# Castle Rauischholzhausen - March 2016 

Lie Theory and Geometry

Spin and metaplectic structures on homogeneous spaces
(arXiv:1602.07968)
(joint work with D. V. Alekseevsky)
loannis Chrysikos

Masaryk University - Department of Mathematics and Statistics


- $\left(M^{n}, g\right)$ connected oriented pseudo-Riemannian mnfd, signature $(p, q)$
- $\pi: P=\mathrm{SO}(M) \rightarrow M$ the $\mathrm{SO}_{p, q^{-}}$-principal bundle of positively oriented orthonormal frames.

$$
T M=\mathrm{SO}(M) \times_{\mathrm{SO}_{p, q}} \mathbb{R}^{n}=\eta_{-} \oplus \eta_{+}
$$

Def. $\left(M^{n}, g\right)$ is called time-oriented (resp. space-oriented) if $\eta_{-}$(resp. $\eta_{+}$) is oriented.

- time-oriented: if and only if $H^{1}\left(M ; \mathbb{Z}_{2}\right) \ni w_{1}\left(\eta_{-}\right)=0$
- space-oriented: if and only if $H^{1}\left(M ; \mathbb{Z}_{2}\right) \ni w_{1}\left(\eta_{+}\right)=0$
- oriented: if and only if $H^{1}\left(M ; \mathbb{Z}_{2}\right) \ni w_{1}(M):=w_{1}(T M)=w_{1}\left(\eta_{-}\right)+w_{1}\left(\eta_{+}\right)=0$

Examples: $\Rightarrow$ Trivial line bundle $M=S^{1} \times \mathbb{R}, w_{1}(M)=0$,
$\Rightarrow$ Torus $\mathbb{T}^{2}=S^{1} \times S^{1}, w_{1}\left(\mathbb{T}^{2}\right)=0$
$\nRightarrow$ Möbius strip $S=S^{1} \times{ }_{G} \mathbb{R} \rightarrow S^{1}, G=\mathbb{Z}_{2}, w_{1}(S) \neq 0$


Remark: Since $H^{1}\left(M ; \mathbb{Z}_{2}\right) \cong \operatorname{Hom}\left(\pi_{1}(M) ; \mathbb{Z}_{2}\right) \Rightarrow$ if $M$ is simply-connected then it is oriented

- $\mathrm{C} \ell_{p, q}=\mathrm{C} \ell\left(\mathbb{R}^{p, q}\right)=\sum_{r=0}^{\infty} \otimes^{r} \mathbb{R}^{p, q} /\langle x \otimes x-\langle x, x\rangle \cdot 1\rangle$
- $\mathrm{C} \ell_{p, q}=\mathrm{C} \ell_{p, q}^{0}+\mathrm{C} \ell_{p, q}^{1}$
- $\operatorname{Spin}_{p, q}:=\left\{x_{1} \cdots x_{2 k} \in \mathrm{C} \ell_{p, q}^{0}: x_{j} \in \mathbb{R}^{p, q},\left\langle x_{j}, x_{j}\right\rangle= \pm 1\right\} \subset \mathrm{C} \ell_{p, q}^{0}$
- Ad : $\operatorname{Spin}_{p, q} \rightarrow \mathrm{SO}_{p, q}$ double covering

Def. A $\operatorname{Spin}_{p, q}$-structure (shortly spin structure) on $\left(M^{n}, g\right)$

- a $\operatorname{Spin}_{p, q^{-}}$-principal bundle $\tilde{\pi}: Q=\operatorname{Spin}(M) \rightarrow M$ over $M$,
- a $\mathbb{Z}_{2}$-cover $\Lambda: \operatorname{Spin}(M) \rightarrow \mathrm{SO}(M)$ of $\pi: \mathrm{SO}(M) \rightarrow M$, such that:

- If such a pair $(Q, \Lambda)$ exists, we shall call $\left(M^{n}, g\right)$ a pseudo-Riemannian spin manifold.
- if the manifold is time-oriented and space-oriented, then a Spin ${ }^{+}$-structure is a reduction $Q^{+}$ of the $\mathrm{SO}^{+}(n, k)$-principal bundle $P^{+}$of positively time- and space-oriented orthonormal frames, onto the spin group $\operatorname{Spin}^{+}(n, k)=\operatorname{Ad}^{-1}\left(\mathrm{SO}^{+}(n, k)\right)$, with $Q^{+} \rightarrow P^{+}$being the double covering.

Obstructions

- $(M, g)$ oriented pseudo-Riemannian manifold [Karoubi‘68, Baum'81]

$$
\begin{array}{ll}
\exists \text { spin structure } & \Leftrightarrow w_{2}\left(\eta_{-}\right)+w_{2}\left(\eta_{+}\right)=0 \quad(*) \\
& \Leftrightarrow w_{2}(M)=w_{1}\left(\eta_{-}\right) \smile w_{1}\left(\eta_{+}\right) \quad(* *)
\end{array}
$$

Remark: If $(*)$ or $(* *)$ holds, $\Longrightarrow$ set of spin structures on $(M, g) \Longleftrightarrow$ elements in $H^{1}\left(M ; \mathbb{Z}_{2}\right)$. ... a bit more special cases:

- $(M, g)$ time-oriented + space oriented pseudo-Riemannian manifold

$$
\exists \text { spin structure } \quad \Leftrightarrow \quad w_{2}(M)=0
$$

- $(M, g)$ oriented Riemannian manifold

$$
\exists \text { spin structure } \quad \Leftrightarrow \quad w_{2}(M)=0
$$

- $(M, J)$ compact (almost) complex mnfd. Then, $c_{1}(M):=c_{1}(T M, J)=w_{2}(T M)(\bmod 2)$

$$
\exists \text { spin structure } \quad \Leftrightarrow \quad c_{1}(M) \text { is even in } H^{2}(M ; \mathbb{Z}) \text {. }
$$

## Examples


$\mathbb{C} P^{2}=\mathrm{SU}_{3} / \mathrm{U}_{2} \quad \mathbb{C} P^{2}$-point

- Riemannian, Lorentzian, $\mathrm{G}_{2} / \mathrm{U}_{2}, \ldots \Rightarrow w_{1}=0$ but $w_{2} \neq 0$
- parallelizable mnfds (e.g. Lie groups), etc


## Classification results

- special structures often imply existence of a spin structure, e.g. $\mathrm{G}_{2}$-mndfs, nearly-Kähler mnfds, Einstein-Sasaki mnfds, 3-Sasakian mnfds $\Rightarrow$ spin [Friedrich-Kath-Moroianu-Semmelmann '97, Boyer-Galicki '90]
(but: also the spin structure defines the special structure, sometimes!)
- classification of spin symmetric spaces [Cahen-Gutt-Trautman '90]
- classification of spin pseudo-symmetric spaces \& non-symmetric cyclic Riemannian mnfds $(G / L, g)$
[Gadea-González-Dávila-Oubiña '15]

$$
\begin{aligned}
& \mathfrak{S}_{X, Y, Z}\left\langle[X, Y]_{\mathfrak{m}}, Z\right\rangle=0, \quad \forall X, Y, Z \in \mathfrak{m} \cong T_{o} G / K \\
\Leftrightarrow \quad & \text { type } \mathcal{T}_{1} \oplus \mathcal{T}_{2} \quad \text { (Vanhecke-Tricceri classification) }
\end{aligned}
$$

- What new we can say? $\Longrightarrow$ Classification of spin flag manifolds


## Invariant spin structures

Def. A spin structure $\tilde{\pi}: Q \rightarrow M$ on a homogeneous pseudo-Riemannian manifold ( $M=$ $G / L, g)$ is called $G$-invariant if the natural action of $G$ on the bundle $\pi: P \rightarrow M$ of positively oriented orthonormal frames, can be extended to an action on the $\operatorname{Spin}_{p, q} \equiv \operatorname{Spin}(\mathfrak{q})$-principal bundle $\tilde{\pi}: Q \rightarrow M$. Similarly for spin ${ }^{+}$structures.

- Fix $(M=G / L, g)$ oriented homogeneous pseudo-Riemannian manifold with a reductive decomposition $\mathfrak{g}=\mathfrak{l}+\mathfrak{q}$.
- $\operatorname{Ad}: \operatorname{Spin}(\mathfrak{q}) \rightarrow \mathrm{SO}(\mathfrak{q})$.

Thm. [Cahen-Gutt '91] (a) Given a lift of the isotropy representation onto the spin group $\operatorname{Spin}(\mathfrak{q})$, i.e. a homomorphism $\tilde{\vartheta}: L \rightarrow \operatorname{Spin}(\mathfrak{q})$ which makes the following diagram commutative, then $M$ admits a $G$-invariant spin structure given by $Q=G \times_{\tilde{\vartheta}} \operatorname{Spin}(\mathfrak{q})$.

(b) Conversely, if $G$ is simply-connected and ( $M=G / L, g$ ) has a spin structure, then $\vartheta$ lifts to $\operatorname{Spin}(\mathfrak{q})$, i.e. the spin structure is $G$-invariant. Hence in this case there is a one-to-one correspondence between the set of spin structures on $(M=G / L, g)$ and the set of lifts of $\vartheta$ onto $\operatorname{Spin}(\mathfrak{q})$.

## Metaplectic structures

- $\left(V=\mathbb{R}^{2 n}, \omega\right)$ symplectic vector space
- $\operatorname{Sp}(V)=\operatorname{Sp}_{n}(\mathbb{R}):=\operatorname{Aut}(V, \omega)$ the symplectic group.
- $\operatorname{Sp}_{n}(\mathbb{R})$ is a connected Lie group, with $\pi_{1}\left(\operatorname{Sp}_{n}(\mathbb{R})\right)=\mathbb{Z}$.
- Metaplectic group $\operatorname{Mp}_{n}(\mathbb{R})$ is the unique connected (double) covering of $\operatorname{Sp}_{n}(\mathbb{R})$
- $\left(M^{2 n}, \omega\right)$ symplectic manifold, $\operatorname{Sp}(M) \rightarrow M$ is the $\operatorname{Sp}_{n}(\mathbb{R})$-principal bundle of symplectic frames

Def. A metaplectic structure on a symplectic manifold $\left(M^{2 n}, \omega\right)$ is a $\operatorname{Mp}_{n}(\mathbb{R})$-equivariant lift of the symplectic frame bundle $\operatorname{Sp}(M) \rightarrow M$ with respect to the double covering $\rho: \mathrm{Mp}_{n} \mathbb{R} \rightarrow$ $\mathrm{Sp}_{n} \mathbb{R}$.

- $\left(M^{2 n}, \omega\right)$ symplectic manifold

$$
\begin{aligned}
\exists \text { metaplectic structure } & \Leftrightarrow w_{2}(M)=0 \\
& \Leftrightarrow c_{1}(M) \text { is even }
\end{aligned}
$$

Remark: Then, the set of metaplectic structures on $\left(M^{2 n}, \omega\right) \Longleftrightarrow$ elements in $H^{1}\left(M ; \mathbb{Z}_{2}\right)$.

## Compact homogeneous symplectic manifolds

- compact homogeneous symplectic manifold $\left(M^{2 n}=G / H, \omega\right)+$ alomost effective action of $G$ connected. Then $\Rightarrow$
- $G=G^{\prime} \times R, \quad G^{\prime}=$ compact, semisimple, $\quad R=$ solvable $\Longrightarrow$
- $M=F \times N, \quad N=$ flag manifold, $\quad N=$ solvmanifold with symplectic structure
$\longrightarrow$ In particular, any simply-connected compact homogeneous symplectic manifold ( $M=$ $G / H, \omega)$ is symplectomorphic to a flag manifold.

Prop. Simply-connected compact homogeneous symplectic manifolds admitting a metaplectic structure, are exhausted by flag manifolds $F=G / H$ of a compact simply-connected semisimple Lie group $G$ such that $w_{2}(F)=0$, or equivalently $c_{1}(F ; J)=$ even, for some $\omega$-compatible complex structure $J$.

- This is equivalent to say that the isotropy representation $\vartheta: H \rightarrow \mathrm{Sp}(\mathfrak{m})$ lifts to $\operatorname{Mt}(\mathfrak{m})$, i.e. there exists (unique) homomorphism $\tilde{\vartheta}: H \rightarrow \operatorname{Mt}(\mathfrak{m})$ such that



## Homogeneous fibrations and spin structures

... in the spirit of Borel-Hirzebruch

- Let $L \subset H \subset G$ be compact \& connected subgroups of a compact connected Lie group $G$.
- $\pi: M=G / L \rightarrow F=G / H$ (homogeneous fibration), base space $F=G / H$, fibre $H / K$.
- Fix an $\mathrm{Ad}_{L}$-invariant reductive decomposition for $M=G / L$,

$$
\mathfrak{g}=\mathfrak{l}+\mathfrak{q}=\mathfrak{l}+(\mathfrak{n}+\mathfrak{m}), \quad \mathfrak{q}:=\mathfrak{n}+\mathfrak{m}=T_{e L} M
$$

such that:

- $\mathfrak{h}=\mathfrak{l}+\mathfrak{n}$ is a reductive decomposition of $H / L$,
- $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}=(\mathfrak{l}+\mathfrak{n})+\mathfrak{m}$ is a reductive decomposition of $F=G / H$.
- An Ad $_{L}$-invariant (pseudo-Euclidean) metric $g_{\mathfrak{n}}$ in $\mathfrak{n} \Rightarrow$ a (pseudo-Riemannian) invariant metric in $H / L$
- An $\mathrm{Ad}_{H}$-invariant (pseudo-Euclidean) metric $g_{\mathfrak{m}}$ in $\mathfrak{m} \Rightarrow$ a (pseudo-Riemannian) invariant metric in the base $F=G / H$.
$\Rightarrow$ The direct sum metric $g_{\mathfrak{q}}=g_{\mathfrak{n}} \oplus g_{\mathfrak{m}}$ in $\mathfrak{q} \Rightarrow$ an invariant pseudo-Riemannian metric in $M=G / L$ such that $\pi: G / L \rightarrow G / H$ is a pseudo-Riemannian submersion with totally geodesic fibres.
- $N:=H / L \stackrel{i}{\hookrightarrow} M:=G / L \xrightarrow{\pi} F:=G / H$

Prop. (i) The bundles $i^{*}(T M)$ and $T N$ are stably equivalent.
(ii) The Stiefel-Whitney classes of the fiber $N=H / L$ are in the image of the homomorphism $i^{*}: H^{*}\left(M ; \mathbb{Z}_{2}\right) \rightarrow H^{*}\left(N ; \mathbb{Z}_{2}\right)$, induced by the inclusion map $i: N=H / L \hookrightarrow M=G / L$, and (iii)

$$
w_{1}(T M)=0, \quad w_{2}(T M)=w_{2}\left(\tau_{N}\right)+\pi^{*}\left(w_{2}(T F)\right)
$$

## Hints:

- $\tau_{N}:=G \times_{L} \mathfrak{n} \rightarrow G / L$ is the tangent bundle along the fibres (with fibres, the tangent spaces $\mathfrak{n} \cong T_{e L} N$ of the fibres $\left.\pi^{-1}(x) \cong H / L:=N(x \in F)\right)$.

$$
\begin{gathered}
T M=G \times_{L} \mathfrak{q}=G \times_{L}(\mathfrak{n}+\mathfrak{m})=\left(G \times_{L} \mathfrak{n}\right) \oplus\left(G \times_{L} \mathfrak{m}\right):=\tau_{N} \oplus \pi^{*}(T F) . \\
\Rightarrow T N=H \times_{L} \mathfrak{n} \cong i^{*}\left(\tau_{N}\right), \text { and } \\
\quad\left(i^{*} \circ \pi^{*}\right)(T F)=(\pi \circ i)^{*}(T F)=\epsilon^{\operatorname{dim} F}
\end{gathered}
$$

$\epsilon^{t}:=$ trivial real vector bundle of rank $t$. Thus,

$$
i^{*}(T M)=\epsilon^{\operatorname{dim} F} \oplus T N
$$

Due to naturality of Stiefel-Whitney classes we get that

$$
w_{j}\left(i^{*}(T M)\right)=i^{*}\left(w_{j}(T M)\right)=w_{j}(T N)
$$

or equivalently, $i^{*}\left(w_{j}(M)\right)=w_{j}(N)$.
Final step:

$$
\begin{aligned}
w_{2}(T M) & =w_{2}\left(\tau_{N} \oplus \pi^{*}(T F)\right)=w_{2}\left(\tau_{N}\right)+w_{1}\left(\tau_{N}\right) \smile w_{1}\left(\pi^{*}(T F)\right)+w_{2}\left(\pi^{*}(T F)\right) \\
& =w_{2}\left(\tau_{N}\right)+w_{2}\left(\pi^{*}(T F)\right)=w_{2}\left(\tau_{N}\right)+\pi^{*}\left(w_{2}(T F)\right)
\end{aligned}
$$

Corol. Let $N:=H / L \stackrel{i}{\hookrightarrow} M:=G / L \xrightarrow{\pi} F:=G / H$, as above. Then:
$\alpha)$ If $F=G / H$ is spin, then $M=G / L$ is spin if and only if $N=H / L$ is spin.
$\beta$ ) If $N=H / L$ is spin, then $M=G / L$ is spin if and only if

$$
w_{2}(G / H) \equiv w_{2}(T F) \in \operatorname{ker} \pi^{*} \subset H^{2}\left(F ; \mathbb{Z}_{2}\right)
$$

where $\pi^{*}: H^{2}\left(F ; \mathbb{Z}_{2}\right) \rightarrow H^{2}\left(M ; \mathbb{Z}_{2}\right)$ is the induced homomorphism by $\pi$.

- In particular, if $N$ and $F$ are spin, so is $M$ with respect to any pseudo-Riemannian metric.

Hints: Consider the injection $i: N \hookrightarrow M$. Then $i^{*}\left(\tau_{N}\right)=T N, \tau_{N}=i_{*}(T N)$ and

$$
T M=\tau_{N} \oplus \pi^{*} T F=i_{*}(T N) \oplus \pi^{*} T F
$$

Remark: If $M$ is $G$-spin and $N$ is $H$-spin, then $\pi^{*}\left(w_{2}(T F)\right)=w_{2}\left(\pi^{*}(T F)\right)=0$, which in general does not imply the relation $w_{2}(T F)=0$, i.e. $F$ is not necessarily spin.

## Example: Hopf fibration

$$
\mathrm{S}^{1} \rightarrow \mathrm{~S}^{2 n+1}=\mathrm{SU}_{n+1} / \mathrm{SU}_{n} \rightarrow \mathbb{C} P^{n}=\mathrm{SU}_{n+1} / \mathrm{S}\left(\mathrm{U}_{1} \times \mathrm{U}_{n}\right)
$$

$\longrightarrow$ Although the sphere $S^{2 n+1}$ is a spin manifold for any $n$ (its tangent bundle is stably trivial), $\mathbb{C} P^{n}$ is spin only for $n=$ odd.

Generalized Flag manifolds: $F=G / \mathbf{H}=G^{\mathbb{C}} / \mathbf{P}$

- $G$ compact, connected, semisimple Lie group

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}=\left(Z(\mathfrak{h})+\mathfrak{h}^{\prime}\right)+\mathfrak{m}
$$

- $\mathrm{T}^{\ell} \subset \mathrm{H} \subset G$ maximal torus.
- $H:=$ centralizer of torus $S \subset G$
- $\mathfrak{a}=\operatorname{Lie}\left(\mathrm{T}^{\ell}\right)=T_{e} \mathrm{~T}^{\ell}=$ max. abelian subalgebra $\Rightarrow \mathfrak{a}^{\mathbb{C}}$ is a common CSA
- Set:

$$
\mathfrak{a}_{0}:=i \mathfrak{a}, \quad \mathfrak{z}:=Z(\mathfrak{h}), \quad \mathfrak{t}:=i \mathfrak{z} \subset \mathfrak{a}_{0}
$$

- Let $R, R_{H}$ be the root systems of $\left(\mathfrak{g}^{\mathbb{C}}, \mathfrak{a}^{\mathbb{C}}\right),\left(\mathfrak{h}^{\mathbb{C}}, \mathfrak{a}^{\mathbb{C}}\right)$, respectively.
- $\Pi_{\mathrm{W}}=\left\{\alpha_{1}, \ldots, \alpha_{\mathrm{u}}\right\}$ fundamental system of $\boldsymbol{R}_{\mathrm{H}}$.
- Extend to a fundamental system $\Pi$ of $R$,

$$
\Pi=\Pi_{\mathrm{W}} \sqcup \Pi_{\mathrm{B}}=\left\{\alpha_{1}, \ldots, \alpha_{\mathrm{u}}\right\} \sqcup\left\{\beta_{1}, \ldots, \beta_{\mathrm{v}}\right\}, \quad \ell=\mathrm{u}+\mathrm{v}
$$

- Consider the corresponding systems of positive roots $\mathrm{R}^{+}$and $\mathrm{R}_{\mathrm{H}}{ }^{+}$.

Def.

- $\Pi_{B}:=\Pi \backslash \Pi_{W}=$ black (simple) roots.
- $\mathrm{R}_{\mathrm{F}}:=\mathrm{R} \backslash \mathrm{R}_{\mathrm{H}}=$ complementary roots.
$\bullet \mathfrak{h}^{\mathbb{C}}=Z\left(\mathfrak{h}^{\mathbb{C}}\right) \oplus \mathfrak{h}_{s s}^{\mathbb{C}}=\mathfrak{t}^{\mathbb{C}} \oplus\left(\mathfrak{h}^{\prime}\right)^{\mathbb{C}}$, where

$$
\Longrightarrow\left(\mathfrak{h}^{\prime}\right)^{\mathbb{C}}=\mathfrak{g}\left(\mathbb{R}_{\mathrm{H}}\right)=\mathfrak{a}^{\prime}+\sum_{\alpha \in \mathbb{R}_{\mathrm{H}}} \mathfrak{g}_{\alpha}, \quad \mathfrak{a}^{\prime}:=\sum_{\alpha \in \Pi_{\mathrm{W}}} \mathbb{C} H_{\alpha} \subset \mathfrak{a}^{\mathbb{C}} .
$$

$\rightarrow$ Then $\mathfrak{h}=i \mathfrak{t}+\mathfrak{h}^{\prime}$ is the standard compact real form of the complex reductive Lie algebra $\mathfrak{h}^{\mathbb{C}}$.

- Let $\Lambda_{\beta_{i}}$ (or simply by $\Lambda_{i}$ ) be the fundamental weights associated to the black simple roots $\beta_{i} \in \Pi_{\mathrm{B}}$.
- In terms of the splitting $\Pi=\Pi_{W} \sqcup \Pi_{B}$

$$
\left(\Lambda_{i} \mid \beta_{j}\right):=\frac{2\left(\Lambda_{i}, \beta_{j}\right)}{\left(\beta_{j}, \beta_{j}\right)}=\delta_{i j}, \quad\left(\Lambda_{i} \mid \alpha_{k}\right)=0
$$

Lemma. The fundamental weights $\left(\Lambda_{1}, \cdots, \Lambda_{v}\right)$ associated with the black simple roots $\Pi_{B}$, form a basis of the space $\mathfrak{t}^{*} \cong \mathfrak{t}$

Def. By painting black in the Dynkin diagram of $G$ the nodes corresponding to the black roots from $\Pi_{\mathrm{B}}$ we get the painted Dynkin diagram (PDD) of the flag manifold $F=G / \mathrm{H}$.

- The PDD graphically represents the splitting $\Pi=\Pi_{W} \sqcup \Pi_{B}$. The subdiagram generated by the white nodes, i.e. the simple roots in $\Pi_{W}$, defines the semisimple part $H^{\prime}$ of $H$.

Example. Let $G=\mathrm{E}_{7}$ and consider the painted Dynkin diagram


- It defines the flag manifold $F=\mathrm{E}_{7} / \mathrm{SU}_{3} \times \mathrm{SU}_{2} \times \mathrm{U}_{1}^{4}$, with $\Pi_{\mathrm{W}}=\left\{\alpha_{2}, \alpha_{4}, \alpha_{5}\right\}$ and $\Pi_{\mathrm{B}}=$ $\left\{\alpha_{1}, \alpha_{3}, \alpha_{6}, \alpha_{7}\right\}$, respectively. Hence $\operatorname{dim} \mathfrak{t}=4=\operatorname{rnk} R_{T}=b_{2}(F)$.
- Roots from $\mathbf{R}_{\mathbf{F}}=\mathbf{R}_{\mathbf{F}}^{+} \sqcup\left(-\mathbf{R}_{\mathbf{F}}^{+}\right)$determine the complexified tangent space $\left(T_{o} F\right)^{\mathbb{C}}=\mathfrak{m}^{\mathbb{C}}$

$$
\mathfrak{m}^{\mathbb{C}}:=\mathfrak{m}^{10}+\mathfrak{m}^{01}=\sum_{\alpha \in \mathbf{R}_{\mathfrak{F}}^{+}} \mathbb{C} E_{\alpha}+\sum_{\alpha \in \mathbf{R}_{\mathfrak{F}}^{-}} \mathbb{C} E_{\alpha}, \quad \text { with } \overline{\overline{\mathfrak{m}^{10}}}=\mathfrak{m}^{01}, \overline{\mathfrak{m}^{01}}=\mathfrak{m}^{10}
$$

- This defines an (integrable) invariant complex structure $J$

$$
J_{o} E_{ \pm \alpha}= \pm i E_{ \pm \alpha}, \quad \forall \alpha \in \mathbf{R}_{\mathbf{F}}^{+}
$$

$\Longrightarrow$ We identify $F=G / \mathbf{H}=G^{\mathbb{C}} / \mathbf{P}$, where $\mathbf{H}=\mathbf{P} \cap G, \quad \mathbf{P} \subset G^{\mathbb{C}}$ parabolic subgroup

$$
\begin{aligned}
\mathfrak{p}_{\Pi_{\mathrm{W}}}:=\mathfrak{a}^{\mathbb{C}}+\sum_{\alpha \in \mathrm{R}_{\mathrm{H}} \cup \mathrm{R}_{\mathrm{F}}^{+}} \mathfrak{g}_{\alpha} & =\mathfrak{a}^{\mathbb{C}}+\sum_{\alpha \in \mathrm{R}_{\mathrm{H}}} \mathfrak{g}_{\alpha}+\sum_{\alpha \in \mathrm{R}_{\mathrm{F}}^{+}} \mathfrak{g}_{\alpha} \\
& =\mathfrak{h}^{\mathbb{C}}+\mathfrak{n}_{+} .
\end{aligned}
$$

$\Longrightarrow B_{+} \subset G^{\mathbb{C}}$ the Borel subgroup corresponding to the maximal solvable subalgebra

$$
\mathfrak{b}^{+}:=\mathfrak{a}^{\mathbb{C}}+\sum_{\alpha \in \mathbf{R}^{+}} \mathfrak{g}_{\alpha}=\mathfrak{a}^{\mathbb{C}}+\mathfrak{g}\left(\mathbf{R}^{+}\right) \subset \mathfrak{g}^{\mathbb{C}} .
$$

$\Longrightarrow \Pi_{\mathrm{W}}=\emptyset$ and $\Pi_{\mathrm{W}}=\Pi$ define the spaces $\mathfrak{b}^{+}$and $\mathfrak{g}^{\mathbb{C}}$, respectively.
Prop. [Borel-Hirzebruch ' 51 , Alekseevsky '76] There is a 1-1 bijective correspondence between,

- Invariant complex structures on a flag manifold $F=G / \mathbf{H}=G^{\mathbb{C}} / \mathbf{P}$
- extensions of a fixed fundamental system $\Pi_{W}$ of the subalgebra $\mathfrak{h}^{\mathbb{C}}$ to a fundamental system $\Pi$ of the Lie algebra $\mathfrak{g}^{\mathbb{C}}$.
- papabolic subalgebras $\mathfrak{p}_{\Pi_{W}}=\mathfrak{h}^{\mathbb{C}}+\mathfrak{n}_{+}$with reductive part $\mathfrak{h}^{\mathbb{C}}$


## $T$-roots and applications

$$
\begin{aligned}
\mathfrak{t} & :=i \mathfrak{z} \subset \mathfrak{a}_{0} \text { where } \mathfrak{z}:=Z(\mathfrak{h}) \\
& =\left\{X \in \mathfrak{a}_{0}: \alpha_{i}(X)=0, \text { for all } \alpha_{i} \in \Pi_{\mathrm{W}}\right\} .
\end{aligned}
$$

$\Longrightarrow$ Consider the linear restriction map

$$
\kappa: \mathfrak{a}^{*} \rightarrow \mathfrak{t}^{*},\left.\alpha \mapsto \alpha\right|_{\mathfrak{t}}
$$

- Then: $\mathbf{R}_{\mathrm{H}}=\{\alpha \in \mathbf{R}, \kappa(\alpha)=0\}$.

Def.

$$
R_{T}:=\text { the restriction of } \mathbf{R}_{\mathbf{F}} \text { on } \mathfrak{t}=\kappa\left(\mathbf{R}_{\mathbf{F}}\right)=\kappa(\mathbf{R})
$$

Elements in $R_{T}$ are called $T$-roots. Notice that: $\mathbf{v}:=\sharp\left(\Pi_{\mathbf{B}}\right)=\operatorname{rnk} R_{T}$.
Thm. [Siebenthal '64, Alekseevsky '76]
There exists an 1-1 correspondence between $\mathfrak{t}$-roots and complex irreducible H -submodules $\mathfrak{f}_{\xi}$ of $\mathfrak{m}^{\mathbb{C}}$. This correspondence is given by

$$
R_{T} \ni \xi \leftrightarrow \mathfrak{f}_{\xi}:=\sum_{\alpha \in \mathbf{R}_{\mathbf{F}}: \kappa(\alpha)=\xi} \mathbb{C} E_{\alpha} .
$$

- Moreover, there is a natural 1-1 correspondence between positive $T$-roots $\xi \in R_{T}^{+}=\kappa\left(\mathbf{R}_{\mathbf{F}}^{+}\right)$ and real pairwise inequivalent irreducible $H$-submodules $\mathfrak{m}_{\xi} \subset \mathfrak{m}$, given by

$$
R_{T}^{+} \ni \xi \longleftrightarrow \mathfrak{m}_{\xi}:=\left(\mathfrak{f}_{\xi}+\mathfrak{f}_{-\xi}\right) \cap \mathfrak{m}=\left(\mathfrak{f}_{\xi}+\mathfrak{f}_{-\xi}\right)^{\tau}
$$

- Moreover, $\operatorname{dim}_{\mathbb{C}} \mathfrak{f}_{\xi}=\operatorname{dim}_{\mathbb{R}} \mathfrak{m}_{\xi}=d_{\xi}$ where $d_{\xi}:=\sharp\left(\kappa^{-1}(\xi)\right)$ is the cardinality of $\kappa^{-1}(\xi)$.

Invariant pseudo-Riemannian metrics
Corol. Any $G$-invariant pseudo-Riemannian metric $g$ on a flag manifold $F=G / \mathrm{H}$ is defined by an $\mathrm{Ad}_{\mathrm{H}}$-invariant pseudo-Euclidean metric on $\mathfrak{m}$, given by

$$
g_{o}:=\sum_{i=1}^{d:=R_{T}^{+}} x_{\xi_{i}} B_{\xi_{i}}, \quad\left(B_{\xi_{i}}:=-\left.B\right|_{\mathfrak{m}_{i}}\right),
$$

where $x_{\xi_{i}} \neq 0$ are real numbers, for any $i=1, \ldots, d:=R_{T}^{+}$.
The signature of the metric $g$ is $\left(2 N_{-}, 2 N_{+}\right)$, where

$$
N_{-}:=\sum_{\xi_{i} \in R_{T}^{+}: x_{\xi_{i}}<0} d_{\xi_{i}}, \quad N_{+}:=\sum_{\xi_{i} \in R_{T}^{+}: x_{\xi_{i}}>0} d_{\xi_{i}} .
$$

- In particular, the metric $g$ is Riemannian if all $x_{\xi_{i}}>0$, and no metric is Lorentzian.

How we deduce that a flag manifold has a spin structure or not?
... by computing the first Chern class for an invariant complex structure

- Consider the weight lattice associated to R , that is

$$
\mathcal{P}=\left\{\Lambda \in \mathfrak{a}_{0}^{*}:\langle\Lambda| \alpha>\in \mathbb{Z}, \forall \alpha \in \mathbf{R}\right\}=\operatorname{span}_{\mathbb{Z}}\left(\Lambda_{1}, \cdots, \Lambda_{\ell}\right) \subset \mathfrak{a}_{0}^{*} .
$$

- Then set

$$
\mathcal{P}_{T}:=\left\{\lambda \in \mathcal{P},(\lambda, \alpha)=0, \forall \alpha \in \mathbf{R}_{H}\right\}
$$

Lemma. The $T$-weight lattice $\mathcal{P}_{T}$ is generated by the fundamental weights $\Lambda_{1}, \cdots, \Lambda_{\mathrm{v}}$ corresponding to the black simple roots $\Pi_{\mathrm{B}}=\Pi \backslash \Pi_{\mathrm{W}}$.

Classical result: The group of characters $\mathcal{X}\left(\mathrm{T}^{\ell}\right)=\operatorname{Hom}\left(\mathrm{T}^{\ell}, \mathrm{T}^{1}\right)=\mathcal{X}\left(B_{+}\right)$of the maximal torus $\mathrm{T}^{\ell} \subset \mathrm{H} \subset G$ is identified (when $G$ is simply-connected) with the weight lattice $\mathcal{P} \subset \mathfrak{a}_{0}^{*}$, via the map

$$
\mathcal{P} \ni \lambda \mapsto \chi_{\lambda} \in \mathcal{X}\left(\mathrm{T}^{\ell}\right)=\mathcal{X}\left(B_{+}\right), \quad \text { with } \quad \chi_{\lambda}(\exp X)=\exp \left(\frac{i \lambda(X)}{2 \pi}\right), \quad \forall X \in \mathfrak{a}_{0} .
$$

Extension: The following map is an isomorphism:

$$
\mathcal{P}_{T} \ni \lambda \mapsto \chi_{\lambda} \in \mathcal{X}(\mathrm{H}):=\operatorname{Hom}\left(\mathrm{H}, \mathrm{~T}^{1}\right) .
$$

- In particular, since $\mathbf{P}=\mathrm{H}^{\mathbb{C}} \cdot N_{+}$any character $\chi=\chi_{\lambda}: \mathrm{H} \rightarrow \mathrm{T}^{1}$ has a natural extension to a character of the parabolic subgroup $\chi_{\lambda}^{\mathbb{C}}: \mathbf{P} \rightarrow \mathbb{C}^{*}$ and we get

$$
\mathcal{P}_{T} \ni \lambda \mapsto \chi_{\lambda}^{\mathbb{C}} \in \mathcal{X}(\mathbf{P})
$$

## Line bundles and circle bundles

- For any $T$-weight $\lambda \in \mathcal{P}_{T}$ we assign a 1 -dimensional P -module $\mathbb{C}_{\lambda}$, where P acts on $\mathbb{C}_{\lambda}$ by the associated holomorphic character $\chi_{\lambda}^{\mathbb{C}} \in \mathcal{X}(\mathbf{P})$.
- We define the line bundle

$$
\begin{gathered}
\mathcal{L}_{\lambda}=G^{\mathbb{C}} \times{ }_{\mathbf{P}} \mathbb{C}_{\lambda}=\left(G^{\mathbb{C}} \times \mathbb{C}_{\lambda}\right) / \sim \\
(g, z) \sim\left(g p, \chi_{\lambda}^{\mathbb{C}}\left(p^{-1}\right) z\right), \quad(g, z) \in G^{\mathbb{C}} \times \mathbb{C}_{\lambda}, p \in \mathbf{P} .
\end{gathered}
$$

- We also introduce the homogeneous circle bundle associated with the character $\chi: H \rightarrow \mathrm{~T}^{1}$,

$$
F_{\chi}=G / H_{\chi} \rightarrow F=G / \mathbf{H}, \quad H_{\chi}:=\operatorname{ker}(\chi)
$$

Prop. Let $F=G / \mathbf{H}=G^{\mathbb{C}} / \mathbf{P}$ be a flag manifold endowed with a complex structure associated to a splitting $\Pi=\Pi_{\mathrm{W}} \sqcup \Pi_{\mathrm{B}}$. Then, $\exists 1$-1 correspondence between

- elements $\lambda \in \mathcal{P}_{T}=\operatorname{span}_{\mathbb{Z}}\left\{\Lambda_{1}, \ldots, \Lambda_{\mathrm{v}}\right\}$ of the $T$-weight lattice
- real characters $\chi=\chi_{\lambda}: H \rightarrow T^{1}$ (up to congugation),
- complex characters $\chi_{\lambda}^{\mathbb{C}}: \mathbf{P} \rightarrow \mathbb{C}^{*}$ (up to conjugation),
- holomorphic line bundles $\mathcal{L}_{\lambda}:=G^{\mathbb{C}} \times_{\mathbf{P}} \mathbb{C}_{\lambda} \rightarrow F=G^{\mathbb{C}} / \mathbf{P}$ (up to conjugation)
- and homogeneous circle bundles $F_{\chi}:=G / H_{\chi} \rightarrow F=G / H$ (up to conjugation).

Prop. There is a natural isomorphism

$$
\tau: \mathfrak{t}^{*} \rightarrow \Lambda_{c l}^{2}\left(\mathfrak{m}^{*}\right)^{\mathrm{H}} \cong H^{2}\left(\mathfrak{m}^{*}\right)^{\mathrm{H}} \simeq H^{2}(F, \mathbb{R})
$$

between the space $\mathfrak{t}^{*}$ and the space $\Lambda_{c l}^{2}\left(\mathfrak{m}^{*}\right)^{\mathrm{H}}$ of $\operatorname{Ad}_{\mathrm{H}}$-invariant closed real 2-forms on $\mathfrak{m}$ (identified with the space of closed $G$-invariant real 2 -forms on $F$ ), given by

$$
\mathfrak{a}_{0}^{*} \supset \mathfrak{t}^{*} \ni \xi \mapsto \omega_{\xi}:=\frac{i}{2 \pi} d \xi=\frac{i}{2 \pi} \Sigma_{\alpha \in \mathbf{R}_{\mathrm{F}^{+}}}(\xi \mid \alpha) \omega^{\alpha} \wedge \omega^{-\alpha} \in \Lambda_{c l}^{2}\left(\mathfrak{m}^{*}\right)^{\mathrm{H}} .
$$

- $\tau\left(\mathcal{P}_{T}\right) \cong H^{2}(F, \mathbb{Z})$. Thus second Betti number of $F$ equals to $b_{2}(F)=\operatorname{dim} \mathfrak{t}=\mathbf{v}=\operatorname{rnk} R_{T}$.
- In particular, the following maps are isomorphisms

$$
\mathcal{P}_{T} \ni \lambda \mapsto \mathcal{L}_{\lambda} \in \mathcal{P i c}(F):=H^{1}\left(G^{\mathbb{C}} / \mathbf{P}, \mathbb{C}^{*}\right) \ni \mathcal{L}_{\lambda} \xrightarrow{c_{1}} c_{1}\left(\mathcal{L}_{\lambda}\right) \in H^{2}(F, \mathbb{Z})
$$

- The first Chern class $c_{1}\left(\mathcal{L}_{\xi_{j}}\right)$ of the holomorphic line bundle $\mathcal{L}_{\xi_{j}}$ is the cohomology class of the associated curvature two-form

$$
\omega_{\xi_{j}}=\frac{i}{2 \pi} d \xi_{j}=\frac{i}{2 \pi} \sum_{\alpha \in \mathbf{R}_{\mathbf{F}}^{+}}\left(\xi_{j} \mid \alpha\right) \omega^{\alpha} \wedge \omega^{-\alpha} \in \Lambda^{2}\left(\mathfrak{m}^{*}\right)^{\mathrm{H}}=\Omega_{c l}^{2}(F) .
$$

## The first Chern class

- Let $\mathcal{P}^{+} \subset \mathcal{P}$ be the subset of strictly positive dominant weights, and consider the 1 -forms

$$
\begin{gathered}
\sigma_{G}=\frac{1}{2} \sum_{\alpha \in \mathbf{R}^{+}} \alpha, \quad \sigma_{\mathrm{H}}=\frac{1}{2} \sum_{\alpha \in \mathrm{R}_{\mathrm{H}}^{+}} \alpha . \\
\text { Recall that } \sigma_{G}=\sum_{i=1}^{\ell} \Lambda_{i} \in \mathcal{P}^{+}
\end{gathered}
$$

- We define the Koszul form associated to the flag manifold $\left(F=G^{\mathbb{C}} / \mathbf{P}=G / \mathbf{H}, J\right)$, by

$$
\sigma^{J}:=2\left(\sigma_{G}-\sigma_{H}\right)=\sum_{\alpha \in \mathbf{R}_{\mathbf{F}}^{+}} \alpha
$$

$\Longrightarrow$ The first Chern class $c_{1}(J) \in H^{2}(F ; \mathbb{Z})$ of the invariant complex structure $J$ in $F$, associated with the decomposition $\Pi=\Pi_{W} \sqcup \Pi_{\mathrm{B}}$, is represented by the closed invariant 2-form $\gamma_{J}:=\omega_{\sigma^{J}}$, i.e. the Chern form of the complex manifold $(F, J)$.

Thm. [Alekseevsky '76, Alekseevsky-Perelomov '86] The Koszul form is a linear combination of the fundamental weights $\Lambda_{1}, \cdots, \Lambda_{\mathrm{v}}$ associated to the black roots, with positive integers coefficients, given as follows:

$$
\sigma^{J}=\sum_{j=1}^{\mathrm{v}} k_{j} \Lambda_{j}=\sum_{j=1}^{\mathrm{v}}\left(2+b_{j}\right) \Lambda_{j} \in \mathcal{P}_{T}^{+}, \quad \text { where } k_{j}=\frac{2\left(\sigma^{J}, \beta_{j}\right)}{\left(\beta_{j}, \beta_{j}\right)}, b_{j}=-\frac{2\left(2 \sigma_{\mathrm{H}}, \beta_{j}\right)}{\left(\beta_{j}, \beta_{j}\right)} \geqslant 0
$$

Def. The integers $k_{j} \in \mathbb{Z}_{+}$are called Koszul numbers associated to the complex structure $J$ on $F=G^{\mathbb{C}} / \mathbf{P}=G / \mathbb{H}$. They form the vector $\vec{k}:=\left(k_{1}, \ldots, k_{\mathrm{v}}\right) \in \mathbb{Z}_{+}^{\mathrm{v}}$, which we shall call the Koszul vector associated to $J$.

## Invariant spin structures

Thm. A flag manifold $F=G / \mathrm{H}=G^{\mathbb{C}} / \mathbf{P}$ admits a $G$-invariant spin or metaplectic structure, if and only is the first Chern class $c_{1}(J)$ of an invariant complex structure $J$ on $F$ is even, that is all Koszul numbers are even. If this is the case, then such a structure will be unique.

Example Consider the manifold of full flags $F=G / \mathrm{T}^{\ell}=G^{\mathbb{C}} / B_{+}$.

- The Weyl group acts transitively on Weyl chambers $\Longrightarrow \exists$ unique (up to conjugation) invariant complex structure $J$.
- The canonical line bundle $\Lambda^{n} T F$ corresponds to the dominant weight $\Sigma_{\alpha \in R^{+}} \alpha=2 \sigma_{G}=$ $2\left(\Lambda_{1}+\cdots+\Lambda_{\ell}\right)$.
- hence all the Koszul numbers equal to 2 and $F$ admits a unique spin structure.

Corol. The divisibility by two of the Koszul numbers of an invariant complex structure $J$ on a (pseudo-Riemannian) flag manifold $F=G / \mathbf{H}=G^{\mathbb{C}} / \mathbf{P}$, does not depend on the complex structure.

Corol. On a spin or metaplectic flag manifold $F=G / \mathbf{H}=G^{\mathbb{C}} / \mathbf{P}$ with a fixed invariant complex structure $J$, there is a unique isomorphism class of holomorphic line bundles $\mathcal{L}$ such that $\mathcal{L}^{\otimes 2}=K_{F}$.

The computation of Koszul numbers-classical flag manifolds

## Classical flag manifolds

- Flag manifolds of the groups $\mathrm{A}_{n}=\mathrm{SU}_{n+1}, \mathrm{~B}_{n}=\mathrm{SO}_{2 n+1}, \mathrm{C}_{n}=\mathrm{Sp}_{n}, \mathrm{D}_{n}=\mathrm{SO}_{2 n}$ fall into four classes:

$$
\begin{aligned}
\mathrm{A}(\vec{n}) & =\mathrm{SU}_{n+1} / \mathrm{U}_{1}^{n_{0}} \times \mathrm{S}\left(\mathrm{U}_{n_{1}} \times \cdots \times \mathrm{U}_{n_{s}}\right) \\
\vec{n} & =\left(n_{0}, n_{1}, \cdots, n_{s}\right), \quad \sum n_{j}=n+1, n_{0} \geqslant 0, n_{j}>1 ; \\
\mathrm{B}(\vec{n}) & =\mathrm{SO}_{2 n+1} / \mathrm{U}_{1}^{n_{0}} \times \mathrm{U}_{n_{1}} \times \cdots \times \mathrm{U}_{n_{s}} \times \mathrm{SO}_{2 r+1}, \\
\vec{n} & =\sum n_{j}+r, n_{0} \geqslant 0, n_{j}>1, r \geqslant 0 ; \\
\mathrm{C}(\vec{n}) & =\mathrm{Sp}_{n} / \mathrm{U}_{1}^{n_{0}} \times \mathrm{U}_{n_{1}} \times \cdots \times \mathrm{U}_{n_{s}} \times \mathrm{Sp}_{r}, \\
\vec{n} & =\sum n_{j}+r, n_{0} \geqslant 0, n_{j}>1, r \geqslant 0 ; \\
\mathrm{D}(\vec{n}) & =\mathrm{SO}_{2 n} / \mathrm{U}_{1}^{n_{0}} \times \mathrm{U}_{n_{1}} \times \cdots \times \mathrm{U}_{n_{s}} \times \mathrm{SO}_{2 r}, \\
\vec{n} & =\sum n_{j}+r, n_{0} \geqslant 0, n_{0} \geqslant 0, n_{j}>1, r \neq 1,
\end{aligned}
$$

with $\vec{n}=\left(n_{0}, n_{1}, \cdots, n_{s}, r\right)$ for the groups $\mathrm{B}_{n}, \mathrm{C}_{n}$ and $\mathrm{D}_{n}$.

## The Koszul vector of classical flag manifolds

Example: Consider the flag manifold $F=\mathrm{SO}_{9} / \mathrm{U}_{1}^{2} \times \mathrm{SU}_{2} \times \mathrm{SU}_{2}=\mathrm{SO}_{9} / \mathrm{U}_{2} \times \mathrm{U}_{2}$

- It is $\Pi_{\mathrm{B}}=\left\{\alpha_{2}, \alpha_{4}\right\}$ and $\Pi_{\mathrm{W}}=\mathbf{R}_{\mathrm{H}}^{+}=\left\{\alpha_{1}, \alpha_{3}\right\}$.
$\Rightarrow 2 \sigma_{\mathrm{H}}=\alpha_{1}+\alpha_{3}$. Since $2 \sigma_{\mathrm{SO}_{9}}=7 \alpha_{1}+12 \alpha_{2}+15 \alpha_{3}+16 \alpha_{4}$, we conclude that

$$
\sigma^{J_{0}}=6 \alpha_{1}+12 \alpha_{2}+14 \alpha_{3}+16 \alpha_{4}
$$

- By the Cartan matrix of $\mathrm{SO}_{9}$ we finally get $\sigma^{J_{0}}=4 \Lambda_{2}+4 \Lambda_{4}$. Thus $F$ admits a unique spin structure.

Thm. The Koszul vector $\vec{k}:=\left(k_{1}, \cdots, k_{v}\right) \in \mathbb{Z}_{+}^{v}$ associated to the standard complex structure $J_{0}$ on a flag manifold $G(\vec{n})$ of classical type, is given by

$$
\begin{array}{ll}
\mathrm{A}(\vec{n}): & \vec{k}=\left(2, \cdots, 2,1+n_{1}, n_{1}+n_{2}, \cdots, n_{s-1}+n_{s}\right), \\
\mathrm{B}(\vec{n}): & \vec{k}=\left(2, \cdots, 2,1+n_{1}, n_{1}+n_{2}, \cdots, n_{s-1}+n_{s}, n_{s}+2 r\right), \\
\mathrm{C}(\vec{n}): & \vec{k}=\left(2, \cdots, 2,1+n_{1}, n_{1}+n_{2}, \cdots, n_{s-1}+n_{s}, n_{s}+2 r+1\right), \\
\mathrm{D}(\vec{n}): & \vec{k}=\left(2, \cdots, 2,1+n_{1}, n_{1}+n_{2}, \cdots, n_{s-1}+n_{s}, n_{s}+2 r-1\right) .
\end{array}
$$

If $r=0$, then the last Koszul number (over the end black root) is $2 n_{s}$ for $\mathrm{B}(\vec{n}), n_{s}+1$ for $\mathrm{C}(\vec{n})$ and $2\left(n_{s}-1\right)$ for $\mathrm{D}(\vec{n})$.

Hence we conclude that (the same conclusions apply also for $G$-metaplectic structures):

Thm. (classification of spin or metaplectic structures)
a) The flag manifold $\mathrm{A}(\vec{n})$ with $n_{0}>0$ is $G$-spin if and only if all the numbers $n_{1}, \ldots, n_{s}$ are odd. If $n_{0}=0$, then $\mathrm{A}(\vec{n})$ is $G$-spin, if and only if the numbers $n_{1}, \ldots, n_{s}$ have the same parity, i.e. they are all odd or all even.
$\beta$ ) The flag manifold $\mathrm{B}(\vec{n})$ with $n_{0}>0$ and $r>0$ does not admit a ( $G$-invariant) spin structure. If $n_{0}>0$ and $r=0$, then $\mathrm{B}(\vec{n})$ is $G$-spin, if and only if all the numbers $n_{1}, \ldots, n_{s}$ are odd. If $n_{0}=0$ and $r>0$, then $\mathrm{B}(\vec{n})$ is $G$-spin if and only if all the numbers $n_{1}, \ldots, n_{s}$ are even. Finally, for $n_{0}=0=r$, the flag manifold $\mathrm{B}(\vec{n})$ is $G$-spin if and only if all the numbers $n_{1}, \ldots, n_{s}$ have the same parity.
$\gamma$ ) The flag manifold $\mathrm{C}(\vec{n})$ with $n_{0}>0$ is $G$-spin, if and only if all the numbers $n_{1}, \ldots, n_{s}$ are odd, independently of $r$. The same holds if $n_{0}=0$.
$\delta)$ The flag manifold $\mathrm{D}(\vec{n})$ with $n_{0}>0$ is $G$-spin, if and only if all the numbers $n_{1}, \ldots, n_{s}$ are odd, independently of $r$. If $n_{0}=0$ and $r>0$, then $\mathrm{D}(\vec{n})$ is $G$-spin, if and only if all the numbers $n_{1}, \ldots, n_{s}$ are odd. Finally, for $n_{0}=0=r$, the flag manifold $\mathrm{D}(\vec{n})$ is $G$-spin, if and only if the numbers $n_{1}, \ldots, n_{s}$ have the same parity.

Table 1. Spin or metaplectic classical flag manifolds with $b_{2}=1,2$.

| $F=G / \mathrm{H}$ with $b_{2}(F)=1$ | conditions | $d$ | $k_{\alpha_{i_{o}}} \in \mathbb{Z}_{+}$ | $G$-spin $(\Leftrightarrow)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{SU}_{n} / \mathrm{S}\left(\mathrm{U}_{p} \times \mathrm{U}_{n-p}\right)$ | $n \geqslant 2,1 \leqslant p \leqslant n-1$ | 1 | (n) | $n$ even $\geqslant 2$ |
| $\mathrm{Sp}_{n} / \mathrm{U}_{n}$ | $n \geqslant 3$ | 1 | $(n+1)$ | $n$ odd $\geqslant 3$ |
| $\mathrm{SO}_{2 n} / \mathrm{SO}_{2} \times \mathrm{SO}_{2 n-2}$ | $n \geqslant 4$ | 1 | $(2 n-2)$ | $\forall n \geqslant 4$ |
| $\mathrm{SO}_{2 n} / \mathrm{U}_{n}$ | $n \geqslant 3$ | 1 | $(2 n-4)$ | $\forall n \geqslant 3$ |
| $\mathrm{SO}_{2 n+1} / \mathrm{U}_{p} \times \mathrm{SO}_{2(n-p)+1}$ | $n \geqslant 2,2 \leqslant p<n$ | 2 | $(2 n-p)$ | $p$ even $\geqslant 2$ |
| $\mathrm{SO}_{2 n+1} / \mathrm{U}_{n}$ (special case) | $n \geqslant 2$ | 2 | (2n) | $\forall n \geqslant 2$ |
| $\mathrm{Sp}_{n} / \mathrm{U}_{p} \times \mathrm{Sp}_{n-p}$ | $n \geqslant 3,1 \leqslant p \leqslant n-1$ | 2 | $(2 n-p+1)$ | $p$ odd $\geqslant 1$ |
| $\mathrm{Sp}_{n} / \mathrm{U}_{1} \times \mathrm{Sp}_{n-1}=: \mathbb{C} P^{2 n-1}$ | $n \geqslant 3$ | 2 | (2n) | $\forall n \geqslant 3$ |
| $\mathrm{SO}_{2 n} / \mathrm{U}_{p} \times \mathrm{SO}_{2(n-p)}$ | $n \geqslant 4,2 \leqslant p \leqslant n-2$ | 2 | $(2 n-p-1)$ | $p$ odd $\geqslant 2$ |
| $F=G / H$ with $b_{2}(F)=2$ | conditions | d | $\vec{k} \in \mathbb{Z}_{+}^{2}$ | $G$-spin ( $\Leftrightarrow$ ) |
| $\mathrm{SU}_{n} / \mathrm{U}_{1} \times \mathrm{S}\left(\mathrm{U}_{p-1} \times \mathrm{U}_{n-p}\right)$ | $n \geqslant 3,2 \leqslant p \leqslant n-2$ | 3 | (p,n-1) | $n$ odd \& $p$ even |
| $\mathrm{SU}_{3} / \mathrm{T}^{2}$ (special case) | - | 3 | $(2,2)$ | yes |
| $\mathrm{SU}_{n} / \mathrm{S}\left(\mathrm{U}_{p} \times \mathrm{U}_{q} \times \mathrm{U}_{n-p-q}\right)$ | $\begin{aligned} & n \geqslant 5,2 \leqslant p \leqslant n-2 \\ & 4 \leqslant p+q \leqslant n \end{aligned}$ | 3 | $(p+q, n-p)$ | $p, q, n$ same parity |
| $\mathrm{SO}_{5} / \mathrm{T}^{2}$ (special case) | - | 4 | (2,2) | yes |
| $\mathrm{SO}_{2 n+1} / \mathrm{U}_{1} \times \mathrm{U}_{n-1}$ | $n \geqslant 3$ | 5 | $(n, 2(n-1))$ | $n$ even |
| $\mathrm{SO}_{2 n+1} / \mathrm{U}_{p} \times \mathrm{U}_{n-p}$ | $n \geqslant 4,2 \leqslant p \leqslant n$ | 6 | $(n, 2(n-p))$ | $n$ even |
| $\mathrm{SO}_{2 n+1} / \mathrm{U}_{p} \times \mathrm{U}_{q} \times \mathrm{SO}_{2(n-p-q)+1}$ | $\begin{aligned} & n \geqslant 4,2 \leqslant p \leqslant n-1 \\ & 4 \leqslant p+q \leqslant n-1 \end{aligned}$ | 6 | $(p+q, 2 n-2 p-q)$ | $p \& q$ even |
| $\mathrm{Sp}_{n} / \mathrm{U}_{p} \times \mathrm{U}_{n-p}$ | $n \geqslant 3,1 \leqslant p \leqslant n-1$ | 4 | ( $n, n-p+1$ ) | $n$ even \& $p$ odd |
| $\mathrm{Sp}_{3} / \mathrm{T}^{2}$ (special case) | $-2$ | 4 | $(2,2)$ |  |
| $\mathrm{Sp}_{n} / \mathrm{U}_{1} \times \mathrm{U}_{1} \times \mathrm{Sp}_{n-2}$ | $n \geqslant 3$ | 6 | $(2,2(n-1))$ | $\forall n \geqslant 3$ |
| $\mathrm{Sp}_{n} / \mathrm{U}_{p} \times \mathrm{U}_{q} \times \mathrm{Sp}_{n-p-q}$ | $\begin{aligned} & n \geqslant 3,1 \leqslant p \leqslant n-3 \\ & 3 \leqslant p+q \leqslant n-1 \end{aligned}$ | 6 | $(p+q, 2 n-2 p-q+1)$ | $p \& q$ odd |
| $\mathrm{SO}_{2 n} / \mathrm{U}_{1} \times \mathrm{U}_{n-1}$ | $n \geqslant 4$ | 3 | $(n, 2(n-2))$ | $n$ even |
| $\mathrm{SO}_{2 n} / \mathrm{U}_{1} \times \mathrm{U}_{1} \times \mathrm{SO}_{2(n-2)}$ | $n \geqslant 4$ | 4 | $(2,2(n-2))$ | $\forall n \geqslant 4$ |
| $\mathrm{SO}_{2 n} / \mathrm{U}_{p} \times \mathrm{U}_{n-p}$ | $n \geqslant 4,2 \leqslant p \leqslant n-2$ | 4 | $(n, 2(n-p-1))$ | $n$ even |
| $\mathrm{SO}_{2 n} / \mathrm{U}_{1} \times \mathrm{U}_{p} \times \mathrm{SO}_{2(n-p-1)}$ | $n \geqslant 4,2 \leqslant p \leqslant n-3$ | 5 | $(1+p, 2 n-p-3)$ | $p$ odd |
| $\mathrm{SO}_{2 n} / \mathrm{U}_{p} \times \mathrm{U}_{q} \times \mathrm{SO}_{2(n-p-q)}$ | $\begin{aligned} & n \geqslant 5,2 \leqslant p \leqslant n-4 \\ & 4 \leqslant p+q \leqslant n-2 \end{aligned}$ | 6 | $(p+q, 2 n-2 p-q-1)$ | $p \& q$ odd |

## Spin structures on exceptional flag manifolds

- Given an exceptional Lie group $G \in\left\{\mathrm{G}_{2}, \mathrm{~F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}, E_{8}\right\}$ with root system R and a basis of simple roots $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$, we shall denote by

$$
G\left(\alpha_{1}, \ldots, \alpha_{\mathrm{u}}\right) \equiv G(1, \ldots, \mathrm{u})
$$

to denote the exceptional flag manifold $F=G / \mathrm{H}$ where the semisimple part $\mathfrak{h}^{\prime}$ of the stability subalgebra $\mathfrak{h}=T_{e} \mathrm{H}$ corresponds to the simple roots $\Pi_{\mathrm{W}}:=\left\{\alpha_{1}, \ldots, \alpha_{\mathrm{u}}\right\}$.

- The remaining $\mathrm{v}:=\ell-\mathrm{u}$ nodes in the Dynkin diagram $\Gamma(\Pi)$ of $G$ have been painted black such that $\mathfrak{h}=\mathfrak{u}(1) \oplus \cdots \oplus \mathfrak{u}(1) \oplus \mathfrak{h}^{\prime}$.
- There are 101 non-isomorphic flag manifolds $F=G / \mathrm{H}$ corresponding to a simple exceptional Lie group $G$.

| G | $F=G / \mathrm{H}$ | $b_{2}(F)$ | $d=\sharp\left(R_{T}^{+}\right)$ | $\sigma^{J}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{G}_{2}$ | $\mathrm{G}_{2}(0)=\mathrm{G}_{2} / \mathrm{T}^{2}$ | 2 | 6 | $2\left(\Lambda_{1}+\Lambda_{2}\right)$ |
|  | $\mathrm{G}_{2}(1)=\mathrm{G}_{2} / \mathrm{U}_{2}^{l}$ | 1 | 3 | $5 \Lambda_{2}$ |
|  | $\mathrm{G}_{2}(2)=\mathrm{G}_{2} / \mathrm{U}_{2}^{\text {s }}$ | 1 | 2 | $3 \Lambda_{1}$ |
| $\mathrm{F}_{4}$ | $\mathrm{F}_{4}(0)=\mathrm{F}_{4} / \mathrm{T}^{4}$ | 4 | 24 | $2\left(\Lambda_{1}+\Lambda_{2}+\Lambda_{3}+\Lambda_{4}\right)$ |
|  | $\mathrm{F}_{4}(1)=\mathrm{F}_{4} / \mathrm{A}_{1}^{l} \times \mathrm{T}^{3}$ | 3 | 16 | $3 \Lambda_{2}+2\left(\Lambda_{3}+\Lambda_{4}\right)$ |
|  | $\mathrm{F}_{4}(4)=\mathrm{F}_{4} / \mathrm{A}_{1}^{1} \times \mathrm{T}^{3}$ | 3 | 13 | $2\left(\Lambda_{1}+\Lambda_{2}\right)+\Lambda_{3}$ |
|  | $\mathrm{F}_{4}(1,2)=\mathrm{F}_{4} / \mathrm{A}_{2}^{l} \times \mathrm{T}^{2}$ | 2 | 9 | $6 \Lambda_{3}+2 \Lambda_{4}$ |
|  | $\mathrm{F}_{4}(1,4)=\mathrm{F}_{4} / \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}^{2}$ | 2 | 8 | $3 \Lambda_{2}+3 \Lambda_{3}$ |
|  | $\mathrm{F}_{4}(2,3)=\mathrm{F}_{4} / \mathrm{B}_{2} \times \mathrm{T}^{2}$ | 2 | 6 | $5 \Lambda_{1}+6 \Lambda_{4}$ |
|  | $\mathrm{F}_{4}(3,4)=\mathrm{F}_{4} / \mathrm{A}_{2}^{s} \times \mathrm{T}^{2}$ | 2 | 6 | $2 \Lambda_{1}+4 \Lambda_{2}$ |
|  | $\mathrm{F}_{4}(1,2,4)=\mathrm{F}_{4} / \mathrm{A}_{2}^{l} \times \mathrm{A}_{1}^{s} \times \mathrm{T}$ | 1 | 4 | $7 \Lambda_{3}$ |
|  | $\mathrm{F}_{4}(1,3,4)=\mathrm{F}_{4} / \mathrm{A}_{2}^{s} \times \mathrm{A}_{1}^{l} \times \mathrm{T}$ | 1 | 3 | $5 \Lambda_{2}$ |
|  | $\mathrm{F}_{4}(1,2,3)=\mathrm{F}_{4} / \mathrm{B}_{3} \times \mathrm{T}$ | 1 | 2 | $11 \Lambda_{4}$ |
|  | $\mathrm{F}_{4}(2,3,4)=\mathrm{F}_{4} / \mathrm{C}_{3} \times \mathrm{T}$ | 1 | 2 | $8 \Lambda_{1}$ |
| $\mathrm{E}_{6}$ | $\mathrm{E}_{6}(0)=\mathrm{E}_{6} / \mathrm{T}^{6}$ | 6 | 36 | $2\left(\Lambda_{1}+\cdots+\Lambda_{6}\right)$ |
|  | $\mathrm{E}_{6}(1)=\mathrm{E}_{6} / \mathrm{A}_{1} \times \mathrm{T}^{5}$ | 5 | 25 | $3 \Lambda_{2}+2\left(\Lambda_{3}+\cdots+\Lambda_{6}\right)$ |
|  | $\mathrm{E}_{6}(3,5)=\mathrm{E}_{6} / \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}^{4}$ | 4 | 17 | $2 \Lambda_{1}+3 \Lambda_{2}+4 \Lambda_{4}+3 \Lambda_{6}$ |
|  | $\mathrm{E}_{6}(4,5)=\mathrm{E}_{6} / \mathrm{A}_{2} \times \mathrm{T}^{4}$ | 4 | 15 | $2\left(\Lambda_{1}+\Lambda_{2}+2 \Lambda_{3}+\Lambda_{6}\right)$ |
|  | $\mathrm{E}_{6}(1,3,5)=\mathrm{E}_{6} / \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}^{3}$ | 3 | 11 | $4\left(\Lambda_{2}+\Lambda_{4}\right)+3 \Lambda_{6}$ |
|  | $\mathrm{E}_{6}(2,4,5)=\mathrm{E}_{6} / \mathrm{A}_{2} \times \mathrm{A}_{1} \times \mathrm{T}^{3}$ | 3 | 10 | $3 \Lambda_{1}+5 \Lambda_{3}+2 \Lambda_{6}$ |
|  | $\mathrm{E}_{6}(3,4,5)=\mathrm{E}_{6} / \mathrm{A}_{3} \times \mathrm{T}^{3}$ | 3 | 8 | $2 \Lambda_{1}+5\left(\Lambda_{2}+\Lambda_{6}\right)$ |
|  | $\mathrm{E}_{6}(2,3,4,5)=\mathrm{E}_{6} / \mathrm{A}_{4} \times \mathrm{T}^{2}$ | 2 | 4 | $6 \Lambda_{1}+8 \Lambda_{6}$ |
|  | $\mathrm{E}_{6}(1,3,4,5)=\mathrm{E}_{6} / \mathrm{A}_{3} \times \mathrm{A}_{1} \times \mathrm{T}^{2}$ | 2 | 5 | $6 \Lambda_{2}+5 \Lambda_{6}$ |
|  | $\mathrm{E}_{6}(1,2,4,5)=\mathrm{E}_{6} / \mathrm{A}_{2} \times \mathrm{A}_{2} \times \mathrm{T}^{2}$ | 2 | 6 | $6 \Lambda_{3}+2 \Lambda_{6}$ |
|  | $\mathrm{E}_{6}(2,4,5,6)=\mathrm{E}_{6} / \mathrm{A}_{2} \times \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}^{2}$ | 2 | 6 | $3 \Lambda_{1}+6 \Lambda_{3}$ |
|  | $\mathrm{E}_{6}(2,3,4,6)=\mathrm{E}_{6} / \mathrm{D}_{4} \times \mathrm{T}^{2}$ | 2 | 3 | $8\left(\Lambda_{1}+\Lambda_{5}\right)$ |
|  | $\mathrm{E}_{6}(1,2,4,5,6)=\mathrm{E}_{6} / \mathrm{A}_{2} \times \mathrm{A}_{2} \times \mathrm{A}_{1} \times \mathrm{T}$ | 1 | 3 | $7 \Lambda_{3}$ |
|  | $\mathrm{E}_{6}(1,2,3,4,5)=\mathrm{E}_{6} / \mathrm{A}_{5} \times \mathrm{T}$ | 1 | 2 | $11 \Lambda_{6}$ |
|  | $\mathrm{E}_{6}(1,3,4,5,6)=\mathrm{E}_{6} / \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}$ | 1 | 2 | $9 \Lambda_{2}$ |
|  | $\mathrm{E}_{6}(2,3,4,5,6)=\mathrm{E}_{6} / \mathrm{D}_{5} \times \mathrm{T}$ | 1 | 1 | $12 \Lambda_{1}$ |


| G | $F=G / \mathrm{H}$ | $b_{2}(F)$ | $d=\sharp\left(R_{T}^{+}\right)$ | $\sigma^{J}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{E}_{7}$ | $\mathrm{E}_{7}(0)=\mathrm{E}_{7} / \mathrm{T}^{7}$ | 7 | 63 | $2\left(\Lambda_{1}+\cdots+\Lambda_{7}\right)$ |
|  | $\mathrm{E}_{7}(1)=\mathrm{E}_{7} / \mathrm{A}_{1} \times \mathrm{T}^{6}$ | 6 | 46 | $3 \Lambda_{2}+2\left(\Lambda_{3}+\cdots+\Lambda_{7}\right)$ |
|  | $\mathrm{E}_{7}(4,6)=\mathrm{E}_{7} / \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}^{5}$ | 5 | 33 | $2\left(\Lambda_{1}+\Lambda_{2}\right)+3\left(\Lambda_{3}+\Lambda_{7}\right)+4 \Lambda_{5}$ |
|  | $\mathrm{E}_{7}(5,6)=\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{T}^{5}$ | 5 | 30 | $2\left(\Lambda_{1}+\cdots+\Lambda_{4}+\Lambda_{7}\right)$ |
|  | $\mathrm{E}_{7}(1,3,5)=\mathrm{E}_{7} / \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}^{4} \quad[1,1]$ | 4 | 23 | $4 \Lambda_{2}+4 \Lambda_{4}+3 \Lambda_{6}+2 \Lambda_{7}$ |
|  | $\mathrm{E}_{7}(1,3,7)=\mathrm{E}_{7} / \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}^{4} \quad[0,0]$ | 4 | 24 | $4 \Lambda_{2}+4 \Lambda_{4}+2 \Lambda_{5}+2 \Lambda_{6}$ |
|  | $\mathrm{E}_{7}(3,5,6)=\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{A}_{1} \times \mathrm{T}^{4}$ | 4 | 21 | $2 \Lambda_{1}+3 \Lambda_{2}+5 \Lambda_{4}+2 \Lambda_{7}$ |
|  | $\mathrm{E}_{7}(4,5,6)=\mathrm{E}_{7} / \mathrm{A}_{3} \times \mathrm{T}^{4}$ | 4 | 18 | $2 \Lambda_{1}+2 \Lambda_{2}+5 \Lambda_{3}+5 \Lambda_{7}$ |
|  | $\mathrm{E}_{7}(1,2,3,4)=\mathrm{E}_{7} / \mathrm{A}_{4} \times \mathrm{T}^{3}$ | 3 | 10 | $6 \Lambda_{5}+2 \Lambda_{6}+6 \Lambda_{7}$ |
|  | $\mathrm{E}_{7}(1,2,3,5)=\mathrm{E}_{7} / \mathrm{A}_{3} \times \mathrm{A}_{1} \times \mathrm{T}^{3} \quad[1,1]$ | 3 | 12 | $6 \Lambda_{4}+3 \Lambda_{6}+2 \Lambda_{7}$ |
|  | $\mathrm{E}_{7}(1,2,3,7)=\mathrm{E}_{7} / \mathrm{A}_{3} \times \mathrm{A}_{1} \times \mathrm{T}^{3} \quad[0,0]$ | 3 | 13 | $6 \Lambda_{4}+2 \Lambda_{5}+2 \Lambda_{6}$ |
|  | $\mathrm{E}_{7}(1,2,4,5)=\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{A}_{2} \times \mathrm{T}^{3}$ | 3 | 13 | $6 \Lambda_{3}+4 \Lambda_{6}+4 \Lambda_{7}$ |
|  | $\mathrm{E}_{7}(1,2,4,6)=\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}^{3}$ | 3 | 14 | $5 \Lambda_{3}+4 \Lambda_{5}+3 \Lambda_{7}$ |
|  | $\mathrm{E}_{7}(1,3,5,7)=\mathrm{E}_{7} /\left(\mathrm{A}_{1}\right)^{4} \times \mathrm{T}^{3}$ | 3 | 16 | $4 \Lambda_{2}+5 \Lambda_{4}+3 \Lambda_{6}$ |
|  | $\mathrm{E}_{7}(3,4,5,7)=\mathrm{E}_{7} / \mathrm{D}_{4} \times \mathrm{T}^{3}$ | 3 | 9 | $2 \Lambda_{1}+8 \Lambda_{2}+8 \Lambda_{6}$ |
|  | $\mathrm{E}_{7}(1,2,3,4,5)=\mathrm{E}_{7} / \mathrm{A}_{5} \times \mathrm{T}^{2}[1,1]$ | 2 | 5 | $7 \Lambda_{6}+10 \Lambda_{7}$ |
|  | $\mathrm{E}_{7}(1,2,3,4,7)=\mathrm{E}_{7} / \mathrm{A}_{5} \times \mathrm{T}^{2} \quad[0,0]$ | 2 | 6 | $10 \Lambda_{5}+2 \Lambda_{6}$ |
|  | $\mathrm{E}_{7}(1,2,3,4,6)=\mathrm{E}_{7} / \mathrm{A}_{4} \times \mathrm{A}_{1} \times \mathrm{T}^{2}$ | 2 | 6 | $7 \Lambda_{5}+6 \Lambda_{7}$ |
|  | $\mathrm{E}_{7}(1,2,3,5,6)=\mathrm{E}_{7} / \mathrm{A}_{3} \times \mathrm{A}_{2} \times \mathrm{T}^{2}$ | 2 | 7 | $7 \Lambda_{4}+2 \Lambda_{7}$ |
|  | $\mathrm{E}_{7}(1,2,3,5,7)=\mathrm{E}_{7} / \mathrm{A}_{3} \times \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}^{2}$ | 2 | 8 | $7 \Lambda_{4}+3 \Lambda_{6}$ |
|  | $\mathrm{E}_{7}(1,3,4,5,7)=\mathrm{E}_{7} / \mathrm{D}_{4} \times \mathrm{A}_{1} \times \mathrm{T}^{2}$ | 2 | 6 | $9 \Lambda_{2}+4 \Lambda_{6}$ |
|  | $\mathrm{E}_{7}(1,2,5,6,7)=\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}^{2}$ | 2 | 8 | $4 \Lambda_{3}+5 \Lambda_{4}$ |
|  | $\mathrm{E}_{7}(1,3,5,6,7)=\mathrm{E}_{7} / \mathrm{A}_{2} \times\left(\mathrm{A}_{1}\right)^{3} \times \mathrm{T}^{2}$ | 2 | 9 | $4 \Lambda_{2}+6 \Lambda_{4}$ |
|  | $\mathrm{E}_{7}(3,4,5,6,7)=\mathrm{E}_{7} / \mathrm{D}_{5} \times \mathrm{T}^{2}$ | 2 | 4 | $2 \Lambda_{1}+12 \Lambda_{2}$ |
|  | $\mathrm{E}_{7}(1,2,3,4,5,6)=\mathrm{E}_{7} / \mathrm{A}_{6} \times \mathrm{T}$ | 1 | 2 | $14 \Lambda_{7}$ |
|  | $\mathrm{E}_{7}(2,3,4,5,6,7)=\mathrm{E}_{7} / \mathrm{E}_{6} \times \mathrm{T}$ | 1 | 1 | $18 \Lambda_{1}$ |
|  | $\mathrm{E}_{7}(1,3,4,5,6,7)=\mathrm{E}_{7} / \mathrm{D}_{5} \times \mathrm{A}_{1} \times \mathrm{T}$ | 1 | 2 | $13 \Lambda_{2}$ |
|  | $\mathrm{E}_{7}(1,2,4,5,6,7)=\mathrm{E}_{7} / \mathrm{A}_{4} \times \mathrm{A}_{2} \times \mathrm{T}$ | 1 | 3 | $10 \Lambda_{3}$ |
|  | $\mathrm{E}_{7}(1,2,3,5,6,7)=\mathrm{E}_{7} / \mathrm{A}_{3} \times \mathrm{A}_{2} \times \mathrm{A}_{1} \times \mathrm{T}$ | 1 | 4 | $8 \Lambda_{4}$ |
|  | $\mathrm{E}_{7}(1,2,3,4,6,7)=\mathrm{E}_{7} / \mathrm{A}_{5} \times \mathrm{A}_{1} \times \mathrm{T}$ | 1 | 2 | $12 \Lambda_{5}$ |
|  | $\mathrm{E}_{7}(1,2,3,4,5,7)=\mathrm{E}_{7} / \mathrm{D}_{6} \times \mathrm{T}$ | 1 | 2 | $17 \Lambda_{6}$ |

## Thm.

(1) For $G=\mathrm{G}_{2}$ there is a unique $G$-spin (or $G$-metaplectic) flag manifold, namely the full flag $\mathrm{G}_{2}(0)=\mathrm{G}_{2} / \mathrm{T}^{2}$.
(2) For $G=\mathrm{F}_{4}$ the associated $G$-spin (of $G$-metaplectic) flag manifolds are the cosets defined by $\mathrm{F}_{4}(0), \mathrm{F}_{4}(1,2), \mathrm{F}_{4}(3,4), \mathrm{F}_{4}(2,3,4)$, and the flag manifolds isomorphic to them. In particular:

- $\mathrm{F}_{4}(2,3,4)=\mathrm{F}_{4} / \mathrm{C}_{3} \times \mathrm{T}$ is the unique (up to equivalence) flag manifold of $G=\mathrm{F}_{4}$ with $b_{2}(F)=1=\operatorname{rnk} R_{T}$ which admits a $G$-invariant spin and metaplectic structure.
- There are not exist flag manifolds $F=G / H$ of $G=F_{4}$ with $b_{2}(F)=3=\operatorname{rnk} R_{T}$ carrying a ( $G$-invariant) spin structure or a metaplectic structure.
(3) For $G=\mathrm{E}_{6}$ the associated $G$-spin (or $G$-metaplectic) flag manifolds are the cosets defined by $\mathrm{E}_{6}(0), \mathrm{E}_{6}(4,5), \mathrm{E}_{6}(2,3,4,5), \mathrm{E}_{6}(1,2,4,5), \mathrm{E}_{6}(2,3,4,6), \mathrm{E}_{6}(2,3,4,5,6)$, and the flag manifolds isomorphic to them. In particular,
- $\mathrm{E}_{6}(4,5)=\mathrm{E}_{6} / \mathrm{A}_{2} \times \mathrm{T}^{4}$ is the unique (up to equivalence) flag manifold of $G=\mathrm{E}_{6}$ with $b_{2}(F)=4=\operatorname{rnk} R_{T}$ which admits a $G$-invariant spin and metaplectic structure.
- $\mathrm{E}_{6}(2,3,4,5,6)=\mathrm{E}_{6} / \mathrm{D}_{5} \times \mathrm{T}$ is the unique (up to equivalence) flag manifold of $G=\mathrm{E}_{6}$ with $b_{2}(F)=1=\operatorname{rnk} R_{T}$ which admits a $G$-invariant spin and metaplectic structure.
- There are not exist flag manifolds $F=G / H$ of $G=\mathrm{E}_{6}$ with $b_{2}(F)=3=\operatorname{rnk} R_{T}$ carrying a ( $G$-invariant) spin or metaplectic structure.


## Thm.

For $G=\mathrm{E}_{7}$ the associated $G$-spin (or $G$-metaplectic) flag manifolds are the cosets defined by $\mathrm{E}_{7}(0), \mathrm{E}_{7}(5,6), \mathrm{E}_{7}(1,3,7), \mathrm{E}_{7}(1,2,3,4), \mathrm{E}_{7}(1,2,3,7), \mathrm{E}_{7}(1,2,4,5), \mathrm{E}_{7}(3,4,5,7), \mathrm{E}_{7}(1,2,3,4,7)$, $\mathrm{E}_{7}(1,3,5,6,7), \mathrm{E}_{7}(3,4,5,6,7), \mathrm{E}_{7}(1,2,3,4,5,6), \mathrm{E}_{7}(2,3,4,5,6,7), \mathrm{E}_{7}(1,2,4,5,6,7), \mathrm{E}_{7}(1,2,3,5,6,7)$, $\mathrm{E}_{7}(1,2,3,4,6,7)$ and the flag manifolds isomorphic to them. In particular,

- $\mathrm{E}_{7}(5,6)=\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{T}^{5}$ is the unique (up to equivalence) flag manifold of $G=\mathrm{E}_{7}$ with second Betti number $b_{2}(F)=5=\mathrm{rnk} R_{T}$, which admits a $G$-invariant spin and metaplectic structure.
- $\mathrm{E}_{7}(1,3,7)=\mathrm{E}_{7} / \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{A}_{1} \times \mathrm{T}^{4}$ is the unique (up to equivalence) flag manifold of $G=\mathrm{E}_{7}$ with second Betti number $b_{2}(F)=4=\operatorname{rnk} R_{T}$, which admits a $G$-invariant spin and metaplectic structure.
- There are not exist flag manifolds $F=G / H$ of $G=\mathrm{E}_{7}$ with $b_{2}(F)=\operatorname{rnk} R_{T}=6$, carrying a ( $G$-invariant) spin or metaplectic structure.


## Thm.

For $G=\mathrm{E}_{8}$ the associated $G$-spin (or $G$-metaplectic) flag manifolds are the cosets defined by $\mathrm{E}_{8}(0), \mathrm{E}_{8}(1,2), \mathrm{E}_{8}(1,2,3,4), \mathrm{E}_{8}(1,2,4,5), \mathrm{E}_{8}(4,5,6,8), \mathrm{E}_{8}(4,5,6,7,8), \mathrm{E}_{8}(1,2,3,4,5,6)$, $\mathrm{E}_{8}(1,2,3,4,6,7), \mathrm{E}_{8}(1,2,4,5,6,8), \mathrm{E}_{8}(1,2,4,5,6,7,8)$ and the flag manifolds isomorphic to them. In particular,

- $\mathrm{E}_{8}(1,2)=\mathrm{E}_{8} / \mathrm{A}_{1} \times \mathrm{T}^{6}$ is the unique (up to equivalence) flag manifold of $G=\mathrm{E}_{8}$ with second Betti number $b_{2}(F)=6=\mathrm{rnk} R_{T}$, which admits a $G$-invariant spin and metaplectic structure.
- $\mathrm{E}_{8}(4,5,6,7,8)=\mathrm{E}_{8} / \mathrm{D}_{5} \times \mathrm{T}^{3}$ is the unique (up to equivalence) flag manifold of $G=\mathrm{E}_{8}$ with second Betti number $b_{2}(F)=3=\operatorname{rnk} R_{T}$, which admits a $G$-invariant spin and metaplectic structure.
- $\mathrm{E}_{8}(1,2,4,5,6,7,8)=\mathrm{E}_{8} / \mathrm{D}_{5} \times \mathrm{A}_{2} \times \mathrm{T}$ is the unique (up to equivalence) flag manifold of $G=\mathrm{E}_{8}$ with second Betti number $b_{2}(F)=1=\operatorname{rnk} R_{T}$ which admits a $G$-invariant spin and metaplectic structure.
- There are not exist flag manifolds $F=G / H$ of $G=\mathrm{E}_{8}$ with $b_{2}(F)=\operatorname{rnk} R_{T}=5$, or $b_{2}(F)=\operatorname{rnk} R_{T}=7$, carrying a ( $G$-invariant) spin or metaplectic structure.
... on the calculation of Koszul numbers
a) Consider the natural invariant ordering $\mathrm{R}_{\mathrm{F}}^{+}=R^{+} \backslash \mathrm{R}_{\mathrm{H}}{ }^{+}$induced by the splitting $\Pi=\Pi_{\mathrm{W}} \sqcup$ $\Pi_{\mathrm{B}}$. Let us denote by $J_{0}$ the corresponding complex structure. Describe the root system $R_{\mathrm{H}}$ and compute

$$
\sigma_{\mathrm{H}}:=\frac{1}{2} \sum_{\beta \in R_{H}^{+}} \beta
$$

$\beta$ ) Apply the formula

$$
2\left(\sigma_{G}-\sigma_{\mathrm{H}}\right)=\sum_{\gamma \in \mathbf{R}_{\mathbf{F}}^{+}} \gamma:=\sigma^{J_{0}} .
$$

In particular, for the exceptional simple Lie groups and with respect to the fixed bases of the associated roots systems, it is $2 \sigma_{\mathrm{G}_{2}}=6 \alpha_{1}+10 \alpha_{2}$,

$$
\begin{aligned}
2 \sigma_{\mathrm{F}_{4}} & =16 \alpha_{1}+30 \alpha_{2}+42 \alpha_{3}+22 \alpha_{4} \\
2 \sigma_{\mathrm{E}_{6}} & =16 \alpha_{1}+30 \alpha_{2}+42 \alpha_{3}+30 \alpha_{4}+16 \alpha_{5}+22 \alpha_{6} \\
2 \sigma_{\mathrm{E}_{7}} & =27 \alpha_{1}+52 \alpha_{2}+75 \alpha_{3}+96 \alpha_{4}+66 \alpha_{5}+34 \alpha_{6}+49 \alpha_{7} \\
2 \sigma_{\mathrm{E}_{8}} & =58 \alpha_{1}+114 \alpha_{2}+168 \alpha_{3}+220 \alpha_{4}+270 \alpha_{5}+182 \alpha_{6}+92 \alpha_{7}+136 \alpha_{8} .
\end{aligned}
$$

$\gamma$ ) Use the Cartan matrix $\mathcal{C}=\left(c_{i, j}\right)=\left(\frac{2\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{j}, \alpha_{j}\right)}\right)$ associated to the basis $\Pi$ (and its enumeration), to express the simple roots in terms of fundamental weights via the formula $\alpha_{i}=\sum_{j=1}^{\ell} c_{i, j} \Lambda_{j}$.

## C-spaces and spin structures

- C-space is a compact, simply connected, homogeneous complex manifold $M=G / L$ of a compact semisimple Lie group $G$.
- stability group $L$ is a closed connected subgroup of $G$ whose semisimple part coincides with the semisimple part of the centralizer of a torus in $G$.
- Any C-space is the total space of a homogeneous torus bundle $M=G / L \rightarrow F=G / H$ over a flag manifold $F=G / H$.
- In particular, the fiber is a complex torus $\mathrm{T}^{2 k}$ of real even dimension $2 k$.

Well-know fact: Given a C-space $M=G / L$ the following are equivalent:

- $L=C(S)$, i.e. $M=G / L$ is a flag manifold,
- second Betti number of $G / L$ is non-zero,
- the Euler characteristic of $G / L$ is non-zero,
- Hence, non-Kählerian C-spaces may admit Lorentzian metric and complex structure with zero first Chern class $\Rightarrow$
such spaces may give examples of homogeneous Calabi-Yau structures with torsion [Fino-Grantcharov '04, Grantcharov '11]
- Consider a reductive decomposition

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}=\left(Z(\mathfrak{h})+\mathfrak{h}^{\prime}\right)+\mathfrak{m}
$$

associated with a flag manifold $F=G / H$ of $G$.

- We decompose

$$
Z(\mathfrak{h})=\mathfrak{t}_{0}+\mathfrak{t}_{1}
$$

into a direct sum of a (commutative) subalgebra $\mathfrak{t}_{1}$ of even dimension $2 k$ and a complement $\mathfrak{t}_{0}$ which generates a closed toral subgroup $T_{0}$ of $H$, such that

$$
\operatorname{rnk} G=\operatorname{dim} T_{0}+\operatorname{rnk} H^{\prime}, \quad \text { and } \quad \operatorname{rnk} L=\operatorname{dim} T_{1}+\operatorname{rnk} H^{\prime}
$$

- Then, the homogeneous manifold $M=G / L=G / T_{0} \cdot H^{\prime}$ is a C-space and any C-space has such a form.
- Notice that $L \subset H$ is normal subgroup of $H$. In particular, $H^{\prime}$ (the semi-simple part of $H$ ) coincides with the simi-simple part of $L$.

Lemma. Any complex structure in $\mathfrak{t}_{1}$ together with an invariant complex structure $J_{F}$ in $F=$ $G / H=G / T_{1} \cdot L$ defines an invariant complex structure $J_{M}$ in $M=G / L=G / T_{0} \cdot H^{\prime}$ such that $\pi: M=G / L \rightarrow F=G / H$ is a holomorphic fibration with respect to the complex structures $J_{M}$ and $J_{F}$. The fiber has the form $H / L=\left(T_{1} \cdot L\right) /\left(T_{0} \cdot H^{\prime}\right) \cong T_{1}$.

- Consider a homogeneous torus bundle $\pi: M=G / L \rightarrow F=G / H$

$$
\mathfrak{g}=\mathfrak{l}+\mathfrak{q}=\left(\mathfrak{h}^{\prime}+\mathfrak{t}_{0}\right)+\left(\mathfrak{t}_{1}+\mathfrak{m}\right), \quad \mathfrak{q}:=\left(\mathfrak{t}_{1}+\mathfrak{m}\right) \cong T_{e L} M
$$

- Let $J_{F}$ be an invariant complex structure in $F$ and $J_{M}$ its extension to an invariant complex structure in $M$, defined by adding a complex structure $J_{\mathfrak{t}_{1}}$ in $\mathfrak{t}_{1}$. Then
Prop. The invariant Chern from $\gamma_{J_{M}} \in \Omega^{2}(M)$ of the complex structure $J_{M}$ is the pull back of the invariant Chern form $\gamma_{J_{F}} \in \Omega^{2}(F)$ associated to the complex structure $J_{F}$ on $F$, i.e. $\gamma_{J_{M}}=\pi^{*} \gamma_{J_{F}}$.

Corol. Given a C-space $M=G / L$ over flag manifold $F=G / H$, then

- $w_{2}(T M)=\pi^{*}\left(w_{2}(T F)\right)$
- $M$ is spin if and only if $w_{2}(T F)$ belongs to the kernel of $\pi^{*}: H^{2}\left(F ; \mathbb{Z}_{2}\right) \rightarrow H^{2}\left(M ; \mathbb{Z}_{2}\right)$.
- If $F$ is $G$-spin, then so is $M$.

Hints: Notice that

$$
T M=G \times_{L} \mathfrak{q}=\left(G \times_{L} \mathfrak{t}_{1}\right) \oplus \pi^{*}(T F)
$$

Thm. There are 45 non-biholomorphic C-spaces $M=G / L$ fibered over a spin flag manifold $F=G / H$ of an exceptional Lie group $G \in\left\{\mathrm{G}_{2}, \mathrm{~F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}\right\}$, and any such space carries a unique $G$-invariant spin structure. The associated fibrations are given as follows:

| $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{G}_{2}$ | $\longrightarrow$ | $\mathrm{G}_{2} / \mathrm{T}^{2}$ | $\mathrm{T}^{6}$ | $\hookrightarrow$ | $\mathrm{E}_{7} / \mathrm{T}$ | $\longrightarrow$ | $\mathrm{E}_{7} / \mathrm{T}^{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}^{4}$ | $\hookrightarrow$ | $\mathrm{F}_{4}$ | $\longrightarrow$ | $\mathrm{F}_{4} / \mathrm{T}^{4}$ | $\mathrm{T}^{4}$ | $\hookrightarrow$ | $\mathrm{E}_{7} / \mathrm{T}^{3}$ | $\longrightarrow$ | $\mathrm{E}_{7} / \mathrm{T}^{7}$ |
| $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{F}_{4} / \mathrm{T}^{2}$ | $\longrightarrow$ | $\mathrm{F}_{4} / \mathrm{T}^{4}$ | T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{7} / \mathrm{T}^{5}$ | $\longrightarrow$ | $\mathrm{E}_{7} / \mathrm{T}^{7}$ |
| $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{F}_{4} / \mathrm{A}_{2}^{l}$ | $\rightarrow$ | $\mathrm{F}_{4} / \mathrm{A}_{2}^{l} \times \mathrm{T}^{2}$ | $\mathrm{T}^{4}$ | $\hookrightarrow$ | $\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{T}$ | $\longrightarrow$ | $\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{T}^{5}$ |
| $\mathrm{T}^{2}$ | $\leftharpoonup$ | $\mathrm{F}_{4} / \mathrm{A}_{2}^{s}$ | $\rightarrow$ | $\mathrm{F}_{4} / \mathrm{A}_{2}^{2} \times \mathrm{T}^{2}$ | T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{T}^{3}$ | $\longrightarrow$ | $\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{T}^{5}$ |
| $\mathrm{T}^{6}$ | $\hookrightarrow$ | $\mathrm{E}_{6}$ | $\rightarrow$ | $\mathrm{E}_{6} / \mathrm{T}^{6}$ | $\mathrm{T}^{4}$ | $\hookrightarrow$ | $\mathrm{E}_{7} /\left(\mathrm{A}_{1}\right)^{3}$ | $\xrightarrow{*}$ | $\mathrm{E}_{7} /\left(\mathrm{A}_{1}\right)^{3} \times \mathrm{T}^{4}$ |
| T ${ }^{4}$ | $\hookrightarrow$ | $\mathrm{E}_{6} / \mathrm{T}^{2}$ | $\rightarrow$ | $\mathrm{E}_{6} / \mathrm{T}^{6}$ | T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{7} /\left(\mathrm{A}_{1}\right)^{3} \times \mathrm{T}^{2}$ | $\xrightarrow{*}$ | $\mathrm{E}_{7} /\left(\mathrm{A}_{1}\right)^{3} \times \mathrm{T}^{4}$ |
| $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{6} / \mathrm{T}^{4}$ | $\rightarrow$ | $\mathrm{E}_{6} / \mathrm{T}^{6}$ | $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{7} / \mathrm{A}_{4} \times \mathrm{T}$ | $\rightarrow$ | $\mathrm{E}_{7} / \mathrm{A}_{4} \times \mathrm{T}^{3}$ |
| $\mathrm{T}^{4}$ | $\hookrightarrow$ | $\mathrm{E}_{6} / \mathrm{A}_{2}$ | $\rightarrow$ | $\mathrm{E}_{6} / \mathrm{A}_{2} \times \mathrm{T}^{4}$ | $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{7} / \mathrm{A}_{3} \times \mathrm{A}_{1} \times \mathrm{T}$ | $\xrightarrow{*}$ | $\mathrm{E}_{7} / \mathrm{A}_{3} \times \mathrm{A}_{1} \times \mathrm{T}^{3}$ |
| T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{6} / \mathrm{A}_{2} \times \mathrm{T}^{2}$ | $\longrightarrow$ | $\mathrm{E}_{6} / \mathrm{A}_{2} \times \mathrm{T}^{4}$ | $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{A}_{2} \times \mathrm{T}$ | $\rightarrow$ | $\mathrm{E}_{7} / \mathrm{A}_{2} \times \mathrm{A}_{2} \times \mathrm{T}^{3}$ |
| $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{6} / \mathrm{A}_{4}$ | $\rightarrow$ | $\mathrm{E}_{6} / \mathrm{A}_{4} \times \mathrm{T}^{2}$ | T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{7} / \mathrm{D}_{4} \times \mathrm{T}$ | $\longrightarrow$ | $\mathrm{E}_{7} / \mathrm{D}_{4} \times \mathrm{T}^{3}$ |
| $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{6} / \mathrm{A}_{2} \times \mathrm{A}_{2}$ | $\rightarrow$ | $\mathrm{E}_{6} / \mathrm{A}_{2} \times \mathrm{A}_{2} \times \mathrm{T}^{2}$ | T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{7} / \mathrm{A}_{5}$ | $\longrightarrow$ | $\mathrm{E}_{7} / \mathrm{A}_{5} \times \mathrm{T}^{2}$ |
| $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{6} / \mathrm{D}_{4}$ | $\longrightarrow$ | $\mathrm{E}_{6} / \mathrm{D}_{4} \times \mathrm{T}^{3}$ | T ${ }^{2}$ | $\stackrel{\hookrightarrow}{\hookrightarrow}$ | $\begin{aligned} & \mathrm{E}_{7} / \mathrm{A}_{2} \times\left(\mathrm{A}_{1}\right)^{3} \\ & \mathrm{E}_{7} / \mathrm{D}_{5} \end{aligned}$ | $\xrightarrow{*}$ | $\begin{aligned} & \mathrm{E}_{7} / \mathrm{A}_{2} \times\left(\mathrm{A}_{1}\right)^{3} \times \\ & \mathrm{E}_{7} / \mathrm{D}_{5} \times \mathrm{T}^{2} \end{aligned}$ |
| $\mathrm{T}^{8}$ | $\hookrightarrow$ | $\mathrm{E}_{8}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{T}^{8}$ | $\mathrm{T}^{4}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{D}_{4}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{D}_{4} \times \mathrm{T}^{4}$ |
| T ${ }^{6}$ | $\rightarrow$ | $\mathrm{E}_{8} / \mathrm{T}^{2}$ | $\rightarrow$ | $\mathrm{E}_{8} / \mathrm{T}^{8}$ | $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{D}_{4} \times \mathrm{T}^{2}$ | $\square$ | $\mathrm{E}_{8} / \mathrm{D}_{4} \times \mathrm{T}^{4}$ |
| T ${ }^{4}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{T}^{4}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{T}^{8}$ | $\mathrm{T}^{4}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{2} \times \mathrm{A}_{2}$ | $\square$ | $\mathrm{E}_{8} / \mathrm{A}_{2} \times \mathrm{A}_{2} \times \mathrm{T}^{4}$ |
| T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{T}^{6}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{T}^{8}$ | $\mathrm{T}^{2}$ | $\xrightarrow{\longrightarrow}$ | $\mathrm{E}_{8} / \mathrm{A}_{2} \times \mathrm{A}_{2} \times \mathrm{T}^{2}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{2} \times \mathrm{A}_{2} \times \mathrm{T}^{4}$ |
| $\mathrm{T}^{6}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{2}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{2} \times \mathrm{T}^{6}$ | T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{D}_{5} \times \mathrm{T}^{1}$ | $\square$ | $\mathrm{E}_{8} / \mathrm{D}_{5} \times \mathrm{T}^{3}$ |
| T ${ }^{4}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{2} \times \mathrm{T}^{2}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{2} \times \mathrm{T}^{6}$ | T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{6}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{6} \times \mathrm{T}^{2}$ |
| $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{2} \times \mathrm{T}^{4}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{2} \times \mathrm{T}^{6}$ | T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{4} \times \mathrm{A}_{2}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{4} \times \mathrm{A}_{2} \times \mathrm{T}^{2}$ |
| $\mathrm{T}^{4}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{4}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{4} \times \mathrm{T}^{4}$ | T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{D}_{4} \times \mathrm{A}_{2}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{D}_{4} \times \mathrm{A}_{2} \times \mathrm{T}^{2}$ |
| $\mathrm{T}^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{4} \times \mathrm{T}^{2}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{A}_{4} \times \mathrm{T}^{4}$ | T ${ }^{2}$ | $\hookrightarrow$ | $\mathrm{E}_{8} / \mathrm{E}_{6}$ | $\longrightarrow$ | $\mathrm{E}_{8} / \mathrm{E}_{6} \times \mathrm{T}^{2}$ |

