \sharp(R_T^+)$	σ^J
E ₇	$E_7(0) = E_7 / T^7$	7	63	$2(\Lambda_1 + \dots + \Lambda_7)$
	$E_7(1) = E_7 / A_1 \times T^6$	6	46	$3\Lambda_2 + 2(\Lambda_3 + \cdots + \Lambda_7)$
	$E_7(4, 6) = E_7 / A_1 \times A_1 \times T^5$	5	33	$2(\Lambda_1 + \Lambda_2) + 3(\Lambda_3 + \Lambda_7) + 4\Lambda_5$
	$E_7(5,6) = E_7 / A_2 \times T^5$	5	30	$2(\Lambda_1 + \cdots + \Lambda_4 + \Lambda_7)$
	$E_7(1,3,5) = E_7 / A_1 \times A_1 \times A_1 \times T^4 [1,1]$	4	23	$4\Lambda_2 + 4\Lambda_4 + 3\Lambda_6 + 2\Lambda_7$
	$E_7(1,3,7) = E_7 / A_1 \times A_1 \times A_1 \times T^4 [0,0]$	4	24	$4\Lambda_2 + 4\Lambda_4 + 2\Lambda_5 + 2\Lambda_6$
	$E_7(3, 5, 6) = E_7 / A_2 \times A_1 \times T^4$	4	21	$2\Lambda_1 + 3\Lambda_2 + 5\Lambda_4 + 2\Lambda_7$
	$E_7(4,5,6) = E_7 / A_3 \times T^4$	4	18	$2\Lambda_1 + 2\Lambda_2 + 5\Lambda_3 + 5\Lambda_7$
	$E_7(1,2,3,4) = E_7 / A_4 \times T^3$	3	10	$6\Lambda_5 + 2\Lambda_6 + 6\Lambda_7$
	$E_7(1,2,3,5) = E_7 / A_3 \times A_1 \times T^3 [1,1]$	3	12	$6\Lambda_4 + 3\Lambda_6 + 2\Lambda_7$
	$E_7(1, 2, 3, 7) = E_7 / A_3 \times A_1 \times T^3 [0, 0]$	3	13	$6\Lambda_4 + 2\Lambda_5 + 2\Lambda_6$
	$E_7(1, 2, 4, 5) = E_7 / A_2 \times A_2 \times T^3$	3	13	$6\Lambda_3 + 4\Lambda_6 + 4\Lambda_7$
	$E_7(1, 2, 4, 6) = E_7 / A_2 \times A_1 \times A_1 \times T^3$	3	14	$5\Lambda_3 + 4\Lambda_5 + 3\Lambda_7$
	$E_7(1,3,5,7) = E_7/(A_1)^4 \times T^3$	3	16	$4\Lambda_2 + 5\Lambda_4 + 3\Lambda_6$
	$E_7(3, 4, 5, 7) = E_7 / D_4 \times T^3$	3	9	$2\Lambda_1 + 8\Lambda_2 + 8\Lambda_6$
	$E_7(1,2,3,4,5) = E_7 / A_5 \times T^2 [1,1]$	2	5	$7\Lambda_6 + 10\Lambda_7$
	$E_7(1, 2, 3, 4, 7) = E_7 / A_5 \times T^2 [0, 0]$	2	6	$10\Lambda_5 + 2\Lambda_6$
	$E_7(1, 2, 3, 4, 6) = E_7 / A_4 \times A_1 \times T^2$	2	6	$7\Lambda_5 + 6\Lambda_7$
	$E_7(1, 2, 3, 5, 6) = E_7 / A_3 \times A_2 \times T^2$	2	7	$7\Lambda_4 + 2\Lambda_7$
	$E_7(1, 2, 3, 5, 7) = E_7 / A_3 \times A_1 \times A_1 \times T^2$	2	8	$7\Lambda_4 + 3\Lambda_6$
	$E_7(1, 3, 4, 5, 7) = E_7 / D_4 \times A_1 \times T^2$	2	6	$9\Lambda_2 + 4\Lambda_6$
	$E_7(1, 2, 5, 6, 7) = E_7 / A_2 \times A_1 \times A_1 \times T^2$	2	8	$4\Lambda_3 + 5\Lambda_4$
	$E_7(1,3,5,6,7) = E_7 / A_2 \times (A_1)^3 \times T^2$	2	9	$4\Lambda_2 + 6\Lambda_4$
	$E_7(3, 4, 5, 6, 7) = E_7 / D_5 \times T^2$	2	4	$2\Lambda_1 + 12\Lambda_2$
	$E_7(1, 2, 3, 4, 5, 6) = E_7 / A_6 \times T$	1	2	$14\Lambda_7$
	$E_7(2,3,4,5,6,7) = E_7 / E_6 \times T$	1	1	$18\Lambda_1$
	$E_7(1, 3, 4, 5, 6, 7) = E_7 / D_5 \times A_1 \times T$	1	2	$13\Lambda_2$
	$E_7(1, 2, 4, 5, 6, 7) = E_7 / A_4 \times A_2 \times T$		3	$10\Lambda_3$
	$E_7(1, 2, 3, 5, 6, 7) = E_7 / A_3 \times A_2 \times A_1 \times T$		4	$8\Lambda_4$
	$E_7(1, 2, 3, 4, 6, 7) = E_7 / A_5 \times A_1 \times T$		2	$12\Lambda_5$
	$E_7(1, 2, 3, 4, 5, 7) = E_7 / D_6 \times T$	1	2	$117\Lambda_6$

Thm.

(1) For $G = G_2$ there is a unique G-spin (or G-metaplectic) flag manifold, namely the full flag $G_2(0) = G_2/T^2$. (2) For $G = F_4$ the associated G-spin (of G-metaplectic) flag manifolds are the cosets defined by $F_4(0)$, $F_4(1,2)$, $F_4(3,4)$, $F_4(2,3,4)$, and the flag manifolds isomorphic to them. In particular:

- $F_4(2,3,4) = F_4 / C_3 \times T$ is the unique (up to equivalence) flag manifold of $G = F_4$ with $b_2(F) = 1 = \operatorname{rnk} R_T$ which admits a *G*-invariant spin and metaplectic structure.
- There are not exist flag manifolds F = G/H of $G = F_4$ with $b_2(F) = 3 = \operatorname{rnk} R_T$ carrying a (*G*-invariant) spin structure or a metaplectic structure.

(3) For $G = E_6$ the associated G-spin (or G-metaplectic) flag manifolds are the cosets defined by $E_6(0)$, $E_6(4,5)$, $E_6(2,3,4,5)$, $E_6(1,2,4,5)$, $E_6(2,3,4,6)$, $E_6(2,3,4,5,6)$, and the flag manifolds isomorphic to them. In particular,

- $E_6(4,5) = E_6 / A_2 \times T^4$ is the unique (up to equivalence) flag manifold of $G = E_6$ with $b_2(F) = 4 = \operatorname{rnk} R_T$ which admits a G-invariant spin and metaplectic structure.
- $E_6(2,3,4,5,6) = E_6 / D_5 \times T$ is the unique (up to equivalence) flag manifold of $G = E_6$ with $b_2(F) = 1 = \operatorname{rnk} R_T$ which admits a *G*-invariant spin and metaplectic structure.
- There are not exist flag manifolds F = G/H of $G = E_6$ with $b_2(F) = 3 = \operatorname{rnk} R_T$ carrying a (*G*-invariant) spin or metaplectic structure.

Thm.

For $G = E_7$ the associated G-spin (or G-metaplectic) flag manifolds are the cosets defined by $E_7(0)$, $E_7(5,6)$, $E_7(1,3,7)$, $E_7(1,2,3,4)$, $E_7(1,2,3,7)$, $E_7(1,2,4,5)$, $E_7(3,4,5,7)$, $E_7(1,2,3,4,7)$, $E_7(1,3,5,6,7)$, $E_7(3,4,5,6,7)$, $E_7(1,2,3,4,5,6)$, $E_7(2,3,4,5,6,7)$, $E_7(1,2,4,5,6,7)$, $E_7(1,2,3,5,6,7)$, $E_7(1,2,3,4,5,6)$, $E_7(1,2,3,4,5,6,7)$, $E_7(1,2,3,4,6,7)$ and the flag manifolds isomorphic to them. In particular,

- $E_7(5,6) = E_7 / A_2 \times T^5$ is the unique (up to equivalence) flag manifold of $G = E_7$ with second Betti number $b_2(F) = 5 = \operatorname{rnk} R_T$, which admits a *G*-invariant spin and metaplectic structure.
- $E_7(1,3,7) = E_7 / A_1 \times A_1 \times A_1 \times T^4$ is the unique (up to equivalence) flag manifold of $G = E_7$ with second Betti number $b_2(F) = 4 = \operatorname{rnk} R_T$, which admits a *G*-invariant spin and metaplectic structure.
- There are not exist flag manifolds F = G/H of $G = E_7$ with $b_2(F) = \operatorname{rnk} R_T = 6$, carrying a (*G*-invariant) spin or metaplectic structure.

Thm.

For $G = E_8$ the associated G-spin (or G-metaplectic) flag manifolds are the cosets defined by $E_8(0)$, $E_8(1,2)$, $E_8(1,2,3,4)$, $E_8(1,2,4,5)$, $E_8(4,5,6,8)$, $E_8(4,5,6,7,8)$, $E_8(1,2,3,4,5,6)$, $E_8(1,2,3,4,6,7)$, $E_8(1,2,4,5,6,8)$, $E_8(1,2,4,5,6,7,8)$ and the flag manifolds isomorphic to them. In particular,

- $E_8(1,2) = E_8 / A_1 \times T^6$ is the unique (up to equivalence) flag manifold of $G = E_8$ with second Betti number $b_2(F) = 6 = \operatorname{rnk} R_T$, which admits a *G*-invariant spin and metaplectic structure.
- $E_8(4, 5, 6, 7, 8) = E_8 / D_5 \times T^3$ is the unique (up to equivalence) flag manifold of $G = E_8$ with second Betti number $b_2(F) = 3 = \operatorname{rnk} R_T$, which admits a *G*-invariant spin and metaplectic structure.
- $E_8(1, 2, 4, 5, 6, 7, 8) = E_8 / D_5 \times A_2 \times T$ is the unique (up to equivalence) flag manifold of $G = E_8$ with second Betti number $b_2(F) = 1 = \operatorname{rnk} R_T$ which admits a *G*-invariant spin and metaplectic structure.
- There are not exist flag manifolds F = G/H of $G = E_8$ with $b_2(F) = \operatorname{rnk} R_T = 5$, or $b_2(F) = \operatorname{rnk} R_T = 7$, carrying a (*G*-invariant) spin or metaplectic structure.

... on the calculation of Koszul numbers

 α) Consider the natural invariant ordering $\mathbf{R}_{\mathbf{F}}^+ = \mathbf{R}^+ \backslash \mathbf{R}_{\mathbf{H}}^+$ induced by the splitting $\mathbf{\Pi} = \mathbf{\Pi}_{\mathbf{W}} \sqcup \mathbf{\Pi}_{\mathbf{B}}$. Let us denote by J_0 the corresponding complex structure. Describe the root system $R_{\mathbf{H}}$ and compute

$$\sigma_{\mathbf{H}} := \frac{1}{2} \sum_{\beta \in R_{H}^{+}} \beta$$

 β) Apply the formula

$$2(\sigma_{\mathbf{G}} - \sigma_{\mathbf{H}}) = \sum_{\gamma \in \mathbf{R}_{\mathbf{F}}^+} \gamma := \sigma^{J_0}.$$

In particular, for the exceptional simple Lie groups and with respect to the fixed bases of the associated roots systems, it is $2\sigma_{G_2} = 6\alpha_1 + 10\alpha_2$,

$$\begin{array}{rcl} 2\sigma_{\mathrm{F}_4} &=& 16\alpha_1 + 30\alpha_2 + 42\alpha_3 + 22\alpha_4, \\ 2\sigma_{\mathrm{E}_6} &=& 16\alpha_1 + 30\alpha_2 + 42\alpha_3 + 30\alpha_4 + 16\alpha_5 + 22\alpha_6, \\ 2\sigma_{\mathrm{E}_7} &=& 27\alpha_1 + 52\alpha_2 + 75\alpha_3 + 96\alpha_4 + 66\alpha_5 + 34\alpha_6 + 49\alpha_7, \\ 2\sigma_{\mathrm{E}_8} &=& 58\alpha_1 + 114\alpha_2 + 168\alpha_3 + 220\alpha_4 + 270\alpha_5 + 182\alpha_6 + 92\alpha_7 + 136\alpha_8. \end{array}$$

 γ) Use the Cartan matrix $C = (c_{i,j}) = \left(\frac{2(\alpha_i, \alpha_j)}{(\alpha_j, \alpha_j)}\right)$ associated to the basis Π (and its enumeration), to express the simple roots in terms of fundamental weights via the formula $\alpha_i = \sum_{j=1}^{\ell} c_{i,j} \Lambda_j$.

C-spaces and spin structures

- C-space is a compact, simply connected, homogeneous complex manifold M = G/L of a compact semisimple Lie group G.
- stability group L is a closed connected subgroup of G whose semisimple part coincides with the semisimple part of the centralizer of a torus in G.
- Any C-space is the total space of a homogeneous torus bundle $M = G/L \rightarrow F = G/H$ over a flag manifold F = G/H.
- In particular, the fiber is a complex torus T^{2k} of real even dimension 2k.

Well-know fact: Given a C-space M = G/L the following are equivalent:

- L = C(S), i.e. M = G/L is a flag manifold,
- second Betti number of G/L is non-zero,
- the Euler characteristic of G/L is non-zero,

 Hence, non-Kählerian C-spaces may admit Lorentzian metric and complex structure with zero first Chern class ⇒

such spaces may give examples of homogeneous Calabi-Yau structures with torsion [Fino-Grantcharov '04, Grantcharov '11]

• Consider a reductive decomposition

$$\mathfrak{g} = \mathfrak{h} + \mathfrak{m} = (Z(\mathfrak{h}) + \mathfrak{h}') + \mathfrak{m},$$

associated with a flag manifold F = G/H of G.

• We decompose

$$Z(\mathfrak{h}) = \mathfrak{t}_0 + \mathfrak{t}_1$$

into a direct sum of a (commutative) subalgebra \mathfrak{t}_1 of even dimension 2k and a complement \mathfrak{t}_0 which generates a closed toral subgroup T_0 of H, such that

$$\operatorname{rnk} G = \dim T_0 + \operatorname{rnk} H', \quad \text{and} \quad \operatorname{rnk} L = \dim T_1 + \operatorname{rnk} H'.$$

• Then, the homogeneous manifold $M = G/L = G/T_0 \cdot H'$ is a C-space and any C-space has such a form.

• Notice that $L \subset H$ is normal subgroup of H. In particular, H' (the semi-simple part of H) coincides with the simi-simple part of L.

Lemma. Any complex structure in \mathfrak{t}_1 together with an invariant complex structure J_F in $F = G/H = G/T_1 \cdot L$ defines an invariant complex structure J_M in $M = G/L = G/T_0 \cdot H'$ such that $\pi : M = G/L \to F = G/H$ is a holomorphic fibration with respect to the complex structures J_M and J_F . The fiber has the form $H/L = (T_1 \cdot L)/(T_0 \cdot H') \cong T_1$.

• Consider a homogeneous torus bundle $\pi: M = G/L \rightarrow F = G/H$

$$\mathfrak{g} = \mathfrak{l} + \mathfrak{q} = (\mathfrak{h}' + \mathfrak{t}_0) + (\mathfrak{t}_1 + \mathfrak{m}), \quad \mathfrak{q} := (\mathfrak{t}_1 + \mathfrak{m}) \cong T_{eL}M.$$

• Let J_F be an invariant complex structure in F and J_M its extension to an invariant complex structure in M, defined by adding a complex structure J_{t_1} in t_1 . Then

Prop. The invariant Chern from $\gamma_{J_M} \in \Omega^2(M)$ of the complex structure J_M is the pull back of the invariant Chern form $\gamma_{J_F} \in \Omega^2(F)$ associated to the complex structure J_F on F, i.e. $\gamma_{J_M} = \pi^* \gamma_{J_F}$.

Corol. Given a C-space M = G/L over flag manifold F = G/H, then

- $w_2(TM) = \pi^*(w_2(TF))$
- M is spin if and only if $w_2(TF)$ belongs to the kernel of $\pi^*: H^2(F; \mathbb{Z}_2) \to H^2(M; \mathbb{Z}_2)$.
- If F is G-spin, then so is M.

Hints: Notice that

$$TM = G \times_L \mathfrak{q} = (G \times_L \mathfrak{t}_1) \oplus \pi^*(TF)$$

Thm. There are 45 non-biholomorphic C-spaces M = G/L fibered over a spin flag manifold F = G/H of an exceptional Lie group $G \in \{G_2, F_4, E_6, E_7, E_8\}$, and any such space carries a unique G-invariant spin structure. The associated fibrations are given as follows:

T^2	\hookrightarrow	G_2	\longrightarrow	G_2/T^2	T ⁶	\hookrightarrow	E_7/T	\longrightarrow	E_7/T^7
T^4	\hookrightarrow	F_4	\longrightarrow	F_4/T^4	T^4	\hookrightarrow	E_7/T^3	\longrightarrow	E_7/T^7
T^2	\hookrightarrow	F_4/T^2	\longrightarrow	F_4/T^4	T^2	\hookrightarrow	E_7/T^5	\longrightarrow	E_7/T^7
T^2	\hookrightarrow	$\mathbf{F}_4^l / \mathbf{A}_2^l$	\longrightarrow	$F_4/A_2^l \times T^2$	T^4	\hookrightarrow	$E_7/A_2 \times T$	\longrightarrow	$E_7/A_2 \times T^5$
T^2	\hookrightarrow	$F_4/A_2^{\tilde{s}}$	\longrightarrow	$F_4/A_2^{\tilde{s}} \times T^2$	T^2	\hookrightarrow	$E_7/A_2 \times T^3$	\longrightarrow	$E_7/A_2 \times T^5$
T^6	\hookrightarrow	E_6	\longrightarrow	$E_6/T^{\tilde{6}}$	T^4	\hookrightarrow	$E_7/(A_1)^3$	$\xrightarrow{*}$	$E_7/(A_1)^3 \times T^4$
T^4	\hookrightarrow	$\tilde{\mathrm{E}_{6}}/\mathrm{T}^{2}$	\longrightarrow	E_6/T^6	T^2	\hookrightarrow	$E_7/(A_1)^3 \times T^2$	$\xrightarrow{*}$	$E_7/(A_1)^3 \times T^4$
T^2	\hookrightarrow	E_6/T^4	\longrightarrow	E_6/T^6	T^2	\hookrightarrow	$E_7/A_4 \times T$	\longrightarrow	$E_7/A_4 \times T^3$
T^4	\hookrightarrow	$\mathbf{E}_{6}^{\prime}/\mathbf{A}_{2}$	\longrightarrow	$E_6/A_2 \times T^4$	T^2	\hookrightarrow	$E_7 / A_3 \times A_1 \times T$	$\xrightarrow{*}$	$E_7 / A_3 \times A_1 \times T^3$
T^2	\hookrightarrow	$E_6/A_2 \times T^2$	\longrightarrow	$E_6/A_2 \times T^4$	T^2	\hookrightarrow	$E_7/A_2 \times A_2 \times T$	\longrightarrow	$E_7/A_2 \times A_2 \times T^3$
T^2	\hookrightarrow	$\mathbf{E}_{6}^{\circ}/\mathbf{A}_{4}^{\circ}$	\longrightarrow	$E_6/A_4 \times T^2$	T^2	\hookrightarrow	$E_7/D_4 \times T$	\longrightarrow	$E_7/D_4 \times T^3$
T^2	\hookrightarrow	$E_6 / A_2 \times A_2$	\longrightarrow	$E_6 / A_2 \times A_2 \times T^2$	$ T^2$	\hookrightarrow	E_7 / A_5	\longrightarrow	$E_7/A_5 \times T^2$
T^2	\hookrightarrow	E_6/D_4	\longrightarrow	$E_6/D_4 \times T^3$	T^2	\hookrightarrow	$E_7 / A_2 \times (A_1)^3$	$\xrightarrow{*}$	$E_7 / A_2 \times (A_1)^3 \times$
		~ / _		• / _	T^2	\hookrightarrow	E_7/D_5	\longrightarrow	$E_7/D_5 \times T^2$
T^8	\hookrightarrow	E_8	\longrightarrow	E_8/T^8	T^4	\hookrightarrow	E_8/D_4	\longrightarrow	$E_8/D_4 \times T^4$
T^6	\hookrightarrow	E_8/T^2	\longrightarrow	E_8/T^8	$ T^2$	\hookrightarrow	$E_8/D_4 \times T^2$	\longrightarrow	$E_8/D_4 \times T^4$
T^4	\hookrightarrow	E_8/T^4	\longrightarrow	E_8/T^8	$ T^4$	\hookrightarrow	$E_8 / A_2 \times A_2$	\longrightarrow	$E_8/A_2 \times A_2 \times T^4$
T^2	\hookrightarrow	E_8/T^6	\longrightarrow	E_8/T^8	$ T^2$	\hookrightarrow	$E_8/A_2 \times A_2 \times T^2$	\longrightarrow	$E_8/A_2 \times A_2 \times T^4$
T^{6}	\hookrightarrow	E_8/A_2	\longrightarrow	$E_8/A_2 \times T^6$	$ T^2$	\hookrightarrow	$E_8/D_5 \times T^1$	\longrightarrow	$E_8/D_5 \times T^3$
T^4	\hookrightarrow	$E_8/A_2 \times T^2$	\longrightarrow	$E_8/A_2 \times T^6$	$ T^2$	\hookrightarrow	E_8/A_6	\longrightarrow	$E_8/A_6 \times T^2$
T^2	\hookrightarrow	$E_8/A_2 \times T^4$	\longrightarrow	$E_8/A_2 \times T^6$	$ T^2$	\hookrightarrow	$E_8 / A_4 \times A_2$	\longrightarrow	$E_8/A_4 \times A_2 \times T^2$
T^4	\hookrightarrow	E_8 / A_4	\longrightarrow	$E_8 / A_4 \times T^4$	$ T^2$	\hookrightarrow	$E_8 / D_4 \times A_2$	\longrightarrow	$E_8 / D_4 \times A_2 \times T^2$
T^2	\hookrightarrow	$E_8 / A_4 \times T^2$	\longrightarrow	$E_8 / A_4 \times T^4$	$ T^2$	\hookrightarrow	E_8 / E_6	\longrightarrow	$E_8 / E_6 \times T^2$