Background and Motivation	Holonomy in Supergeometry	Applications	References

Holonomy in Supergeometry: Theory and Applications

Josua Groeger

Universität zu Köln

Marburg, March 11, 2016

Background and Motivation	Holonomy in Supergeometry	Applications	References
000	000	000	

- Holonomy
- Supergeometry in a Nutshell
- Two General Principles
- 2 Holonomy in Supergeometry

3 Applications

Background and Motivation ●○○	Holonomy in Supergeometry	Applications	References
Holonomy			

Holonomy: All parallel transport operators around loops at a point.

- *M* a smooth manifold.
- E a vector bundle over M.
- ∇ a connection on *E* with curvature tensor *R*.
- $\gamma: [0,1] \to M$ with $\gamma(0) = x$, $\gamma(1) = y$; denoted $\gamma: x \to y$.
- $P_{\gamma}: E_x \to E_y \in \operatorname{End}(E_x, E_y)$ parallel transport wrt. ∇ .

Definition and Theorem (Ambrose-Singer)

$$\operatorname{Hol}_{\mathsf{x}} := \{ \mathsf{P}_{\gamma} \mid \gamma : \mathsf{x} \to \mathsf{x} \}$$
 is a Lie group with Lie algebra

$$\mathrm{hol}_{x}=\left\langle P_{\gamma}^{-1}\circ R_{y}\left(u,\,v\right)\circ P_{\gamma}\;\middle|\;y\in M\,,\;\gamma:x\rightarrow y\;u,v\in T_{y}M\right\rangle$$

Theorem (Holonomy Principle)

A global section $X \in \Gamma(E)$ with $\nabla X = 0$ (parallel) is equivalent to a vector $X_x \in E_x$ with $\operatorname{Hol}_x \cdot X_x = X_x$.

Background and Motivation ○●○	Holonomy in Supergeometry	Applications	References
Supergeometry in a Nutshell			

Definition (Berezin-Leites)

A supermanifold is a super ringed space $M = (M_0, \mathcal{O}_M)$: M_0 a manifold, \mathcal{O}_M a sheaf, locally: $\mathbb{R}^{n|m} := (\mathbb{R}^n, C^{\infty}(\mathbb{R}^n) \otimes \bigwedge \mathbb{R}^m)$.

Some concepts of differential geometry extend "straightforwardly": \mathbb{Z}_2 -grading (even and odd) and sign rule $\xi^i \xi^j = (-1)^{|i||j|} \xi^j \xi^i$.

- A vector bundle *E* is a sheaf of locally free *O_M* supermodules,
 e.g. the tangent sheaf *TM* := Der_{*O_M*} of *O_M*-superderivations.
- A connection on \mathcal{E} is an \mathbb{R} -linear sheaf morphism $\nabla : \mathcal{E} \to \mathcal{T}M^* \otimes_{\mathcal{O}_M} \mathcal{E}$ with $\nabla(fe) = df \otimes_{\mathcal{O}_M} e + f \cdot \nabla e$
- ∇ induces curvature *R* and torsion *T*.

... others are non-trivial.

- Integration theory (differential \neq integral forms; boundary...)
- Points do not completely characterise superfunctions etc.
- No obvious notion of parallel transport or holonomy!

Background and Motivation ○○●	Holonomy in Supergeometry	Applications	References
Two General Principles			

1: "Superobject (S) = Classical (C) even + Infinitesimal (I) odd"

Example (Harish-Chandra Pair)

- (S) a super Lie group: a supermanifold \mathfrak{G} with $m : \mathfrak{G} \times \mathfrak{G} \to \mathfrak{G}$...
- (C) a Lie group G.
 - (I) a super Lie algebra $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$.

s.th. $G = \mathfrak{G}_0$, $\mathfrak{g}_0 = LA(G)$, with some compatibility conditions.

2: "Superobject (S) = Functor (F) to a Classical Category"

Example (Grothendieck-Yoneda)

(S) a super Lie group: a supermanifold \mathfrak{G} with $m : \mathfrak{G} \times \mathfrak{G} \to \mathfrak{G}$... (F) a representable group val. functor $G : (\text{supermf}) \to (\text{groups})$. *G* the *functor of points* of \mathfrak{g} , i.e. on objects: $G(T) = \text{Hom}(T, \mathfrak{G})$. Conversely, *m* is determined by the $m_T : G(T) \times G(T) \to G(T)$.

Background and Motivation	Holonomy in Supergeometry	Applications	References



- 2 Holonomy in Supergeometry
 - Galaev's Holonomy Supergroup
 - The Holonomy Functor
 - Twofold Theorem and Holonomy Principle

3 Applications

Background and Motivation	Holonomy in Supergeometry ●○○	Applications	References
Galaey's Holonomy Supergroup			

A Construction using General Principle 1: (S)=(C)+(I).

- x ∈ M₀ a point. All vector spaces x* E together form a bundle E over M₀, ∇ induces a classical connection ∇₀ on E.
- $P_{\gamma_0}: x^*\mathcal{E} \to y^*\mathcal{E}$ parallel transport along a classical path γ_0 .
- Let $Y_1, \ldots, Y_r, Y, Z \in y^* \mathcal{T}M$, $\overline{\nabla}_{Y_r, \ldots, Y_1}^r R$ the *r*-fold derivative of R wrt. ∇ and an auxiliary connection $\overline{\nabla}$ on $\mathcal{T}M$ near y.

Definition (A. Galaev)

Hol_x^{Gal} is the super Lie group defined by the Harish-Chandra pair (C) Hol_x^{∇_0} the holonomy group wrt. ∇_0 on *E*.

(I)
$$\operatorname{hol}_{x}^{\operatorname{Gal}} := \left\langle P_{\gamma_{0}}^{-1} \circ \left(\overline{\nabla}_{Y_{r},...,Y_{1}}^{r} R \right)_{y} (Y, Z) \circ P_{\gamma_{0}} : x^{*} \mathcal{E} \to x^{*} \mathcal{E} \right\rangle$$

- Main idea: Ambrose-Singer algebra with higher derivatives.
- Good properties: A version of the holonomy principle etc.

Background and Motivation	Holonomy in Supergeometry	Applications	References
The Holonomy Functor			

A Construction using General Principle 2: $(S) \stackrel{?}{=} (F)$.

- For $S = \mathbb{R}^{0|L}$, consider $x : S \to M$ and $\gamma : S \times [0,1] \to M$.
- Parallel transport $P_{\gamma}: x^*\mathcal{E} \to y^*\mathcal{E}$ defined by $(\gamma^*\nabla)_{\partial_t}X = 0$.

Definition and Theorem (Ambrose-Singer) $\operatorname{Hol}_{x} := \{P_{\gamma} \mid \gamma : x \to x\}$ is a Lie group with LA hol_{x} generated by $\{P_{\gamma}^{-1} \circ R_{y}(u, v) \circ P_{\gamma} \mid y : S \to M, \ \gamma : x \to y \ u, v \in (y^{*}\mathcal{T}M)_{\overline{0}}\}$

- Consider other superpoints $T = \mathbb{R}^{0|L'}$ (equivalently $\bigwedge \mathbb{R}^{L'}$).
- $x_T : S \times T \to M$ defined by x and projection $S \times T \to S$.
- $T \mapsto \operatorname{Hol}_{x_T}$ defines a group-valued functor, denoted $\operatorname{Hol}_x(T)$.

 $\operatorname{Hol}_{x}(\mathcal{T})$ not representable (examples), so $\operatorname{Hol}_{x}(\mathcal{T}) \neq \operatorname{Hol}_{x}^{\operatorname{Gal}}(\mathcal{T})$.

Background and Motivation	Holonomy in Supergeometry ○○●	Applications	References
Twofold Theorem and Holonomy Principle			

Theorem (Holonomy Principle)

Let M be connected. Then the following are equivalent.

- A vector field $X \in \mathcal{E}$ s.th. $\nabla X = 0$.
- **2** A section $X_x \in x^*\mathcal{E}$ invariant under either holonomy.

Both $\operatorname{Hol}_{x}(\mathcal{T})$ and $\operatorname{Hol}_{x}^{\operatorname{Gal}}$ contain the same amount of information.

Theorem (Comparison Theorem)

 $\operatorname{hol}_{x}^{\operatorname{Gal}}$ is the algebra of *T*-coefficient matrices of $\operatorname{hol}_{x}(T)$ for all *T*.

• Technical main result, proved by an odd homotopy formula.

Theorem (Twofold Theorem)

Let $X_x \in x^* \mathcal{E}$. Then the following are equivalent.

2
$$\operatorname{Hol}_{X}(T) \cdot X_{X} = X_{X}$$
 for "sufficiently large" T.

Background and Motivation	Holonomy in Supergeometry	Applications	References

Background and Motivation

Belonomy in Supergeometry

3 Applications

- Semi-Riemannian Supermanifolds
- Calabi-Yau Supermanifolds
- Differential Gerstenhaber-Batalin-Vilkovisky Structures

Background and Motivation	Holonomy in Supergeometry	Applications ●○○	References
Semi-Riemannian Supermanifolds			

Definition

A semi-Riemannian supermanifold is a pair (M, g) with g an even, nondegenerate and supersymmetric bilinear form on TM.

- A connection ∇ on $\mathcal{T}M$ is called metric if, for $X, Y, Z \in \mathcal{T}M$, $Xg(Y, Z) = g(\nabla_X Y, Z) + (-1)^{|X||Y|}g(Y, \nabla_X Z).$
- ∇ is metric if and only if $\nabla g = 0$ (induced connection).
- Levi-Civita connection on $\mathcal{T}M$ (metric and torsion-free).

Proposition (Holonomy Principle)

The following are equivalent.

- **1** ∇ is metric.
- $\ \ \, {\rm Hol}_x^{\nabla_0}\subseteq O(t,s)\times Sp(2m,\mathbb{R}) \ \, {\rm and} \ {\rm hol}_x^{\rm Gal}\subseteq \mathfrak{osp}((t,s)|2m).$
- $\operatorname{Hol}_{x}(T) \in OSp_{(t,s)|2m}(\mathcal{O}_{S \times T})$ for "sufficiently large" T.

In particular, this is true for the Levi-Civita connection.

Background and Motivation	Holonomy in Supergeometry	Applications	References
Calabi-Yau Supermanifolds			

Definition

(M,g) is called Kähler if $\operatorname{Hol}_{x}(T) \subseteq U_{(t,s)|(k,l)}(\mathcal{O}_{S \times T})$. (M,g) is called Calabi-Yau if $\operatorname{Hol}_{x}(T) \subseteq SU_{(t,s)|(k,l)}(\mathcal{O}_{S \times T})$.

• Calabi conjecture is wrong (conterexamples for k + l = 2)!

Proposition

A Calabi-Yau supermanifold has trivial holomorphic Berezinian ("canonical") bundle $Ber(\mathcal{T}^{1,0}M)^*$.

Proof.

- ∇ canonically induces a connection $\tilde{\nabla}$ on $\operatorname{Ber}(\mathcal{T}^{1,0}M)^*$.
- Parallel transport wrt. $\tilde{\nabla}$ is $P_{\gamma}^{\tilde{\nabla}} = \operatorname{sdet}(P_{\gamma}^{\nabla})^{-1}$.
- $\operatorname{Hol}_{\mathsf{x}}(\mathsf{T}) \subseteq SL_{n|m}(\mathcal{O}_{S \times \mathsf{T}})$ implies the holonomy of $\tilde{\nabla}$ is trivial.
- By the Holonomy Principle, there is a global parallel section.

Background and Motivation	Holonomy in Supergeometry	Applications ○○●	References
Differential Gerstenhaber-Batalin-Vilkovisky Structures			

An algebraic characterisation of triviality of the canonical bundle.

- A a supercommutative \mathbb{C} -algebra.
- $\Delta: A \to A$ an odd linear map, $\Delta^2 = 0$.
- $\beta \mapsto \pm \Delta(\alpha \cdot \beta) \mp \Delta(\alpha) \cdot \beta \mp \alpha \cdot \Delta(\beta)$ is a derivation $\forall \alpha \in A$.
- d an odd derivation, $d^2 = 0$, $[d, \Delta] = 0$.

Theorem (Barannikov-Kontsevich)

X complex supermanifold, simply connected. Then equivalent:

- The canonical bundle is trivial.
- **2** \exists dGBV structure compatible with the Schouten bracket.
- 1:1 correspondence between such dGBV and trivialising section ω .

•
$$A = \mathcal{A}^{0,*}(X, \bigwedge^* T^{1,0}X), \ d = \overline{\partial}.$$

• ∂ only defined on *integral forms*, corresponds to Δ via ω .

Background and Motivation	Holonomy in Supergeometry	Applications	References

- [1] A. Galaev. Holonomy of Supermanifolds. Abhandlungen Math. Sem. Univ. Hamburg, 79:47-78, 2009.
- [2] J. Groeger. Super Wilson Loops and Holonomy on Supermanifolds. Comm. Math., 22(2), 2014.
- [3] J. Groeger. The Twofold Way of Super Holonomy. Preprint, Universität zu Köln, 2015.
- [4] J. Groeger. Work in Progress, 2016.
- [5] A. Alldridge and J. Groeger. Work in Progress, 2016.

Thank you very much for your attention!