Compact quotients of Cahen-Wallach spaces

Ines Kath, joint work with Martin Olbrich

 ${\sf Cahen-Wallach\ space} = {\sf solvable\ Lorentzian\ symmetric\ space}$

quotient = quotient by a discrete subgroup of the isometry group

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Compact quotients of manifolds

M manifold G Lie group, acting on M

 $G \text{ acts } properly : \Leftrightarrow G \times M \rightarrow M \times M, \ (g, m) \mapsto (gm, m) \text{ proper}$

Fact

 $G ext{-action is proper} \Rightarrow (a) \quad orbits are closed (b) \quad G \setminus M ext{ Hausdorff}$

Hence: G acts freely and properly on $M \Rightarrow$ $G \setminus M$ smooth manifold s. th. $M \to G \setminus M$ (C^{∞})-submersion Conversely: G acts freely, $G \setminus M$ smooth, $M \to G \setminus M$ submersion \Rightarrow G-action is proper

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Compact quotients of homogeneous spaces

X = G/H homogeneous space $\Gamma \subset G$ discrete subgroup acting freely and properly on X $\Gamma \setminus X$ quotient, also called *Clifford-Klein form*

Q: X = G/H, \exists compact quotient?

H compact (⇒ each discrete subgroup of G acts properly) yes, if there exists a cocompact lattice Γ ⊂ G, e.g., if X is a Riem. symmetric space (Borel 1963)

 H non-compact: difficult some results for reductive G (Benoist, Kobayashi)

Problem

Which Lorentzian symmetric spaces admit compact quotients?

- Minkowski space: yes
- de Sitter space S^{1,n} (positive const. sectional curv.): no (Calabi, Markus)

- ► anti-de-Sitter H^{1,n} (negative —): yes ⇔ dimension is odd (Kulkarni)
- here: Cahen-Wallach spaces
 X = G/G_+, G = lso(X)
 G not reductive, G_+ not compact !

Cahen-Wallach spaces

 $egin{aligned} X_{p,q}(\lambda,\mu) &:= (\mathbb{R}^{p+q+2},\,g_{\lambda,\mu}), & \lambda \in (\mathbb{R}\setminus\{0\})^p, \ \mu \in (\mathbb{R}\setminus\{0\})^q \ z,x_1,\ldots,x_{p+q},t ext{ coordinates} \end{aligned}$

$$g_{\lambda,\mu} = 2dzdt + \left(\sum_{i=1}^{p} \lambda_i^2 x_i^2 - \sum_{j=1}^{q} \mu_j^2 x_{p+j}^2\right) dt^2 + \sum_{i=1}^{p+q} dx_i^2$$

q = 0: real type p = 0: imaginary type mixed type, otherwise

For which λ,μ do there exist compact quotients?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Idea

proven approach:

X = G/H homogeneous space

Find a (virtually) connected subgroup U ⊂ G acting properly and cocompactly on X and a cocompact lattice Γ ⊂ U.
 Ex: H^{1,2m} = SO(2,2m)/SO(1,2m) = U(1,m)/U(m) Γ ⊂ U(1,m) torsion-free lattice

► Are all compact quotients of this form? Ex: no for m = 1 (Ghys, Goldman), conjecture: yes for m ≥ 2 (Zeghib)

Idea

proven approach:

X = G/H homogeneous space

- Find a (virtually) connected subgroup U ⊂ G acting properly and cocompactly on X and a cocompact lattice Γ ⊂ U.
- Are all compact quotients of this form?

here:

X Cahen-Wallach space, G = Iso(X)

proceed similarly,

but now $U \longrightarrow \text{group}$ with infinite cyclic component group

Discrete subgroups of $N \rtimes (\mathbb{R} \times K)$

 $X = G/G_+$ Cahen-Wallach space, G = Iso(X)recall: $\hat{G} = H \rtimes_{\lambda,\mu} \mathbb{R}$ transvection group $G = \hat{G} \rtimes (K \times \mathbb{Z}_2), K$ compact

more generally, we consider: N nilpotent K compact $\mathbb{R} \times K$ acts on N by semisimple automorphisms

$$G = N \rtimes (\mathbb{R} \times K)$$

$$\Gamma \subset G$$
 discrete, $\Delta := \overline{\operatorname{pr}_{\mathbb{R}}(\Gamma)} \subset \mathbb{R}$

Proposition

 Γ is a lattice in $(U \cdot \psi(\Delta)) \times C_K \subset G$, where $U \subset N$ connected, $\psi : \Delta \rightarrow G$ section, $C_K \subset K$ connected and abelian.

Compact quotients of Cahen-Wallach spaces

X Cahen-Wallach space N = H Heisenberg, $G = \text{Iso}(X) = H \rtimes (\mathbb{R} \times K)$

$${\sf \Gamma} \subset {\sf G}$$
 discrete, $\Delta := {
m pr}_{\mathbb R}({\sf \Gamma}) \subset {\mathbb R}$

recall:

 $\Gamma \subset (U \cdot \psi(\Delta)) \times C_K$ lattice, $U \subset N$ connected, $\psi : \Delta \to G$ section, $C_K \subset K$

Lemma: Γ acts properly and cocompactly iff $U \cdot \psi(\Delta)$ does so

$$\label{eq:Gamma} \mathsf{\Gamma} \setminus X ext{ compact } \Rightarrow \quad \Delta = \langle t_0
angle \quad ext{or} \quad \Delta = \mathbb{R}$$

X group with biinvariant metric \exists cpt quotient with $\Delta = \langle t_0 \rangle$, too

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

assume $\Delta = \langle t_0 \rangle$ w.l.o.g.

Compact quotients of Cahen-Wallach spaces

Proposition

 $X = X_{p,q}(\lambda, \mu)$ Cahen-Wallach space, n := p + q

X has a compact quotient iff there exist

- (a) an n-dimensional subspace $V \subset \mathfrak{a}$ such that $e^{tL}V \cap \mathfrak{a}_+ = \{0\}$ for all $t \in \mathbb{R}$;
- (b) $t_0 \in \mathbb{R} \setminus \{0\}, \varphi_0 \in K, h_0 \in H^{t_0\varphi_0} \text{ and a lattice } \Lambda \text{ of } \mathfrak{z} \oplus V \subset H \text{ that is stable under conjugation by } h_0 t_0 \varphi_0.$

 $\begin{array}{ll} \text{real type} \\ \text{(a') } V \cap \mathfrak{a}_+ = 0 \end{array} \begin{array}{|c|} \text{imaginary type} \\ \text{(b')} \quad t_0 \in \mathbb{R} \setminus \{0\}, \ \varphi_0 \in K \text{ s. t. } (e^{t_0 L} \varphi_0)|_V = \mathrm{id}_V \end{array}$

(ロ)、

Real type

Theorem

 $X = X_{n,0}(\lambda)$ Cahen-Wallach space of real type

X admits a compact quotient iff

$$\exists f \in \mathbb{Z}[x], f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x \pm 1$$

with roots $\nu_1, \dots, \nu_n \notin S^1$, such that

$$X \cong X_{n,0}(\ln |\nu_1|, \ldots, \ln |\nu_n|)$$

recipe that gives all possible spaces however: for a given λ , hard to decide whether condition is satisfied

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Imaginary type

$$\underline{k} \in \mathbb{Z}^d$$
, $z^{\underline{k}} := \operatorname{diag}(z^{k_1}, \ldots, z^{k_d})$

 $\begin{array}{l} \underline{k} \text{ admissible } :\Leftrightarrow \ \exists \ d\text{-dim real vector space } V \subset \mathbb{C}^d \text{ s.t.} \\ (z^{\underline{k}} \cdot V) \cap \mathbb{R}^d = 0 \text{ for all } z \in S^1 \subset \mathbb{C}. \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Imaginary type

$$\begin{array}{ll} \mathsf{recall:} & \underline{k} \in \mathbb{Z}^d, \ z^{\underline{k}} := \mathrm{diag}(z^{k_1}, \ldots, z^{k_d}) \\ & \underline{k} \ \mathsf{admissible} \ \Leftrightarrow \ \exists \ C \in \mathrm{Mat}(d \times d, \mathbb{R}) \ \forall \ z \in S^1 \subset \mathbb{C}: \ \det \Im(z^{\underline{k}} \ C) \neq 0 \end{array}$$

Theorem

- X Cahen-Wallach space of imaginary type
- X admits a compact quotient iff $\exists \text{ admissible } \underline{k} \in (\mathbb{Z}_{\neq 0})^d : X \cong X_{0,n}(k_1, \dots, k_d, \underbrace{\mu_{d+1}, \dots, \mu_n})$ each μ_j with even multiplicity

Rm. \underline{k} admissible $\Rightarrow \sum (\pm k_i) = 0$ det $\Im(z^{\underline{k}} C) = \det \left(\frac{1}{2i} (c_{lm} z^{k_l} - \overline{c_{lm}} z^{-k_l})_{l,m=1,...,n} \right)$ $= \sum_{\kappa} d_{\kappa} z^{\kappa_1 k_1 + \dots + \kappa_n k_n}, \ \kappa = (\kappa_1, \dots, \kappa_n) \in \{1, -1\}^n$ $=: f_C(z) \quad \overline{d_{\kappa}} = d_{-\kappa} \neq 0$ $\int_0^{2\pi} f_C(e^{it}) dt = 2\pi \sum_{\kappa_1 k_1 + \dots + \kappa_n k_n = 0} d\kappa$

Imaginary type

$$\begin{array}{ll} \mathsf{recall:} & \underline{k} \in \mathbb{Z}^d, \ z^{\underline{k}} := \mathrm{diag}(z^{k_1}, \ldots, z^{k_d}) \\ & \underline{k} \ \mathsf{admissible} \ \Leftrightarrow \ \exists \ C \in \mathrm{Mat}(d \times d, \mathbb{C}) \ \forall \ z \in S^1 \subset \mathbb{C}: \ \mathsf{det} \ \Im(z^{\underline{k}} \ C) \neq 0 \end{array}$$

Theorem

- X Cahen-Wallach space of imaginary type
- X admits a compact quotient iff $\exists \text{ admissible } \underline{k} \in (\mathbb{Z}_{\neq 0})^d : X \cong X_{0,n}(k_1, \dots, k_d, \underbrace{\mu_{d+1}, \dots, \mu_n}_{each \ \mu_j \text{ with even multiplicity}})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Rm. \underline{k} admissible $\Rightarrow \sum (\pm k_i) = 0$ $d \le 4 : \Leftarrow$ d > 4 ?? (only examples)