◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Hilbert Schemes, Symmetric Quotient Stacks, and Categorical Heisenberg Actions

Andreas Krug - University of Marburg

Lie Theory in Roischholzhausen 2016

Plan of the Talk

Theorem (Göttsche / Nakajima / Grojnowski)

The cohomology of the Hilbert schemes (Douady spaces) of points on a smooth quasi-projective surface carry the structure of the Fock space representation of a Heisenberg algebra.

In this Talk

Discuss three approaches to a categorification of this Heisenberg action:

- Lift the Nakajima operators to the derived categories.
- 2 Lift other generators (half of the vertex operators).
- Give the derived categories of the Hilbert schemes the structure of a Hopf category.

Outline

Preliminaries

- Symmetric Products and Hilbert Schemes of Points on Surfaces
- Cohomology of Hilbert Schemes and the Heisenberg Algebra
- Derived Categories and Grothendieck Groups
- McKay Correspondence

- Nakajima P-functors
- Lift of the Heisenberg Module Structure
- Categorical Hopf Algebras

Outline

Preliminaries

- Symmetric Products and Hilbert Schemes of Points on Surfaces
- Cohomology of Hilbert Schemes and the Heisenberg Algebra
- Derived Categories and Grothendieck Groups
- McKay Correspondence
- 2 Three Constructions
 - Nakajima P-functors
 - Lift of the Heisenberg Module Structure
 - Categorical Hopf Algebras

Symmetric Quotient Varieties

X: Smooth quasi-projective variety over \mathbb{C} .

 \mathfrak{S}_n : Symmetric group. $\mathfrak{S}_n \curvearrowright X^n$ by permutation of factors:

$$(x_1,\ldots,x_n) \stackrel{\sigma}{\mapsto} (x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Definition

Quotient $X^{(n)} := X^n / \mathfrak{S}_n$ is called **symmetric quotient variety**.

Examples (Curve Case)

 $\mathbb{C}^{(n)} \cong \mathbb{C}^n$ (Theorem on symmetric functions), $\mathbb{P}^{1(n)} \cong \mathbb{P}^n$.

Non-Smoothness

For dim(X) \ge 2, the symmetric quotient variety is not smooth. The singular locus consists of the partial diagonals.

Hilbert Schemes as Resolutions of Singularities

In the case that X is a **surface**, there is a **resolution of singularities** $\mu: X^{[n]} \to X^{(n)}$ with very good properties: The **Hilbert scheme of points on** X.

Example (n=2)

 $\mu \colon X^{[2]} \to X^{(2)}$ is the blow-up along the diagonal.

Definition (General *n*)

The Hilbert scheme (Douady space) $X^{[n]}$ is the fine moduli space of *n*-Clusters on *X*. The Hilbert–Chow morphism $\mu: X^{[n]} \to X^{(n)}$ sends an *n*-Cluster to its weighted support.

Zero-Dimensional Subschemes (Clusters)

Definition

An *n*-Cluster on X is a zero-dimensional closed subscheme $Z \subset X$ of length $\ell(Z) := \dim_{\mathbb{C}}(\mathcal{O}(Z)) = n$.

Examples of Clusters

- Collections of *n* distinct points: $Z = \{x_1, \ldots, x_n\} \subset X$, $\mu(Z) = x_1 + \cdots + x_n \in X^{(n)}$.
- Fat points: Non-reduced schemes concentrated in one point.
 - n = 2: Fat points are points with infinitesimal tangent direction. Z ≅ Spec(ℂ[ε]/ε²), μ(Z) = 2x.

Recall: $\mu: X^{[2]} \to X^{(2)}$ is blow-up along diagonal.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Cohomology of Hilbert Schemes and the Heisenberg Algebra

Outline

Preliminaries

- Symmetric Products and Hilbert Schemes of Points on Surfaces
- Cohomology of Hilbert Schemes and the Heisenberg Algebra
- Derived Categories and Grothendieck Groups
- McKay Correspondence

- Nakajima P-functors
- Lift of the Heisenberg Module Structure
- Categorical Hopf Algebras

Betti Numbers of Hilbert schemes

Fix smooth projective surface X

 $\stackrel{\sim}{\longrightarrow} \quad \mathbb{H} := \bigoplus_{n \ge 0} \mathsf{H}^*(X^{[n]}, \mathbb{C}) \text{ is double graded vector space.}$ The Betti numbers are the dimensions of graded pieces $b_i(X^{[n]}) := \dim_{\mathbb{C}} \mathsf{H}^i(X^{[n]}, \mathbb{C}).$

Theorem (Göttsche, 1992)

$$\sum_{n=0}^{\infty} \sum_{i=0}^{4n} b_i(X^{[n]}) s^{i-2n} t^n = \prod_{m=1}^{\infty} \prod_{j=0}^{4} (1 - (-1)^j s^{j-2} t^m)^{(-1)^{j+1} b_j(X)}$$

F: Fock space representation of the Heisenberg Lie algebra \mathfrak{h}_V associated to $V := H^*(X, \mathbb{C})$.

Corollary

 $\mathbb{H}\cong\mathbb{F}$ as double graded vector spaces.

Heisenberg Lie Algebra (Basic Case)

Definition of the (infinite dimensional) Heisenberg Lie algebra \mathfrak{h} :

• As a vector space:

$$\mathfrak{h}:=\mathbb{C}\cdot c\oplus igoplus_{n\in\mathbb{Z}\setminus\{0\}}\mathbb{C}\cdot a(n)$$
 .

• Lie bracket of \mathfrak{h} : *c* is central, i.e. $[c, v] = 0 \forall v \in \mathfrak{h}$, and

$$[a(m), a(n)] = \delta_{m, -n} \cdot n \cdot c = egin{cases} n \cdot c & ext{if } m = -n, \ 0 & ext{else.} \end{cases}$$

Alternative notation $t^m := a(m)$: For $f, g \in \mathbb{C}[t, t^{-1}]$ have $[f(t), g(t)] = \operatorname{res}(f(t) \cdot \frac{\partial g}{\partial t}(t)) \cdot c$.

Heisenberg Lie Algebra (General Case)

- Given data: Finite dimensional C vector space V together with bilinear form ⟨_,_⟩.
- As a vector space: $\mathfrak{h}_V := \mathbb{C} \cdot c \oplus V^{\oplus \mathbb{Z} \setminus \{0\}}$.
- For β ∈ V and n ∈ Z, denote by a_β(n) ∈ 𝔥_V the image of β under the inclusion of the *n*-th summand.
- Lie bracket: c is central and

$$[a_{\alpha}(m), a_{\beta}(n)] = \delta_{m,-n} \cdot n \cdot \langle \alpha, \beta \rangle \cdot c.$$

Question (Geometric Interpretation of Göttsche's Theorem)

Let $V = H^*(X, \mathbb{C})$ together with **intersection form** $\langle \alpha, \beta \rangle = \int_X \alpha \cup \beta$. How to construct an action of \mathfrak{h}_V on $\mathbb{H} = \bigoplus_{n>0} H^*(X^{[n]}, \mathbb{C})$ in a natural (geometric) way?

→ Constructions of Nakajima/Grojnowski (1996) - . . .

Nakajima Operators

Nakajima correspondences: For ℓ, n ∈ N consider closed subscheme Z^{n,ℓ} ⊂ X × X^[ℓ] × X^[ℓ+n]

 $Z^{\ell,n} := \left\{ (x,Z,Z') \mid Z \subset Z', Z ext{ and } Z' ext{ only differ in } x
ight\}.$

 \rightsquigarrow Induced operators $a(\ell, n)$: $H^*(X \times X^{[\ell]}) \rightarrow H^*(X^{[\ell+n]})$.

• Fix $\beta \in H^*(X)$. Define Nakajima operator $a_{\beta}(\ell, n) := a(\ell, n)(\beta \otimes _)$:

• Set
$$a_{\beta}(n) := \bigoplus_{\ell \ge 0} a_{\beta}(\ell, n) \colon \mathbb{H} = \bigoplus_{\ell \ge 0} \mathsf{H}^*(X^{[\ell]}) \to \mathbb{H}[n].$$

For n < 0, define a_β(n): ℍ[n] → ℍ as the adjoint of a_β(−n) with respect to the intersection pairing on the cohomology of the Hilbert schemes.

Theorem (Nakajima)

The commutator relations between these operators satisfy

$$[a_{\alpha}(m), a_{\beta}(n)] = \delta_{m,-n} \cdot n \cdot \langle \alpha, \beta \rangle \cdot \mathsf{id}_{\mathbb{H}}$$
.

Corollary

The above operators equip \mathbb{H} with the structure of a module over the Heisenberg Lie algebra \mathfrak{h}_V associated to $V = H^*(X)$ where *c* acts as the identity.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Derived Categories and Grothendieck Groups

Outline

Preliminaries

- Symmetric Products and Hilbert Schemes of Points on Surfaces
- Cohomology of Hilbert Schemes and the Heisenberg Algebra
- Derived Categories and Grothendieck Groups
- McKay Correspondence

- Nakajima P-functors
- Lift of the Heisenberg Module Structure
- Categorical Hopf Algebras

Lifting/Categorification Problem

Goal

Would like to lift the Heisenberg action from the cohomology of the Hilbert schemes to the level of **Grothendieck groups** or, even better, **derived categories** of coherent sheaves ('categorification').

Coherent Sheaves and Complexes

- Y: smooth projective variety.
- Coh(Y): abelian category of coherent sheaves.
- Kom(Y) := Kom(Coh(Y)) category of complexes

• $\varphi^{\bullet} : A^{\bullet} \to B^{\bullet} \quad \rightsquigarrow \quad \mathcal{H}^{i}(\varphi^{\bullet}) : \mathcal{H}^{i}(A^{\bullet}) \to \mathcal{H}^{i}(B^{\bullet}).$ • φ^{\bullet} is a **quasi-isomorphism (qis)** $: \iff \mathcal{H}^{i}(\varphi^{\bullet})$ is an isomorphism $\forall i \in \mathbb{Z}.$

Derived Category

Definition (Derived Category)

 $\mathsf{D}(Y) := \mathsf{D}(\mathsf{Coh}(Y)) := \mathsf{Kom}(Y)[\mathsf{qis}^{-1}]$

- Objects: (Bounded) Complexes of coherent sheaves.
- **Morphisms:** Morphisms of complexes + Formal inverses of guasi-isomorphisms.

Features of the Derived Category

- Shift autoequivalence [1]: $D(Y) \rightarrow D(Y)$.
- Fully faithful **embedding** $\operatorname{Coh}(Y) \hookrightarrow D(Y), E \mapsto E[0].$
- Graded Hom-spaces Hom^{*}(A^{\bullet}, B^{\bullet}) := $\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{D(Y)}(A^{\bullet}, B^{\bullet}[i])[-i].$
- For $E, F \in \text{Coh}(Y)$: $\text{Hom}^*(E, F) \cong \text{Ext}^*(E, F)$.

Grothendieck Groups and Euler Characteristic

Definition (Grothendieck Group and its Natural Bilinear Form)

 $\begin{array}{l} \mathsf{K}(Y) := \mathsf{K}(\mathsf{Coh}(Y)) := \mathbb{Z} \cdot \mathsf{Coh}(Y) / \langle \mathsf{short} \; \mathsf{exact} \; \mathsf{seq.} \; \rangle \\ \mathsf{is} \; \mathsf{equipped} \; \mathsf{with} \; \mathsf{a} \; \mathsf{bilinear} \; \mathsf{form, the} \; \mathbf{Euler} \; \mathbf{bicharacteristic} \\ \big\langle [E], [F] \big\rangle := \chi(E, F) := \chi(\mathsf{Ext}^*(E, F)) := \sum (-1)^i \; \mathsf{Ext}^i(E, F). \end{array}$

• For $A^{\bullet} \in D(Y)$, set $[A^{\bullet}] := \sum (-1)^{i} [\mathcal{H}^{i}(A^{\bullet})] \in K(Y)$.

 \rightsquigarrow Commutative diagram:

Slogan: Hom^{*}(_,_) categorifies $\langle _, _ \rangle$.

Fourier–Mukai Transforms

Definition (Fourier–Mukai Transforms)

Given
$$P \in D(Y \times Z)$$
 'Fourier–Mukai kernel'
 $\rightsquigarrow FM_P: D(Y) \rightarrow D(Z) \quad E \mapsto R \operatorname{pr}_{Z*}(P \otimes^L \operatorname{pr}_Y^* E).$

→ induced correspondence operators:

Approach to Categorification of Heisenberg Action

First Approach

Set $P = \mathcal{O}_{Z^{\ell,n}}$ (structure sheaf of Nakajima correspondence) and consider $A(\ell, n) := FM_P : D(X \times X^{[\ell]}) \to D(X^{[\ell+n]})$. Let $A(\ell, -n)$ be the (right) adjoint functor.

Problem

It is too hard to compute the compositions $A(\ell, -n) \circ A(\ell, n)$ since $Z^{n,\ell}$ is badly singular.

Solution: Derived McKay Correspondence

Translate the categorification question to an easier equivariant problem using the **McKay correspondence**

 $\mathsf{D}(X^{[n]})\cong\mathsf{D}_{\mathfrak{S}_n}(X^n)\,.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

McKay Correspondence

Outline

Preliminaries

- Symmetric Products and Hilbert Schemes of Points on Surfaces
- Cohomology of Hilbert Schemes and the Heisenberg Algebra
- Derived Categories and Grothendieck Groups
- McKay Correspondence

- Nakajima P-functors
- Lift of the Heisenberg Module Structure
- Categorical Hopf Algebras

General Crepant Resolution Principle

Set-up: Let *M* smooth quasi-projective variety, $G \subset Aut(M)$ finite subgroup such that ω_M descends to a line bundle $\omega_{M/G}$.

Definition (Crepant Resolution)

A resolution of singularities $\mu \colon Y \to M/G$ is crepant : $\iff \mu^* \omega_{M/G} \cong \omega_Y$

Crepant Resolution Principle (Conjecture)

The geometry of Y should reflect the G-equivariant geometry of M.

More concretely: All invariants of *Y* should agree with the corresponding invariants of the **stack (orbifold)** [M/G].

McKay Correspondence

Derived McKay Correspondence ($M = X^n$ case)

The **Hilbert–Chow morphism** $\mu : X^{[n]} \to X^{(n)} = X^n / \mathfrak{S}_n$ is a crepant resolution.

Theorem (Bridgeland–King–Reid + Haiman 2001)

X smooth projective surface, $n \in \mathbb{N}$. Then:

$$\mathsf{D}(X^{[n]}) \cong \mathsf{D}_{\mathfrak{S}_n}(X^n) \cong \mathsf{D}([X^n/\mathfrak{S}_n]).$$

 $\begin{array}{l} \mathsf{D}_{\mathfrak{S}_n}(X^n) := \mathsf{D}(\mathsf{Coh}_{\mathfrak{S}_n}(X^n)) \text{ Equivariant derived category.} \\ \mathsf{Coh}_{\mathfrak{S}_n}(X^n) = \mathsf{Coh}([X^n/\mathfrak{S}_n]) \text{: Abelian category of} \\ \mathfrak{S}_n\text{-equivariant sheaves.} \\ \textbf{Objects: Pairs } (E,\lambda) \text{ with } E \in \mathsf{Coh}(X^n) \text{ and} \\ \lambda = (\lambda_{\sigma} \colon E \xrightarrow{\cong} \sigma^* E)_{\sigma \in \mathfrak{S}_n} \text{ a } \mathfrak{S}_n\text{-linearisation.} \\ \textbf{Morphisms: } \mathsf{Hom}_{\mathsf{Coh}_{\mathfrak{S}_n}(X^n)}((E,\lambda),(F,\nu)) = \mathsf{Hom}_{\mathsf{Coh}(X^n)}(E,F). \end{array}$

Outline

- Symmetric Products and Hilbert Schemes of Points on Surfaces
- Cohomology of Hilbert Schemes and the Heisenberg Algebra
- Derived Categories and Grothendieck Groups
- McKay Correspondence

- Nakajima P-functors
- Lift of the Heisenberg Module Structure
- Categorical Hopf Algebras

Idea of Construction

Construct $A(\ell, n)$: $D_{\mathfrak{S}_n}(X \times X^{\ell}) \to D_{\mathfrak{S}_{\ell+n}}(X^{\ell+n})$ on equivariant side and use McKay correspondence.

Nakajima Correspondences in $X \times X^{[\ell]} \times X^{[\ell+n]}$

 $Z^{\ell,n} = \left\{ (x,Z,Z') \mid Z \subset Z', Z \text{ and } Z' \text{ only differ in } x
ight\}$

McKay correspondence

Partial Diagonals in $X \times X^{\ell} \times X^{n+\ell}$

$$\Delta_0 = \big\{ (x; x_1, \ldots, x_\ell; x_1, \ldots, x_\ell, x, \ldots, x) \big\} \cong X \times X^\ell$$

Example ($\ell = 0$)

 $A(0, n) = \delta_* : D(X) \to D_{\mathfrak{S}_n}(X^n) \cong D(X^{[n]})$ is (equivariant) push-forward along embedding of small diagonal $\delta : X \hookrightarrow X^n$.

ℙ-functor versions of the Nakajima operators

Let X be a smooth projective surface.

Theorem (_)

There exists a series

 $A(\ell, n) = FM_{P^{\ell,n}}$: $D(X \times X^{[\ell]}) \rightarrow D(X^{[\ell+n]})$ of Fourier–Mukai transforms with supp $(P^{\ell,n}) = Z^{\ell,n}$. For $n > \max\{\ell, 1\}$, the $A(\ell, n)$ are \mathbb{P} -functors. In particular, (for $\omega_X = \mathcal{O}_X$)

 $A(\ell, -n) \circ A(\ell, n) \cong \mathsf{id} \oplus [-2] \oplus [-4] \oplus \cdots \oplus [-2(n-1)]$

where $A(\ell, -n)$: $D(X^{[n+\ell]}) \rightarrow D(X \times X^{[\ell]})$ is the right-adjoint.

Addington (2011) defined \mathbb{P} -functors in order to construct **non-standard autoequivalences** of derived categories.

Comparison with Heisenberg Commutator Relations

- Heisenberg relations: $[a_{\alpha}(m), a_{\beta}(n)] = \delta_{m,-n} n \langle \alpha, \beta \rangle \cdot id_{\mathbb{H}}.$
- Set m = -n and consider degree $\ell < n$:

$$a_{\alpha}(\ell,-n)a_{\beta}(\ell,n) = n\langle \alpha,\beta \rangle \cdot \mathsf{id}_{\mathsf{H}^*(X^{[\ell]})}$$

• Fix $E \in D(X)$: $A_E(\ell, n) := A(\ell, n) \circ \underline{i_E} : D(X^{[\ell]}) \to D(X^{[n+\ell]})$ with $\underline{i_E} : D(X^{[\ell]}) \to D(X \times X^{[\ell]}), B \mapsto E \boxtimes B$.

$$A_{E}(\ell, -n)A_{F}(\ell, n) = i_{E}^{R}A(\ell, -n)A(\ell, n)i_{F}$$

= $i_{E}^{R}i_{F}([0] \oplus [-2] \oplus \cdots \oplus [-2(n-1)])$
= Hom*(E, F)([0] $\oplus [-2] \oplus \cdots \oplus [-2(n-1)])$

 $\downarrow \text{ Descend to } \mathsf{K}(X^{[\ell]}), \text{ set } \alpha = [E], \beta = [F], a(\ell, n) = [A(\ell, n)]$ $a_{\alpha}(\ell, -n)a_{\beta}(\ell, n) = n\langle \alpha, \beta \rangle \cdot \mathsf{id}_{\mathsf{K}(X^{[\ell]})}.$

Induced Categorical Structures

No Categorification!

 $A(n, \ell)$ do not fulfil analogues of Heisenberg relations for $n \neq m$.

Features of the Construction

- Get interesting autoequivalences of $D_{\mathfrak{S}_m}(X^m) \cong D(X^{[m]})$ 'characteristic functions of the stacky loci'.
- Construction makes sense for smooth X of arbitrary dimension (forget about X^[m] and only consider [X^m/S_m]).
- Curve case: $A(\ell, n)$: $D(C \times [C^{\ell}/\mathfrak{S}_{\ell}]) \hookrightarrow D([C^{\ell+n}/\mathfrak{S}_{\ell+n}])$ fully faithful.
 - ~ Characteristic autoequivalences of the stacky loci.
 - Semi-orthogonal decomposition which categorifies decomposition of orbifold cohomology.
- \exists analogous $A(\ell, n)$ for generalised Kummer varieties.

Lift of the Heisenberg Module Structure

Outline

- Symmetric Products and Hilbert Schemes of Points on Surfaces
- Cohomology of Hilbert Schemes and the Heisenberg Algebra
- Derived Categories and Grothendieck Groups
- McKay Correspondence

- Nakajima P-functors
- Lift of the Heisenberg Module Structure
- Categorical Hopf Algebras

Lift of the Heisenberg Module Structure

Categorical Heisenberg Action

Theorem (_)

For every smooth projective variety (stack) X there exists a categorical Heisenberg action on $\mathbb{D} := \bigoplus_{\ell \ge 0} D([X^{\ell}/\mathfrak{S}_{\ell}]).$

Lifts other generators $p_{\beta}^{(n)}$, $q_{\beta}^{(n)}$ (and other relations) of Heisenberg algebra: halves of the vertex operators

$$\sum_{n\geq 0} p_{\beta}^{(n)} z^n = \exp\Bigl(\sum_{\ell\geq 1} \frac{a_{\beta}(-\ell)}{\ell} z^\ell\Bigr), \ \sum_{n\geq 0} q_{\beta}^{(n)} z^n = \exp\Bigl(\sum_{\ell\geq 1} \frac{a_{\beta}(\ell)}{\ell} z^\ell\Bigr)$$

Non-Integer Coefficients

Cannot reconstruct lifts of Nakajima operators from this.

Straight-forward generalisation of parts of constructions of Cautis–Licata ($X \to \mathbb{C}^2/G$ resolution of Kleinian singularity) and Khovanov (X a point).

(日) (日) (日) (日) (日) (日) (日)

Lift of the Heisenberg Module Structure

Categorical Heisenberg Action

Definition/Lemma

For $\chi \in \mathbb{C}$ and k a non-negative integer, we set $s^k \chi := \binom{\chi+k-1}{k} := \frac{1}{k!} (\chi+k-1)(\chi+k-2) \cdots (\chi+1)\chi.$ For V^* a graded vector space: $\chi(S^k V^*) = s^k(\chi(V^*))$

$$egin{aligned} & [m{q}^{(m)}_{lpha},m{q}^{(n)}_{eta}] = m{0} = [m{p}^{(m)}_{lpha},m{p}^{(n)}_{eta}] \ & [m{q}^{(m)}_{lpha}m{p}^{(n)}_{eta} = \sum_{k=0}^{\min\{m,n\}}m{s}^k\langle lpha,eta
angle \cdotm{p}^{(n-k)}_{eta}m{q}^{(m-k)}_{lpha} \end{aligned}$$

Definition (Categorical Heisenberg Action)

A family of adjoint functors $P^{(m)} : \mathbb{D} \hookrightarrow \mathbb{D} : Q_E^{(m)}$, for $E \in D(X)$ and $m \in \mathbb{Z}$, such that $Q_E^{(m)}Q_F^{(n)} \cong Q_F^{(n)}Q_E^{(m)}$, $P_E^{(m)}P_F^{(n)} \cong P_F^{(n)}P_E^{(m)}$ $Q_E^{(m)}P_F^{(n)} \cong \bigoplus_{k=0}^{\min\{m,n\}} S^k \operatorname{Hom}^*(E,F) \otimes_{\mathbb{C}} P_F^{(n-k)}Q_E^{(m-k)}$

 \rightsquigarrow Heisenberg module structure on $\mathbb K.$

Categorical Hopf Algebras

Outline

- Symmetric Products and Hilbert Schemes of Points on Surfaces
- Cohomology of Hilbert Schemes and the Heisenberg Algebra
- Derived Categories and Grothendieck Groups
- McKay Correspondence

- Nakajima P-functors
- Lift of the Heisenberg Module Structure
- Categorical Hopf Algebras

Categorical Hopf Algebras

The Case that X is a Point

Note: $\operatorname{Coh}_{\mathfrak{S}_n}(\operatorname{pt}) \cong \operatorname{Rep}(\mathfrak{S}_n)$, $\operatorname{K}([\operatorname{pt}/\mathfrak{S}_n]) \cong R(\mathfrak{S}_n)$. **Consider:** Graded vector space $R := \bigoplus_{n>0} R(\mathfrak{S}_n)$.

Theorem (…, Zelevinsky)

R is a **positive self-adjoint Hopf algebra (PSH)**. This means:

- Bilinear form $\langle V, W \rangle := \hom(V, W)^G$.
- Multiplication $m = \text{Ind}: R \otimes R \to R$, on graded pieces: $R_a \otimes R_b \to R_{a+b}, \quad V \otimes W \mapsto \bigoplus_{\mathfrak{S}_{a+b}/(\mathfrak{S}_a \times \mathfrak{S}_b)} (V \boxtimes W)$
- Comultiplication $\nabla = \text{Res} \colon R \to R \otimes R$ adjoint to *m*.

Categorical Hopf Algebras

The General Case

- Want: $\mathbb{D} := \bigoplus_{n \ge 0} D([X^n/\mathfrak{S}_n]) = \bigoplus_{n \ge 0} D_{\mathfrak{S}_n}(X^n)$ as a PSH category.
- Idea: For stacks 𝔅, 𝔅 have 'D(𝔅 × 𝔅) ≅ D(𝔅) ⊗ D(𝔅)' (can be made precise on level of dg-categories).
- $[X^a/\mathfrak{S}_a] \times [X^b/\mathfrak{S}_b] = [X^{a+b}/(\mathfrak{S}_a \times \mathfrak{S}_b)].$
- $E \in D_{\mathfrak{S}_{a+b}}(X^{a+b})$: $\operatorname{Ind}_{\mathfrak{S}_a \times \mathfrak{S}_b}^{\mathfrak{S}_{a+b}}(E) = \bigoplus_{\mathfrak{S}_{a+b}/(\mathfrak{S}_a \times \mathfrak{S}_b)} \sigma^* E$. \rightsquigarrow Adjoint pair:

$$m = \mathsf{Ind} \colon \mathsf{D}_{\mathfrak{S}_a imes \mathfrak{S}_b}(X^a imes X^b) \leftrightarrows \mathsf{D}_{\mathfrak{S}_{a+b}}(X^{a+b}) \colon \mathsf{Res} =
abla$$

Slogan: D is a geometric PSH category.

(日) (日) (日) (日) (日) (日) (日)

Work in Progress

- A. Gal and E. Gal define **Heisenberg double** associated to every PSH category (in a stricter sense). Would like to do the same for geometric PSH category.
- There exists the notion of symmetric product of a (dg) category by Ganter and Kapranov such that Symⁿ(D(X)) ≅ D([Xⁿ/𝔅_n]).
 Question: To which extend do the above constructions generalise to symmetric products of categories?