Positive energy representations of Hilbert loop algebras

Timothée Marquis
(joint with Karl-Hermann Neeb)

FAU Erlangen-Nuernberg

March 2016

Plan

Problematic and motivation
Lie algebra reformulation

Locally finite Lie algebras

Locally affine Lie algebras

Problematic and motivation

Problematic: Positive energy representations

- G Lie group with Lie algebra $\mathfrak{g}=\mathbb{L}(G)$. $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(G): t \mapsto \alpha_{t}$ continuous \mathbb{R}-action on G.

Motivation

Problematic and motivation

Problematic: Positive energy representations

- G Lie group with Lie algebra $\mathfrak{g}=\mathbb{L}(G)$. $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(G): t \mapsto \alpha_{t}$ continuous \mathbb{R}-action on G.
- $\pi: G \rtimes_{\alpha} \mathbb{R} \rightarrow U(\mathcal{H})$ unitary representation on the Hilbert space \mathcal{H}. $\mathrm{d} \pi: \mathfrak{g} \rtimes \mathbb{R} D \rightarrow \mathfrak{u}\left(\mathcal{H}^{\infty}\right)$ derived representation, $D:=\left.\frac{d}{d t}\right|_{t=0} \mathbb{L}\left(\alpha_{t}\right) \in \operatorname{der} \mathfrak{g}$.

Motivation

Problematic and motivation

Problematic: Positive energy representations

- G Lie group with Lie algebra $\mathfrak{g}=\mathbb{L}(G)$. $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(G): t \mapsto \alpha_{t}$ continuous \mathbb{R}-action on G.
- $\pi: G \rtimes_{\alpha} \mathbb{R} \rightarrow U(\mathcal{H})$ unitary representation on the Hilbert space \mathcal{H}. $\mathrm{d} \pi: \mathfrak{g} \rtimes \mathbb{R} D \rightarrow \mathfrak{u}\left(\mathcal{H}^{\infty}\right)$ derived representation, $D:=\left.\frac{d}{d t}\right|_{t=0} \mathbb{L}\left(\alpha_{t}\right) \in \operatorname{der} \mathfrak{g}$.
- (π, \mathcal{H}) is a positive energy representation (PER) if the spectrum of the Hamiltonian $H:=-i \mathrm{~d} \pi(D)$ is bounded from below.

Motivation

Problematic and motivation

Problematic: Positive energy representations

- G Lie group with Lie algebra $\mathfrak{g}=\mathbb{L}(G)$. $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(G): t \mapsto \alpha_{t}$ continuous \mathbb{R}-action on G.
- $\pi: G \rtimes_{\alpha} \mathbb{R} \rightarrow U(\mathcal{H})$ unitary representation on the Hilbert space \mathcal{H}. $\mathrm{d} \pi: \mathfrak{g} \rtimes \mathbb{R} D \rightarrow \mathfrak{u}\left(\mathcal{H}^{\infty}\right)$ derived representation, $D:=\left.\frac{d}{d t}\right|_{t=0} \mathbb{L}\left(\alpha_{t}\right) \in \operatorname{der} \mathfrak{g}$.
- (π, \mathcal{H}) is a positive energy representation (PER) if the spectrum of the Hamiltonian $H:=-i \mathrm{~d} \pi(D)$ is bounded from below.

Problem: Determine the irreducible $\operatorname{PER}(\pi, \mathcal{H})$ of $G \rtimes_{\alpha} \mathbb{R}$.

Motivation

Problematic and motivation

Problematic: Positive energy representations

- G Lie group with Lie algebra $\mathfrak{g}=\mathbb{L}(G)$. $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(G): t \mapsto \alpha_{t}$ continuous \mathbb{R}-action on G.
- $\pi: G \rtimes_{\alpha} \mathbb{R} \rightarrow U(\mathcal{H})$ unitary representation on the Hilbert space \mathcal{H}. $\mathrm{d} \pi: \mathfrak{g} \rtimes \mathbb{R} D \rightarrow \mathfrak{u}\left(\mathcal{H}^{\infty}\right)$ derived representation, $D:=\left.\frac{d}{d t}\right|_{t=0} \mathbb{L}\left(\alpha_{t}\right) \in \operatorname{der} \mathfrak{g}$.
- (π, \mathcal{H}) is a positive energy representation (PER) if the spectrum of the Hamiltonian $H:=-i \mathrm{~d} \pi(D)$ is bounded from below.
Problem: Determine the irreducible $\operatorname{PER}(\pi, \mathcal{H})$ of $G \rtimes_{\alpha} \mathbb{R}$.

Motivation

- Problem \approx "Given a Lie group G and $d \in \mathfrak{g}=\mathbb{L}(G)$, determine all unitary representations (π, \mathcal{H}) of G for which $\operatorname{Spec}(-i \mathrm{~d} \pi(d))$ is bounded from below."

Problematic and motivation

Problematic: Positive energy representations

- G Lie group with Lie algebra $\mathfrak{g}=\mathbb{L}(G)$. $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(G): t \mapsto \alpha_{t}$ continuous \mathbb{R}-action on G.
- $\pi: G \rtimes_{\alpha} \mathbb{R} \rightarrow U(\mathcal{H})$ unitary representation on the Hilbert space \mathcal{H}. $\mathrm{d} \pi: \mathfrak{g} \rtimes \mathbb{R} D \rightarrow \mathfrak{u}\left(\mathcal{H}^{\infty}\right)$ derived representation, $D:=\left.\frac{d}{d t}\right|_{t=0} \mathbb{L}\left(\alpha_{t}\right) \in \operatorname{der} \mathfrak{g}$.
- (π, \mathcal{H}) is a positive energy representation (PER) if the spectrum of the Hamiltonian $H:=-i \mathrm{~d} \pi(D)$ is bounded from below.

Problem: Determine the irreducible $\operatorname{PER}(\pi, \mathcal{H})$ of $G \rtimes_{\alpha} \mathbb{R}$.

Motivation

- Problem \approx "Given a Lie group G and $d \in \mathfrak{g}=\mathbb{L}(G)$, determine all unitary representations (π, \mathcal{H}) of G for which $\operatorname{Spec}(-i \mathrm{~d} \pi(d))$ is bounded from below."
- \rightsquigarrow related to semibounded unitary representations (see [Neeb 2015, arXiv:1510.08695] for a recent survey).

Lie algebra reformulation (1/2)

Quadratic split Lie algebras

- A complex Lie algebra \mathfrak{g} is split if there is a maximal abelian, ad-diagonalisable subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ (a Cartan subalgebra).

Lie algebra reformulation (1/2)

Quadratic split Lie algebras

- A complex Lie algebra \mathfrak{g} is split if there is a maximal abelian, ad-diagonalisable subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ (a Cartan subalgebra).
- Then \mathfrak{g} has a root space decomposition $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$, where

$$
\begin{aligned}
\forall \alpha \in \mathfrak{h}^{*}, \mathfrak{g}_{\alpha}:=\{x \in \mathfrak{g} \mid[h, x]=\alpha(h) x \forall h \in \mathfrak{h}\} \text { root space, } \\
\Delta:=\Delta(\mathfrak{g}, \mathfrak{h}):=\left\{\alpha \in \mathfrak{h}^{*} \backslash\{0\} \mid \mathfrak{g}_{\alpha} \neq\{0\}\right\} \text { root system. }
\end{aligned}
$$

Lie algebra reformulation (1/2)

Quadratic split Lie algebras

- A complex Lie algebra \mathfrak{g} is split if there is a maximal abelian, ad-diagonalisable subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ (a Cartan subalgebra).
- Then \mathfrak{g} has a root space decomposition $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$, where

$$
\begin{aligned}
\forall \alpha \in \mathfrak{h}^{*}, \mathfrak{g}_{\alpha}:=\{x \in \mathfrak{g} \mid[h, x]=\alpha(h) x \forall h \in \mathfrak{h}\} \text { root space, } \\
\Delta:=\Delta(\mathfrak{g}, \mathfrak{h}):=\left\{\alpha \in \mathfrak{h}^{*} \backslash\{0\} \mid \mathfrak{g}_{\alpha} \neq\{0\}\right\} \text { root system. }
\end{aligned}
$$

- A root $\alpha \in \Delta$ is integrable if $\mathfrak{g}_{ \pm \alpha}=\mathbb{C} x_{ \pm \alpha}, \alpha\left(\left[x_{\alpha}, x_{-\alpha}\right]\right) \neq 0$, and ad $x_{ \pm \alpha}$ is locally nilpotent. Set $\Delta_{i}:=\{\alpha \in \Delta \mid \alpha$ integrable $\}$.
For $\alpha \in \Delta_{i}$, the unique $\alpha^{\vee} \in\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]$ with $\alpha\left(\alpha^{\vee}\right)=2$ is the coroot of α. NB: $\mathfrak{g}_{-\alpha}+\mathbb{C} \alpha^{\vee}+\mathfrak{g}_{\alpha} \cong \mathfrak{s l}_{2}(\mathbb{C})$ for all $\alpha \in \Delta_{i}$.

Lie algebra reformulation (1/2)

Quadratic split Lie algebras

- A complex Lie algebra \mathfrak{g} is split if there is a maximal abelian, ad-diagonalisable subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ (a Cartan subalgebra).
- Then \mathfrak{g} has a root space decomposition $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$, where

$$
\begin{aligned}
\forall \alpha \in \mathfrak{h}^{*}, \mathfrak{g}_{\alpha}:=\{x \in \mathfrak{g} \mid[h, x]=\alpha(h) x \forall h \in \mathfrak{h}\} \text { root space, } \\
\Delta:=\Delta(\mathfrak{g}, \mathfrak{h}):=\left\{\alpha \in \mathfrak{h}^{*} \backslash\{0\} \mid \mathfrak{g}_{\alpha} \neq\{0\}\right\} \text { root system. }
\end{aligned}
$$

- A root $\alpha \in \Delta$ is integrable if $\mathfrak{g}_{ \pm \alpha}=\mathbb{C} x_{ \pm \alpha}, \alpha\left(\left[x_{\alpha}, x_{-\alpha}\right]\right) \neq 0$, and ad $x_{ \pm \alpha}$ is locally nilpotent. Set $\Delta_{i}:=\{\alpha \in \Delta \mid \alpha$ integrable $\}$.
For $\alpha \in \Delta_{i}$, the unique $\alpha^{\vee} \in\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]$ with $\alpha\left(\alpha^{\vee}\right)=2$ is the coroot of α. NB: $\mathfrak{g}_{-\alpha}+\mathbb{C} \alpha^{\vee}+\mathfrak{g}_{\alpha} \cong \mathfrak{s l}_{2}(\mathbb{C})$ for all $\alpha \in \Delta_{i}$.
- $W:=W(\mathfrak{g}, \mathfrak{h}):=\left\langle r_{\alpha}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}: \lambda \mapsto \lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha^{\vee} \mid \alpha \in \Delta_{i}\right\rangle \leq \operatorname{GL}\left(\mathfrak{h}^{*}\right)$ is the Weyl group of \mathfrak{g}.

Quadratic split Lie algebras

- A complex Lie algebra \mathfrak{g} is split if there is a maximal abelian, ad-diagonalisable subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ (a Cartan subalgebra).
- Then \mathfrak{g} has a root space decomposition $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$, where

$$
\begin{aligned}
\forall \alpha \in \mathfrak{h}^{*}, \mathfrak{g}_{\alpha} & :=\{x \in \mathfrak{g} \mid[h, x]=\alpha(h) x \forall h \in \mathfrak{h}\} \quad \text { root space, } \\
\Delta:=\Delta(\mathfrak{g}, \mathfrak{h}) & :=\left\{\alpha \in \mathfrak{h}^{*} \backslash\{0\} \mid \mathfrak{g}_{\alpha} \neq\{0\}\right\} \text { root system. }
\end{aligned}
$$

- A root $\alpha \in \Delta$ is integrable if $\mathfrak{g}_{ \pm \alpha}=\mathbb{C} x_{ \pm \alpha}, \alpha\left(\left[x_{\alpha}, x_{-\alpha}\right]\right) \neq 0$, and ad $x_{ \pm \alpha}$ is locally nilpotent. Set $\Delta_{i}:=\{\alpha \in \Delta \mid \alpha$ integrable $\}$. For $\alpha \in \Delta_{i}$, the unique $\alpha^{\vee} \in\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]$ with $\alpha\left(\alpha^{\vee}\right)=2$ is the coroot of α. NB: $\mathfrak{g}_{-\alpha}+\mathbb{C} \alpha^{\vee}+\mathfrak{g}_{\alpha} \cong \mathfrak{s l}_{2}(\mathbb{C})$ for all $\alpha \in \Delta_{i}$.
- $W:=W(\mathfrak{g}, \mathfrak{h}):=\left\langle r_{\alpha}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}: \lambda \mapsto \lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha^{\vee} \mid \alpha \in \Delta_{i}\right\rangle \leq G L\left(\mathfrak{h}^{*}\right)$ is the Weyl group of \mathfrak{g}.
- \mathfrak{g} is moreover quadratic if it possesses a non-degenerate symmetric bilinear form $\kappa: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ which is invariant: $\kappa([x, y], z)=\kappa(x,[y, z])$.

Lie algebra reformulation (2/2)

Highest-weight representations

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- $\Delta^{+} \subseteq \Delta$ a positive system: $\Delta=\Delta^{+} \dot{\cup}-\Delta^{+}$and the monoid $\mathbb{N}\left[\Delta^{+}\right]:=\left\{\sum_{i=1}^{k} n_{i} \alpha_{i} \mid \alpha_{i} \in \Delta^{+}, n_{i}, k \in \mathbb{N}\right\}$ is free.

Lie algebra reformulation (2/2)

Highest-weight representations

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- $\Delta^{+} \subseteq \Delta$ a positive system: $\Delta=\Delta^{+} \dot{\cup}-\Delta^{+}$and the monoid $\mathbb{N}\left[\Delta^{+}\right]:=\left\{\sum_{i=1}^{k} n_{i} \alpha_{i} \mid \alpha_{i} \in \Delta^{+}, n_{i}, k \in \mathbb{N}\right\}$ is free.
- Let $\lambda \in \mathfrak{h}^{*}$. A \mathfrak{g}-module $V=V^{\lambda}$ is a highest weight module (HWM) with highest weight λ if there exists some nonzero $v_{\lambda} \in V$ such that
- $h \cdot v_{\lambda}=\lambda(h) v_{\lambda}$ for all $h \in \mathfrak{h}$,
- $\mathfrak{g}_{\alpha} \cdot v_{\lambda}=\{0\}$ for all $\alpha \in \Delta^{+}$,
- $V=\mathcal{U}(\mathfrak{g}) \cdot v_{\lambda}$.

Lie algebra reformulation (2/2)

Highest-weight representations

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- $\Delta^{+} \subseteq \Delta$ a positive system: $\Delta=\Delta^{+} \dot{\cup}-\Delta^{+}$and the monoid $\mathbb{N}\left[\Delta^{+}\right]:=\left\{\sum_{i=1}^{k} n_{i} \alpha_{i} \mid \alpha_{i} \in \Delta^{+}, n_{i}, k \in \mathbb{N}\right\}$ is free.
- Let $\lambda \in \mathfrak{h}^{*}$. A \mathfrak{g}-module $V=V^{\lambda}$ is a highest weight module (HWM) with highest weight λ if there exists some nonzero $v_{\lambda} \in V$ such that
- $h \cdot v_{\lambda}=\lambda(h) v_{\lambda}$ for all $h \in \mathfrak{h}$,
- $\mathfrak{g}_{\alpha} \cdot v_{\lambda}=\{0\}$ for all $\alpha \in \Delta^{+}$,
- $V=\mathcal{U}(\mathfrak{g}) \cdot v_{\lambda}$.
- For $\mu \in \mathfrak{h}^{*}, V_{\mu}:=\{v \in V \mid h \cdot v=\mu(h) v \forall h \in \mathfrak{h}\}$ weight space. $\mathcal{P}_{\lambda}:=\left\{\mu \in \mathfrak{h}^{*} \mid V_{\mu} \neq\{0\}\right\}$ set of weights.

Lie algebra reformulation (2/2)

Highest-weight representations

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- $\Delta^{+} \subseteq \Delta$ a positive system: $\Delta=\Delta^{+} \dot{\cup}-\Delta^{+}$and the monoid $\mathbb{N}\left[\Delta^{+}\right]:=\left\{\sum_{i=1}^{k} n_{i} \alpha_{i} \mid \alpha_{i} \in \Delta^{+}, n_{i}, k \in \mathbb{N}\right\}$ is free.
- Let $\lambda \in \mathfrak{h}^{*}$. A \mathfrak{g}-module $V=V^{\lambda}$ is a highest weight module (HWM) with highest weight λ if there exists some nonzero $v_{\lambda} \in V$ such that
- $h \cdot v_{\lambda}=\lambda(h) v_{\lambda}$ for all $h \in \mathfrak{h}$,
- $\mathfrak{g}_{\alpha} \cdot v_{\lambda}=\{0\}$ for all $\alpha \in \Delta^{+}$,
- $V=\mathcal{U}(\mathfrak{g}) \cdot v_{\lambda}$.
- For $\mu \in \mathfrak{h}^{*}, V_{\mu}:=\{v \in V \mid h \cdot v=\mu(h) v \forall h \in \mathfrak{h}\}$ weight space. $\mathcal{P}_{\lambda}:=\left\{\mu \in \mathfrak{h}^{*} \mid V_{\mu} \neq\{0\}\right\}$ set of weights.
- We assume the property (Weight): $\mathcal{P}_{\lambda}=\operatorname{Conv}($ W. $\lambda) \cap(\lambda+\mathbb{Z}[\Delta])$.

Lie algebra reformulation (2/2)

Highest-weight representations

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- $\Delta^{+} \subseteq \Delta$ a positive system.
- Let $\lambda \in \mathfrak{h}^{*}$ and $V=V^{\lambda}$ a HWM over \mathfrak{g} with highest weight λ.
- We assume the property (Weight): $\mathcal{P}_{\lambda}=\operatorname{Conv}(W \cdot \lambda) \cap(\lambda+\mathbb{Z}[\Delta])$.

Lie algebra reformulation (2/2)

Highest-weight representations

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- $\Delta^{+} \subseteq \Delta$ a positive system.
- Let $\lambda \in \mathfrak{h}^{*}$ and $V=V^{\lambda}$ a HWM over \mathfrak{g} with highest weight λ.
- We assume the property (Weight): $\mathcal{P}_{\lambda}=\operatorname{Conv}(W \cdot \lambda) \cap(\lambda+\mathbb{Z}[\Delta])$.

Positive energy

- Consider the highest weight representation $\rho_{\lambda}: \mathfrak{g} \rightarrow \operatorname{End}\left(V^{\lambda}\right)$.
- Let $D \in \operatorname{der}(\mathfrak{g})$ be a skew-symmetric derivation: $\kappa(D x, y)=-\kappa(x, D y)$. Assume D is diagonal: $D\left(x_{\alpha}\right)=i \chi(\alpha) x_{\alpha}$ for all $\alpha \in \Delta, x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi: \mathbb{Z}[\Delta] \rightarrow \mathbb{R}$.

Lie algebra reformulation (2/2)

Highest-weight representations

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- $\Delta^{+} \subseteq \Delta$ a positive system.
- Let $\lambda \in \mathfrak{h}^{*}$ and $V=V^{\lambda}$ a HWM over \mathfrak{g} with highest weight λ.
- We assume the property (Weight): $\mathcal{P}_{\lambda}=\operatorname{Conv}(W \cdot \lambda) \cap(\lambda+\mathbb{Z}[\Delta])$.

Positive energy

- Consider the highest weight representation $\rho_{\lambda}: \mathfrak{g} \rightarrow \operatorname{End}\left(V^{\lambda}\right)$.
- Let $D \in \operatorname{der}(\mathfrak{g})$ be a skew-symmetric derivation: $\kappa(D x, y)=-\kappa(x, D y)$. Assume D is diagonal: $D\left(x_{\alpha}\right)=i \chi(\alpha) x_{\alpha}$ for all $\alpha \in \Delta, x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi: \mathbb{Z}[\Delta] \rightarrow \mathbb{R}$.
- Then ρ_{λ} can be extended to a representation $\widetilde{\rho}_{\lambda}: \mathfrak{g} \rtimes \mathbb{C} D \rightarrow \operatorname{End}\left(V^{\lambda}\right)$ by setting $\widetilde{\rho}_{\lambda}(D) v_{\mu}:=i \chi(\mu-\lambda) v_{\mu}$ for all $\mu \in \mathcal{P}_{\lambda}, v_{\mu} \in V_{\mu}$.

Lie algebra reformulation (2/2)

Highest-weight representations

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- $\Delta^{+} \subseteq \Delta$ a positive system.
- Let $\lambda \in \mathfrak{h}^{*}$ and $V=V^{\lambda}$ a HWM over \mathfrak{g} with highest weight λ.
- We assume the property (Weight): $\mathcal{P}_{\lambda}=\operatorname{Conv}($ W. $\lambda) \cap(\lambda+\mathbb{Z}[\Delta])$.

Positive energy

- Consider the highest weight representation $\rho_{\lambda}: \mathfrak{g} \rightarrow \operatorname{End}\left(V^{\lambda}\right)$.
- Let $D \in \operatorname{der}(\mathfrak{g})$ be a skew-symmetric derivation: $\kappa(D x, y)=-\kappa(x, D y)$. Assume D is diagonal: $D\left(x_{\alpha}\right)=i \chi(\alpha) x_{\alpha}$ for all $\alpha \in \Delta, x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi: \mathbb{Z}[\Delta] \rightarrow \mathbb{R}$.
- Then ρ_{λ} can be extended to a representation $\widetilde{\rho}_{\lambda}: \mathfrak{g} \rtimes \mathbb{C} D \rightarrow \operatorname{End}\left(V^{\lambda}\right)$ by setting $\widetilde{\rho}_{\lambda}(D) v_{\mu}:=i \chi(\mu-\lambda) v_{\mu}$ for all $\mu \in \mathcal{P}_{\lambda}, v_{\mu} \in V_{\mu}$.
- Then
$\widetilde{\rho}_{\lambda}$ is a PER \Leftrightarrow Spectrum of $H:=-i \widetilde{\rho}_{\lambda}(D)$ is bounded from below

$$
\begin{aligned}
& \Leftrightarrow \inf \chi\left(\mathcal{P}_{\lambda}-\lambda\right)>-\infty \\
& \Leftrightarrow \inf \chi(W \cdot \lambda-\lambda)>-\infty .
\end{aligned}
$$

Locally finite Lie algebras $(1 / 3)$

Locally finite Lie algebras

- \mathfrak{g} is locally finite
\Leftrightarrow Every finite subset of \mathfrak{g} generates a finite dimensional Lie subalgebra.
$\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras

Example: $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$

Locally finite Lie algebras $(1 / 3)$

Locally finite Lie algebras

- \mathfrak{g} is locally finite simple
\Leftrightarrow Every finite subset of \mathfrak{g} generates a finite dimensional Lie subalgebra. $\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras that are simple \rightsquigarrow of type $A_{n}, B_{n}, C_{n}, D_{n}$.

Example: $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$

Locally finite Lie algebras $(1 / 3)$

Locally finite Lie algebras

- \mathfrak{g} is locally finite simple
\Leftrightarrow Every finite subset of \mathfrak{g} generates a finite dimensional Lie subalgebra.
$\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras that are simple \rightsquigarrow of type $A_{n}, B_{n}, C_{n}, D_{n}$.
- $\rightsquigarrow \mathfrak{g}$ has a locally finite root system Δ of type $A_{\jmath}, B_{\jmath}, C_{\jmath}$ or D_{\jmath} for some infinite set J.

Example: $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$

Locally finite Lie algebras $(1 / 3)$

Locally finite Lie algebras

- \mathfrak{g} is locally finite simple
\Leftrightarrow Every finite subset of \mathfrak{g} generates a finite dimensional Lie subalgebra.
$\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras that are simple \rightsquigarrow of type $A_{n}, B_{n}, C_{n}, D_{n}$.
- $\rightsquigarrow \mathfrak{g}$ has a locally finite root system Δ of type $A_{\jmath}, B_{\jmath}, C_{\jmath}$ or D_{\jmath} for some infinite set J.

Example: $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$

- For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)}:=\operatorname{vect}_{\mathbb{C}}\left\{e_{j}\right\}_{j \in J}$.

Locally finite Lie algebras $(1 / 3)$

Locally finite Lie algebras

- \mathfrak{g} is locally finite simple
\Leftrightarrow Every finite subset of \mathfrak{g} generates a finite dimensional Lie subalgebra.
$\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras that are simple \rightsquigarrow of type $A_{n}, B_{n}, C_{n}, D_{n}$.
- $\rightsquigarrow \mathfrak{g}$ has a locally finite root system Δ of type $A_{\jmath}, B_{\jmath}, C_{\jmath}$ or D_{\jmath} for some infinite set J.

Example: $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$

- For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)}:=\operatorname{vect}_{\mathbb{C}}\left\{e_{j}\right\}_{j \in J}$.
- $\mathfrak{g}:=\mathfrak{g l}(J, \mathbb{C}):=\left\{A \in \operatorname{End}\left(\mathbb{C}^{(J)}\right) \mid A_{i j}:=\left\langle A e_{j}, e_{i}\right\rangle=0 \forall^{\prime}(i, j) \in J \times J\right\}$. Define $E_{j k} \in \mathfrak{g}$ by $E_{j k}(x):=\left\langle x, e_{k}\right\rangle e_{j}$ for all $x \in \mathbb{C}^{(J)}$.

Locally finite Lie algebras $(1 / 3)$

Locally finite Lie algebras

- \mathfrak{g} is locally finite simple
\Leftrightarrow Every finite subset of \mathfrak{g} generates a finite dimensional Lie subalgebra.
$\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras that are simple \rightsquigarrow of type $A_{n}, B_{n}, C_{n}, D_{n}$.
- $\rightsquigarrow \mathfrak{g}$ has a locally finite root system Δ of type $A_{\jmath}, B_{\jmath}, C_{\jmath}$ or D_{\jmath} for some infinite set J.

Example: $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$

- For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)}:=\operatorname{vect}_{\mathbb{C}}\left\{e_{j}\right\}_{j \in J}$.
- $\mathfrak{g}:=\mathfrak{g l}(J, \mathbb{C}):=\left\{A \in \operatorname{End}\left(\mathbb{C}^{(J)}\right) \mid A_{i j}:=\left\langle A e_{j}, e_{i}\right\rangle=0 \forall^{\prime}(i, j) \in J \times J\right\}$. Define $E_{j k} \in \mathfrak{g}$ by $E_{j k}(x):=\left\langle x, e_{k}\right\rangle e_{j}$ for all $x \in \mathbb{C}^{(J)}$.
- $\mathfrak{h}:=\left\{\right.$ diagonal matrices $\left.\sum_{j} x_{j} E_{j j}\right\} \subseteq \mathfrak{g}$ is a Cartan subalgebra, $\mathfrak{h}^{*}=\left\{\sum_{j} x_{j} \varepsilon_{j} \mid x_{j} \in \mathbb{C}\right\}$ where $\varepsilon_{k}\left(E_{j j}\right):=\delta_{j k}$.

Locally finite Lie algebras $(1 / 3)$

Locally finite Lie algebras

- \mathfrak{g} is locally finite simple
\Leftrightarrow Every finite subset of \mathfrak{g} generates a finite dimensional Lie subalgebra.
$\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras that are simple \rightsquigarrow of type $A_{n}, B_{n}, C_{n}, D_{n}$.
- $\rightsquigarrow \mathfrak{g}$ has a locally finite root system Δ of type $A_{\jmath}, B_{\jmath}, C_{\jmath}$ or D_{\jmath} for some infinite set J.

Example: $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$

- For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)}:=\operatorname{vect}_{\mathbb{C}}\left\{e_{j}\right\}_{j \in J}$.
- $\mathfrak{g}:=\mathfrak{g l}(J, \mathbb{C}):=\left\{A \in \operatorname{End}\left(\mathbb{C}^{(J)}\right) \mid A_{i j}:=\left\langle A e_{j}, e_{i}\right\rangle=0 \forall^{\prime}(i, j) \in J \times J\right\}$. Define $E_{j k} \in \mathfrak{g}$ by $E_{j k}(x):=\left\langle x, e_{k}\right\rangle e_{j}$ for all $x \in \mathbb{C}^{(J)}$.
- $\mathfrak{h}:=\left\{\right.$ diagonal matrices $\left.\sum_{j} x_{j} E_{j j}\right\} \subseteq \mathfrak{g}$ is a Cartan subalgebra, $\mathfrak{h}^{*}=\left\{\sum_{j} x_{j} \varepsilon_{j} \mid x_{j} \in \mathbb{C}\right\}$ where $\varepsilon_{k}\left(E_{j j}\right):=\delta_{j k}$.
- $\left[E_{\ell \ell}, E_{j k}\right]=\left(\delta_{\ell j}-\delta_{\ell k}\right) E_{j k}=\left(\varepsilon_{j}-\varepsilon_{k}\right)\left(E_{\ell \ell}\right) E_{j k} \Rightarrow \mathfrak{g}_{\varepsilon_{j}-\varepsilon_{k}}=\mathbb{C} E_{j k}$. $\rightsquigarrow \mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}, \Delta=\Delta\left(A_{J}\right):=\left\{\varepsilon_{j}-\varepsilon_{k} \mid j, k \in J, j \neq k\right\}$.

Locally finite Lie algebras $(1 / 3)$

Locally finite Lie algebras

- \mathfrak{g} is locally finite simple
\Leftrightarrow Every finite subset of \mathfrak{g} generates a finite dimensional Lie subalgebra.
$\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras that are simple \rightsquigarrow of type $A_{n}, B_{n}, C_{n}, D_{n}$.
- $\rightsquigarrow \mathfrak{g}$ has a locally finite root system Δ of type $A_{\jmath}, B_{\jmath}, C_{\jmath}$ or D_{\jmath} for some infinite set J.

Example: $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$

- For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)}:=\operatorname{vect}_{\mathbb{C}}\left\{e_{j}\right\}_{j \in J}$.
- $\mathfrak{g}:=\mathfrak{g l}(J, \mathbb{C}):=\left\{A \in \operatorname{End}\left(\mathbb{C}^{(J)}\right) \mid A_{i j}:=\left\langle A e_{j}, e_{i}\right\rangle=0 \forall^{\prime}(i, j) \in J \times J\right\}$. Define $E_{j k} \in \mathfrak{g}$ by $E_{j k}(x):=\left\langle x, e_{k}\right\rangle e_{j}$ for all $x \in \mathbb{C}^{(J)}$.
- $\mathfrak{h}:=\left\{\right.$ diagonal matrices $\left.\sum_{j} x_{j} E_{j j}\right\} \subseteq \mathfrak{g}$ is a Cartan subalgebra, $\mathfrak{h}^{*}=\left\{\sum_{j} x_{j} \varepsilon_{j} \mid x_{j} \in \mathbb{C}\right\}$ where $\varepsilon_{k}\left(E_{j j}\right):=\delta_{j k}$.
- $\left[E_{\ell \ell}, E_{j k}\right]=\left(\delta_{\ell j}-\delta_{\ell k}\right) E_{j k}=\left(\varepsilon_{j}-\varepsilon_{k}\right)\left(E_{\ell \ell}\right) E_{j k} \Rightarrow \mathfrak{g}_{\varepsilon_{j}-\varepsilon_{k}}=\mathbb{C} E_{j k}$. $\rightsquigarrow \mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}, \Delta=\Delta\left(A_{J}\right):=\left\{\varepsilon_{j}-\varepsilon_{k} \mid j, k \in J, j \neq k\right\}$.
- $r_{\varepsilon_{j}-\varepsilon_{k}}=(j, k) \in S_{J} \Rightarrow W=W(\mathfrak{g}, \mathfrak{h})=S_{(J)} \leq S_{J}$ finite permutations of J.

Locally finite Lie algebras $(1 / 3)$

Locally finite Lie algebras

- \mathfrak{g} is locally finite simple
\Leftrightarrow Every finite subset of \mathfrak{g} generates a finite dimensional Lie subalgebra.
$\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras that are simple \rightsquigarrow of type $A_{n}, B_{n}, C_{n}, D_{n}$.
$-\rightsquigarrow \mathfrak{g}$ has a locally finite root system Δ of type A_{\jmath}, B_{J}, C_{J} or D_{\jmath} for some infinite set J.

Example: $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$

- For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)}:=\operatorname{vect}_{\mathbb{C}}\left\{e_{j}\right\}_{j \in J}$.
- $\mathfrak{g}:=\mathfrak{g l}(J, \mathbb{C}):=\left\{A \in \operatorname{End}\left(\mathbb{C}^{(J)}\right) \mid A_{i j}:=\left\langle A e_{j}, e_{i}\right\rangle=0 \forall^{\prime}(i, j) \in J \times J\right\}$. Define $E_{j k} \in \mathfrak{g}$ by $E_{j k}(x):=\left\langle x, e_{k}\right\rangle e_{j}$ for all $x \in \mathbb{C}^{(J)}$.
- $\mathfrak{h}:=\left\{\right.$ diagonal matrices $\left.\sum_{j} x_{j} E_{j j}\right\} \subseteq \mathfrak{g}$ is a Cartan subalgebra, $\mathfrak{h}^{*}=\left\{\sum_{j} x_{j} \varepsilon_{j} \mid x_{j} \in \mathbb{C}\right\}$ where $\varepsilon_{k}\left(E_{j j}\right):=\delta_{j k}$.
- $\left[E_{\ell \ell}, E_{j k}\right]=\left(\delta_{\ell j}-\delta_{\ell k}\right) E_{j k}=\left(\varepsilon_{j}-\varepsilon_{k}\right)\left(E_{\ell \ell}\right) E_{j k} \Rightarrow \mathfrak{g}_{\varepsilon_{j}-\varepsilon_{k}}=\mathbb{C} E_{j k}$. $\rightsquigarrow \mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}, \Delta=\Delta\left(A_{J}\right):=\left\{\varepsilon_{j}-\varepsilon_{k} \mid j, k \in J, j \neq k\right\}$.
- $r_{\varepsilon_{j}-\varepsilon_{k}}=(j, k) \in S_{J} \Rightarrow W=W(\mathfrak{g}, \mathfrak{h})=S_{(J)} \leq S_{J}$ finite permutations of J.
- $\kappa(x, y):=\operatorname{tr}(x y)$ non-degenerate invariant symmetric bilinear form.

NB: \mathfrak{g} has an antilinear involution $*: \mathfrak{g} \rightarrow \mathfrak{g}: E_{i j} \mapsto E_{i j}^{*}:=E_{j i}$.

Locally finite Lie algebras $(2 / 3)$

Unitary highest weight representations

- A \mathfrak{g}-module V is unitary if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w\rangle=\left\langle v, X^{*} \cdot w\right\rangle$ for all $X \in \mathfrak{g}, v, w \in V$.

Example: infinite wedge representations

Locally finite Lie algebras (2/3)

Unitary highest weight representations

- A \mathfrak{g}-module V is unitary if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w\rangle=\left\langle v, X^{*} \cdot w\right\rangle$ for all $X \in \mathfrak{g}, v, w \in V$.
- Facts (Neeb '98): Let ($\mathfrak{g}, \mathfrak{h}$) be a locally finite simple Lie algebra.
- $\forall \lambda \in \mathfrak{h}^{*}, \exists$! irreducible HWM $L\left(\lambda, \Delta_{+}\right)$over \mathfrak{g}.

Example: infinite wedge representations

Locally finite Lie algebras (2/3)

Unitary highest weight representations

- A \mathfrak{g}-module V is unitary if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w\rangle=\left\langle v, X^{*} \cdot w\right\rangle$ for all $X \in \mathfrak{g}, v, w \in V$.
- Facts (Neeb '98): Let $(\mathfrak{g}, \mathfrak{h})$ be a locally finite simple Lie algebra.
- $\forall \lambda \in \mathfrak{h}^{*}, \exists$! irreducible HWM $L\left(\lambda, \Delta_{+}\right)$over \mathfrak{g}.
- $L\left(\lambda, \Delta_{+}\right)$is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda\left(\alpha^{\vee}\right) \in \mathbb{N} \forall \alpha \in \Delta_{i}$.

Example: infinite wedge representations

Locally finite Lie algebras (2/3)

Unitary highest weight representations

- A \mathfrak{g}-module V is unitary if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w\rangle=\left\langle v, X^{*} \cdot w\right\rangle$ for all $X \in \mathfrak{g}, v, w \in V$.
- Facts (Neeb '98): Let $(\mathfrak{g}, \mathfrak{h})$ be a locally finite simple Lie algebra.
- $\forall \lambda \in \mathfrak{h}^{*}, \exists$! irreducible HWM $L\left(\lambda, \Delta_{+}\right)$over \mathfrak{g}.
- $L\left(\lambda, \Delta_{+}\right)$is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda\left(\alpha^{\vee}\right) \in \mathbb{N} \forall \alpha \in \Delta_{i}$.
- If $L\left(\lambda, \Delta_{+}\right)$is unitary, then Property (Weight) is satisfied.

Example: infinite wedge representations

Locally finite Lie algebras (2/3)

Unitary highest weight representations

- A \mathfrak{g}-module V is unitary if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w\rangle=\left\langle v, X^{*} \cdot w\right\rangle$ for all $X \in \mathfrak{g}, v, w \in V$.
- Facts (Neeb '98): Let $(\mathfrak{g}, \mathfrak{h})$ be a locally finite simple Lie algebra.
- $\forall \lambda \in \mathfrak{h}^{*}, \exists$! irreducible HWM $L\left(\lambda, \Delta_{+}\right)$over \mathfrak{g}.
- $L\left(\lambda, \Delta_{+}\right)$is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda\left(\alpha^{\vee}\right) \in \mathbb{N} \forall \alpha \in \Delta_{i}$.
- If $L\left(\lambda, \Delta_{+}\right)$is unitary, then Property (Weight) is satisfied.

Example: infinite wedge representations

- Let $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$ with $J=\mathbb{Z}$, and choose the positive system $\Delta_{+}=\left\{\varepsilon_{j}-\varepsilon_{k} \mid j<k\right\} \subseteq \Delta$.

Locally finite Lie algebras (2/3)

Unitary highest weight representations

- A \mathfrak{g}-module V is unitary if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w\rangle=\left\langle v, X^{*} \cdot w\right\rangle$ for all $X \in \mathfrak{g}, v, w \in V$.
- Facts (Neeb '98): Let $(\mathfrak{g}, \mathfrak{h})$ be a locally finite simple Lie algebra.
- $\forall \lambda \in \mathfrak{h}^{*}, \exists$! irreducible HWM $L\left(\lambda, \Delta_{+}\right)$over \mathfrak{g}.
- $L\left(\lambda, \Delta_{+}\right)$is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda\left(\alpha^{\vee}\right) \in \mathbb{N} \forall \alpha \in \Delta_{i}$.
- If $L\left(\lambda, \Delta_{+}\right)$is unitary, then Property (Weight) is satisfied.

Example: infinite wedge representations

- Let $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$ with $J=\mathbb{Z}$, and choose the positive system $\Delta_{+}=\left\{\varepsilon_{j}-\varepsilon_{k} \mid j<k\right\} \subseteq \Delta$.
- $V:=\operatorname{vect}_{\mathbb{C}}\left\langle e_{j_{0}} \wedge e_{j_{-1}} \wedge \ldots\right| j_{0}>j_{-1}>\ldots$ and $\left.j_{s}=s \forall s \ll 0\right\rangle \subseteq \Lambda^{\infty}\left(\mathbb{C}^{(J)}\right)$.
$\psi:=e_{0} \wedge e_{-1} \wedge e_{-2} \wedge \cdots \in V$ vacuum.

Locally finite Lie algebras (2/3)

Unitary highest weight representations

- A \mathfrak{g}-module V is unitary if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w\rangle=\left\langle v, X^{*} \cdot w\right\rangle$ for all $X \in \mathfrak{g}, v, w \in V$.
- Facts (Neeb '98): Let $(\mathfrak{g}, \mathfrak{h})$ be a locally finite simple Lie algebra.
- $\forall \lambda \in \mathfrak{h}^{*}, \exists$! irreducible HWM $L\left(\lambda, \Delta_{+}\right)$over \mathfrak{g}.
- $L\left(\lambda, \Delta_{+}\right)$is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda\left(\alpha^{\vee}\right) \in \mathbb{N} \forall \alpha \in \Delta_{i}$.
- If $L\left(\lambda, \Delta_{+}\right)$is unitary, then Property (Weight) is satisfied.

Example: infinite wedge representations

- Let $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$ with $J=\mathbb{Z}$, and choose the positive system $\Delta_{+}=\left\{\varepsilon_{j}-\varepsilon_{k} \mid j<k\right\} \subseteq \Delta$.
- $V:=\operatorname{vect}_{\mathbb{C}}\left\langle e_{j_{0}} \wedge e_{j_{-1}} \wedge \ldots\right| j_{0}>j_{-1}>\ldots$ and $\left.j_{s}=s \forall s \ll 0\right\rangle \subseteq \Lambda^{\infty}\left(\mathbb{C}^{(J)}\right)$.
$\psi:=e_{0} \wedge e_{-1} \wedge e_{-2} \wedge \cdots \in V$ vacuum.
- $\mathfrak{g} \curvearrowright V: A\left(e_{j_{0}} \wedge e_{j_{-1}} \wedge \ldots\right):=\left(A e_{j_{0}}\right) \wedge e_{j_{-1}} \wedge \cdots+e_{j_{0}} \wedge\left(A e_{j_{-1}}\right) \wedge \cdots+\ldots$
$\Rightarrow E_{j k}(\psi)=\left\{\begin{array}{lr}e_{0} \wedge \cdots \wedge e_{k+1} \wedge e_{j} \wedge e_{k-1} \wedge \ldots & \text { if } k \leq 0<j, \\ 0 & \text { otherwise } .\end{array}\right.$

Locally finite Lie algebras $(2 / 3)$

Unitary highest weight representations

- A \mathfrak{g}-module V is unitary if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w\rangle=\left\langle v, X^{*} \cdot w\right\rangle$ for all $X \in \mathfrak{g}, v, w \in V$.
- Facts (Neeb '98): Let $(\mathfrak{g}, \mathfrak{h})$ be a locally finite simple Lie algebra.
- $\forall \lambda \in \mathfrak{h}^{*}, \exists$! irreducible HWM $L\left(\lambda, \Delta_{+}\right)$over \mathfrak{g}.
- $L\left(\lambda, \Delta_{+}\right)$is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda\left(\alpha^{\vee}\right) \in \mathbb{N} \forall \alpha \in \Delta_{i}$.
- If $L\left(\lambda, \Delta_{+}\right)$is unitary, then Property (Weight) is satisfied.

Example: infinite wedge representations

- Let $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$ with $J=\mathbb{Z}$, and choose the positive system $\Delta_{+}=\left\{\varepsilon_{j}-\varepsilon_{k} \mid j<k\right\} \subseteq \Delta$.
- $V:=\operatorname{vect}_{\mathbb{C}}\left\langle e_{j_{0}} \wedge e_{j_{-1}} \wedge \ldots\right| j_{0}>j_{-1}>\ldots$ and $\left.j_{s}=s \forall s \ll 0\right\rangle \subseteq \wedge^{\infty}\left(\mathbb{C}^{(J)}\right)$.
$\psi:=e_{0} \wedge e_{-1} \wedge e_{-2} \wedge \cdots \in V$ vacuum.
- $\mathfrak{g} \curvearrowright V: A\left(e_{j_{0}} \wedge e_{j_{-1}} \wedge \ldots\right):=\left(A e_{j_{0}}\right) \wedge e_{j_{-1}} \wedge \cdots+e_{j_{0}} \wedge\left(A e_{j_{-1}}\right) \wedge \cdots+\ldots$
$\Rightarrow E_{j k}(\psi)=\left\{\begin{array}{lr}e_{0} \wedge \cdots \wedge e_{k+1} \wedge e_{j} \wedge e_{k-1} \wedge \ldots & \text { if } k \leq 0<j, \\ 0 & \text { otherwise. }\end{array}\right.$
$\Rightarrow E_{j j}(\psi)=\delta_{j \leq 0} \psi=\lambda\left(E_{j j}\right) \psi$ for $\lambda: \mathfrak{h} \rightarrow \mathbb{R}: E_{j j} \mapsto \lambda\left(E_{j j}\right):=\delta_{j \leq 0}$.
$\rightsquigarrow V \cong L\left(\lambda, \Delta_{+}\right)$with $V_{\lambda}=\mathbb{C} \psi$.

Locally finite Lie algebras (3/3)

Setting

- Let $(\mathfrak{g}, \mathfrak{h})$ be a locally finite simple Lie algebra, and let $\rho_{\lambda}: \mathfrak{g} \rightarrow \mathfrak{u}\left(V^{\lambda}\right)$ be a unitary HWR. Extend ρ_{λ} to a representation $\widetilde{\rho}_{\lambda}: \mathfrak{g} \rtimes \mathbb{C} D \rightarrow \operatorname{End}\left(V^{\lambda}\right)$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D\left(x_{\alpha}\right)=i \chi(\alpha) x_{\alpha}$ for all $\alpha \in \Delta, x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi: \mathbb{Z}[\Delta] \rightarrow \mathbb{R}$. Thus $\tilde{\rho}_{\lambda}$ is a PER $\Leftrightarrow \inf \chi(W \cdot \lambda-\lambda)>-\infty$.
- Δ of type $A_{\jmath}, B_{\jmath}, C_{J}$ or D_{\jmath}, can be realised inside $\operatorname{span}_{\mathbb{Z}}\left\{\varepsilon_{j}\right\}_{j \in J} \subseteq \mathfrak{h}^{*}$.
- We assume that $\lambda=\sum_{j \in J} \lambda_{j} \varepsilon_{j}: \mathfrak{h} \rightarrow \mathbb{Z}$ is bounded: $\sup _{j \in J}\left|\lambda_{j}\right|<\infty$.

Locally finite Lie algebras (3/3)

Setting

- Let $(\mathfrak{g}, \mathfrak{h})$ be a locally finite simple Lie algebra, and let $\rho_{\lambda}: \mathfrak{g} \rightarrow \mathfrak{u}\left(V^{\lambda}\right)$ be a unitary HWR. Extend ρ_{λ} to a representation $\widetilde{\rho}_{\lambda}: \mathfrak{g} \rtimes \mathbb{C} D \rightarrow \operatorname{End}\left(V^{\lambda}\right)$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D\left(x_{\alpha}\right)=i \chi(\alpha) x_{\alpha}$ for all $\alpha \in \Delta, x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi: \mathbb{Z}[\Delta] \rightarrow \mathbb{R}$. Thus $\widetilde{\rho}_{\lambda}$ is a PER $\Leftrightarrow \inf \chi(W . \lambda-\lambda)>-\infty$.
- Δ of type $A_{\jmath}, B_{\jmath}, C_{J}$ or D_{\jmath}, can be realised inside $\operatorname{span}_{\mathbb{Z}}\left\{\varepsilon_{j}\right\}_{j \in J} \subseteq \mathfrak{h}^{*}$.
- We assume that $\lambda=\sum_{j \in J} \lambda_{j} \varepsilon_{j}: \mathfrak{h} \rightarrow \mathbb{Z}$ is bounded: $\sup _{j \in J}\left|\lambda_{j}\right|<\infty$.

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi=\chi_{\text {min }}+\chi_{\text {sum }}$ with $\inf \chi_{\min }(W . \lambda-\lambda)=0$ and $\sum_{j \in J}\left|\chi_{\text {sum }}\left(\varepsilon_{j}\right)\right|<\infty$.

Locally finite Lie algebras (3/3)

Setting

- Let $(\mathfrak{g}, \mathfrak{h})$ be a locally finite simple Lie algebra, and let $\rho_{\lambda}: \mathfrak{g} \rightarrow \mathfrak{u}\left(V^{\lambda}\right)$ be a unitary HWR. Extend ρ_{λ} to a representation $\widetilde{\rho}_{\lambda}: \mathfrak{g} \rtimes \mathbb{C} D \rightarrow \operatorname{End}\left(V^{\lambda}\right)$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D\left(x_{\alpha}\right)=i \chi(\alpha) x_{\alpha}$ for all $\alpha \in \Delta, x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi: \mathbb{Z}[\Delta] \rightarrow \mathbb{R}$. Thus $\widetilde{\rho}_{\lambda}$ is a PER $\Leftrightarrow \inf \chi(W . \lambda-\lambda)>-\infty$.
- Δ of type A_{J}, B_{J}, C_{J} or D_{\jmath}, can be realised inside $\operatorname{span}_{\mathbb{Z}}\left\{\varepsilon_{j}\right\}_{j \in J} \subseteq \mathfrak{h}^{*}$.
- We assume that $\lambda=\sum_{j \in J} \lambda_{j} \varepsilon_{j}: \mathfrak{h} \rightarrow \mathbb{Z}$ is bounded: $\sup _{j \in J}\left|\lambda_{j}\right|<\infty$.

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi=\chi_{\text {min }}+\chi_{\text {sum }}$ with $\inf \chi_{\min }(W . \lambda-\lambda)=0$ and $\sum_{j \in J}\left|\chi_{\text {sum }}\left(\varepsilon_{j}\right)\right|<\infty$.

Example: Unitary group $U_{1}(\mathcal{H})$ of Schatten class 1

- $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C}), \mathcal{H}$ Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\left\{e_{j}\right\}_{j \in J}$.
$B_{1}(\mathcal{H})$ completion of \mathfrak{g} wrt the norm $\|A\|_{1}:=\operatorname{Tr}|A|$ (trace-class operators).
Set $\mathfrak{u}_{1}(\mathcal{H})=\left\{X \in B_{1}(\mathcal{H}) \mid X=-X^{*}\right\}$ and $U_{1}(\mathcal{H})=U(\mathcal{H}) \cap\left(\mathbb{1}+\mathfrak{u}_{1}(\mathcal{H})\right)$.

Locally finite Lie algebras (3/3)

Setting

- Let $(\mathfrak{g}, \mathfrak{h})$ be a locally finite simple Lie algebra, and let $\rho_{\lambda}: \mathfrak{g} \rightarrow \mathfrak{u}\left(V^{\lambda}\right)$ be a unitary HWR. Extend ρ_{λ} to a representation $\widetilde{\rho}_{\lambda}: \mathfrak{g} \rtimes \mathbb{C} D \rightarrow \operatorname{End}\left(V^{\lambda}\right)$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D\left(x_{\alpha}\right)=i \chi(\alpha) x_{\alpha}$ for all $\alpha \in \Delta, x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi: \mathbb{Z}[\Delta] \rightarrow \mathbb{R}$. Thus $\widetilde{\rho}_{\lambda}$ is a PER $\Leftrightarrow \inf \chi(W . \lambda-\lambda)>-\infty$.
- Δ of type A_{J}, B_{J}, C_{J} or D_{J}, can be realised inside $\operatorname{span}_{\mathbb{Z}}\left\{\varepsilon_{j}\right\}_{j \in J} \subseteq \mathfrak{h}^{*}$.
- We assume that $\lambda=\sum_{j \in J} \lambda_{j} \varepsilon_{j}: \mathfrak{h} \rightarrow \mathbb{Z}$ is bounded: $\sup _{j \in J}\left|\lambda_{j}\right|<\infty$.

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi=\chi_{\text {min }}+\chi_{\text {sum }}$ with $\inf \chi_{\min }(W \cdot \lambda-\lambda)=0$ and $\sum_{j \in J}\left|\chi_{\text {sum }}\left(\varepsilon_{j}\right)\right|<\infty$.

Example: Unitary group $U_{1}(\mathcal{H})$ of Schatten class 1

- $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C}), \mathcal{H}$ Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\left\{e_{j}\right\}_{j \in J}$. $B_{1}(\mathcal{H})$ completion of \mathfrak{g} wrt the norm $\|A\|_{1}:=\operatorname{Tr}|A|$ (trace-class operators). Set $\mathfrak{u}_{1}(\mathcal{H})=\left\{X \in B_{1}(\mathcal{H}) \mid X=-X^{*}\right\}$ and $U_{1}(\mathcal{H})=U(\mathcal{H}) \cap\left(\mathbb{1}+\mathfrak{u}_{1}(\mathcal{H})\right)$.
- Fact (Neeb '98): If λ is bounded, then ρ_{λ} lifts to a unitary representation $\widehat{\rho}_{\lambda}: U_{1}(\mathcal{H}) \rightarrow U\left(\mathcal{H}^{\lambda}\right)$, where \mathcal{H}^{λ} is the Hilbert-space completion of V^{λ}.

Locally finite Lie algebras (3/3)

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi=\chi_{\text {min }}+\chi_{\text {sum }}$ with $\inf \chi_{\text {min }}(W . \lambda-\lambda)=0$ and $\sum_{j \in J}\left|\chi_{\text {sum }}\left(\varepsilon_{j}\right)\right|<\infty$.

Example: Unitary group $U_{1}(\mathcal{H})$ of Schatten class 1

- $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C})$, \mathcal{H} Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\left\{e_{j}\right\}_{j \in J}$. $B_{1}(\mathcal{H})$ completion of \mathfrak{g} wrt the norm $\|A\|_{1}:=\operatorname{Tr}|A|$ (trace-class operators). Set $\mathfrak{u}_{1}(\mathcal{H})=\left\{X \in B_{1}(\mathcal{H}) \mid X=-X^{*}\right\}$ and $U_{1}(\mathcal{H})=U(\mathcal{H}) \cap\left(\mathbb{1}+\mathfrak{u}_{1}(\mathcal{H})\right)$.
- Fact (Neeb '98): If λ is bounded, then ρ_{λ} lifts to a unitary representation $\widehat{\rho}_{\lambda}: U_{1}(\mathcal{H}) \rightarrow U\left(\mathcal{H}^{\lambda}\right)$, where \mathcal{H}^{λ} is the Hilbert-space completion of V^{λ}.

Locally finite Lie algebras (3/3)

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi=\chi_{\text {min }}+\chi_{\text {sum }}$ with $\inf \chi_{\text {min }}(W . \lambda-\lambda)=0$ and $\sum_{j \in J}\left|\chi_{\text {sum }}\left(\varepsilon_{j}\right)\right|<\infty$.

Example: Unitary group $U_{1}(\mathcal{H})$ of Schatten class 1

- $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C}), \mathcal{H}$ Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\left\{e_{j}\right\}_{j \in J}$. $B_{1}(\mathcal{H})$ completion of \mathfrak{g} wrt the norm $\|A\|_{1}:=\operatorname{Tr}|A|$ (trace-class operators). Set $\mathfrak{u}_{1}(\mathcal{H})=\left\{X \in B_{1}(\mathcal{H}) \mid X=-X^{*}\right\}$ and $U_{1}(\mathcal{H})=U(\mathcal{H}) \cap\left(\mathbb{1}+\mathfrak{u}_{1}(\mathcal{H})\right)$.
- Fact (Neeb '98): If λ is bounded, then ρ_{λ} lifts to a unitary representation $\widehat{\rho}_{\lambda}: U_{1}(\mathcal{H}) \rightarrow U\left(\mathcal{H}^{\lambda}\right)$, where \mathcal{H}^{λ} is the Hilbert-space completion of V^{λ}.
- $\alpha: \mathbb{R} \rightarrow U_{1}(\mathcal{H}): t \mapsto \alpha_{t}$ continuous \mathbb{R}-action $\rightsquigarrow \alpha_{t}(g)=e^{i t A} g e^{-i t A}$ for some self-adjoint operator $A \in B(\mathcal{H})$. We assume A is diagonalisable: $A e_{j}=d_{j} e_{j} \forall j \in J$. Then $\widehat{\rho}_{\lambda}$ extends to $U_{1}(\mathcal{H}) \rtimes_{\alpha} \mathbb{R} \rightarrow U\left(\mathcal{H}^{\lambda}\right)$.

Locally finite Lie algebras (3/3)

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi=\chi_{\text {min }}+\chi_{\text {sum }}$ with $\inf \chi_{\text {min }}(W . \lambda-\lambda)=0$ and $\sum_{j \in J}\left|\chi_{\text {sum }}\left(\varepsilon_{j}\right)\right|<\infty$.

Example: Unitary group $U_{1}(\mathcal{H})$ of Schatten class 1

- $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C}), \mathcal{H}$ Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\left\{e_{j}\right\}_{j \in J}$. $B_{1}(\mathcal{H})$ completion of \mathfrak{g} wrt the norm $\|A\|_{1}:=\operatorname{Tr}|A|$ (trace-class operators). Set $\mathfrak{u}_{1}(\mathcal{H})=\left\{X \in B_{1}(\mathcal{H}) \mid X=-X^{*}\right\}$ and $U_{1}(\mathcal{H})=U(\mathcal{H}) \cap\left(\mathbb{1}+\mathfrak{u}_{1}(\mathcal{H})\right)$.
- Fact (Neeb '98): If λ is bounded, then ρ_{λ} lifts to a unitary representation $\widehat{\rho}_{\lambda}: U_{1}(\mathcal{H}) \rightarrow U\left(\mathcal{H}^{\lambda}\right)$, where \mathcal{H}^{λ} is the Hilbert-space completion of V^{λ}.
- $\alpha: \mathbb{R} \rightarrow U_{1}(\mathcal{H}): t \mapsto \alpha_{t}$ continuous \mathbb{R}-action $\rightsquigarrow \alpha_{t}(g)=e^{i t A} g e^{-i t A}$ for some self-adjoint operator $A \in B(\mathcal{H})$. We assume A is diagonalisable: $A e_{j}=d_{j} e_{j} \forall j \in J$. Then $\widehat{\rho}_{\lambda}$ extends to $U_{1}(\mathcal{H}) \rtimes_{\alpha} \mathbb{R} \rightarrow U\left(\mathcal{H}^{\lambda}\right)$.
- Lie algebra level: $\widetilde{\rho}_{\lambda}: \mathfrak{u}_{1}(\mathcal{H}) \rtimes \mathbb{R} D \rightarrow \mathfrak{u}\left(\mathcal{H}^{\lambda}\right)$ with " $D=\operatorname{ad}(i A)$ ", that is, $D\left(E_{j k}\right)=i\left(d_{j}-d_{k}\right) E_{j k}=i \chi\left(\varepsilon_{j}-\varepsilon_{k}\right) E_{j k} \rightsquigarrow \chi: \mathbb{Z}[\Delta] \rightarrow \mathbb{R}: \varepsilon_{j} \mapsto d_{j}$.

Locally finite Lie algebras (3/3)

Theorem 1 (M., Neeb '15):

The representation $\tilde{\rho}_{\lambda}$ is a PER if and only if $\chi=\chi_{\text {min }}+\chi_{\text {sum }}$ with $\inf \chi_{\text {min }}(W \cdot \lambda-\lambda)=0$ and $\sum_{j \in J}\left|\chi_{\text {sum }}\left(\varepsilon_{j}\right)\right|<\infty$.

Example: Unitary group $U_{1}(\mathcal{H})$ of Schatten class 1

- $\mathfrak{g}=\mathfrak{g l}(J, \mathbb{C}), \mathcal{H}$ Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\left\{e_{j}\right\}_{j \in J}$. $B_{1}(\mathcal{H})$ completion of \mathfrak{g} wrt the norm $\|A\|_{1}:=\operatorname{Tr}|A|$ (trace-class operators). Set $\mathfrak{u}_{1}(\mathcal{H})=\left\{X \in B_{1}(\mathcal{H}) \mid X=-X^{*}\right\}$ and $U_{1}(\mathcal{H})=U(\mathcal{H}) \cap\left(\mathbb{1}+\mathfrak{u}_{1}(\mathcal{H})\right)$.
- Fact (Neeb '98): If λ is bounded, then ρ_{λ} lifts to a unitary representation $\widehat{\rho}_{\lambda}: U_{1}(\mathcal{H}) \rightarrow U\left(\mathcal{H}^{\lambda}\right)$, where \mathcal{H}^{λ} is the Hilbert-space completion of V^{λ}.
- $\alpha: \mathbb{R} \rightarrow U_{1}(\mathcal{H}): t \mapsto \alpha_{t}$ continuous \mathbb{R}-action $\rightsquigarrow \alpha_{t}(g)=e^{i t A} g e^{-i t A}$ for some self-adjoint operator $A \in B(\mathcal{H})$. We assume A is diagonalisable: $A e_{j}=d_{j} e_{j} \forall j \in J$. Then $\widehat{\rho}_{\lambda}$ extends to $U_{1}(\mathcal{H}) \rtimes_{\alpha} \mathbb{R} \rightarrow U\left(\mathcal{H}^{\lambda}\right)$.
- Lie algebra level: $\widetilde{\rho}_{\lambda}: \mathfrak{u}_{1}(\mathcal{H}) \rtimes \mathbb{R} D \rightarrow \mathfrak{u}\left(\mathcal{H}^{\lambda}\right)$ with " $D=\operatorname{ad}(i A)$ ", that is, $D\left(E_{j k}\right)=i\left(d_{j}-d_{k}\right) E_{j k}=i \chi\left(\varepsilon_{j}-\varepsilon_{k}\right) E_{j k} \rightsquigarrow \chi: \mathbb{Z}[\Delta] \rightarrow \mathbb{R}: \varepsilon_{j} \mapsto d_{j}$.
- Hence $\chi=\chi_{\text {min }}+\chi_{\text {sum }} \Leftrightarrow A=A_{\min }+A_{\text {sum }}$ with $A_{\text {min }}, A_{\text {sum }} \in B(\mathcal{H})$ such that $i A_{\text {sum }} \in \mathfrak{u}_{1}(\mathcal{H})$ and $A_{\text {min }}$ yields a minimal energy representation $\Leftrightarrow \alpha_{t}=\alpha_{t}^{\text {min }} \alpha_{t}^{\text {sum }}=\alpha_{t}^{\text {sum }} \alpha_{t}^{\text {min }}$ with $\alpha_{t}^{\text {sum }}$ inner automorphism of $U_{1}(\mathcal{H})$.

Locally affine Lie algebras (1/2)

Locally affine Lie algebras

- \mathfrak{g} is locally affine $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac-Moody algebras.

Locally affine Lie algebras (1/2)

Locally affine Lie algebras

- \mathfrak{g} is locally affine $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac-Moody algebras.
$-\rightsquigarrow \mathfrak{g}$ has a locally affine root system Δ of type $A_{J}^{(1)}, B_{J}^{(1)}, C_{J}^{(1)}, D_{J}^{(1)}, B_{J}^{(2)}$, $C_{J}^{(2)}$ or $B C_{J}^{(2)}$ for some infinite set J.

Locally affine Lie algebras (1/2)

Locally affine Lie algebras

- \mathfrak{g} is locally affine $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac-Moody algebras.
- $\rightsquigarrow \mathfrak{g}$ has a locally affine root system Δ of type $A_{J}^{(1)}, B_{J}^{(1)}, C_{J}^{(1)}, D_{J}^{(1)}, B_{J}^{(2)}$, $C_{J}^{(2)}$ or $B C_{J}^{(2)}$ for some infinite set J.
- \mathfrak{g} can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra \mathfrak{g} :

Locally affine Lie algebras (1/2)

Locally affine Lie algebras

- \mathfrak{g} is locally affine $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac-Moody algebras.
- $\rightsquigarrow \mathfrak{g}$ has a locally affine root system Δ of type $A_{J}^{(1)}, B_{J}^{(1)}, C_{J}^{(1)}, D_{J}^{(1)}, B_{J}^{(2)}$, $C_{J}^{(2)}$ or $B C_{J}^{(2)}$ for some infinite set J.
- \mathfrak{g} can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra \mathfrak{g} :
- Set $\mathcal{L}(\mathfrak{g}):=\mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}\left[t, t^{-1}\right]$. Let $\varphi \in \operatorname{Aut}(\mathfrak{g})$ of finite order $N \in \mathbb{N}$ and let $\zeta=e^{2 i \pi / N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathfrak{g}))$ by $\widehat{\varphi}(t \otimes x):=\zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathfrak{g}):=\mathcal{L}(\mathfrak{g})^{\hat{\varphi}}$ twisted loop algebra.

Locally affine Lie algebras (1/2)

Locally affine Lie algebras

- \mathfrak{g} is locally affine $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac-Moody algebras.
- $\rightsquigarrow \mathfrak{g}$ has a locally affine root system Δ of type $A_{J}^{(1)}, B_{J}^{(1)}, C_{J}^{(1)}, D_{J}^{(1)}, B_{J}^{(2)}$, $C_{J}^{(2)}$ or $B C_{J}^{(2)}$ for some infinite set J.
- \mathfrak{g} can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra \mathfrak{g} :
- Set $\mathcal{L}(\mathfrak{g}):=\mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}\left[t, t^{-1}\right]$. Let $\varphi \in \operatorname{Aut}(\mathfrak{g})$ of finite order $N \in \mathbb{N}$ and let $\zeta=e^{2 i \pi / N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathfrak{g}))$ by $\widehat{\varphi}(t \otimes x):=\zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathfrak{g}):=\mathcal{L}(\mathfrak{g})^{\widehat{\varphi}}$ twisted loop algebra.
- There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathfrak{g})$, given by $\kappa\left(t^{r} \otimes x, t^{s} \otimes y\right):=\delta_{r,-s} \AA(x, y)$.

Locally affine Lie algebras (1/2)

Locally affine Lie algebras

- \mathfrak{g} is locally affine $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac-Moody algebras.
- $\rightsquigarrow \mathfrak{g}$ has a locally affine root system Δ of type $A_{J}^{(1)}, B_{J}^{(1)}, C_{J}^{(1)}, D_{J}^{(1)}, B_{J}^{(2)}$, $C_{J}^{(2)}$ or $B C_{J}^{(2)}$ for some infinite set J.
- \mathfrak{g} can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra \mathfrak{g} :
- Set $\mathcal{L}(\mathfrak{g}):=\mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}\left[t, t^{-1}\right]$. Let $\varphi \in \operatorname{Aut}(\mathfrak{g})$ of finite order $N \in \mathbb{N}$ and let $\zeta=e^{2 i \pi / N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathfrak{g}))$ by $\widehat{\varphi}(t \otimes x):=\zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathfrak{g}):=\mathcal{L}(\mathfrak{g})^{\widehat{\varphi}}$ twisted loop algebra.
- There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathfrak{g})$, given by $\kappa\left(t^{r} \otimes x, t^{s} \otimes y\right):=\delta_{r,-s} \AA(x, y)$.
- Let $D \in \operatorname{der}\left(\mathcal{L}_{\varphi}(\mathfrak{g})\right)$ be a skew-symmetric derivation. Then $\omega_{D}(x, y):=\kappa(D x, y)$ is a 2-cocycle on $\mathcal{L}_{\varphi}(\mathfrak{g})$. Extend D to the derivation $\widetilde{D}(z, x)=(0, D x)$ of the corresponding central extension $\mathbb{C} \oplus_{\omega_{D}} \mathcal{L}_{\varphi}(\mathfrak{g})$.

Locally affine Lie algebras (1/2)

Locally affine Lie algebras

- \mathfrak{g} is locally affine $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac-Moody algebras.
- $\rightsquigarrow \mathfrak{g}$ has a locally affine root system Δ of type $A_{J}^{(1)}, B_{J}^{(1)}, C_{J}^{(1)}, D_{J}^{(1)}, B_{J}^{(2)}$, $C_{J}^{(2)}$ or $B C_{J}^{(2)}$ for some infinite set J.
- \mathfrak{g} can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra \mathfrak{g} :
- Set $\mathcal{L}(\mathfrak{g}):=\mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}\left[t, t^{-1}\right]$. Let $\varphi \in \operatorname{Aut}(\mathfrak{g})$ of finite order $N \in \mathbb{N}$ and let $\zeta=e^{2 i \pi / N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathfrak{g}))$ by $\widehat{\varphi}(t \otimes x):=\zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathfrak{g}):=\mathcal{L}(\mathfrak{g})^{\widehat{\varphi}}$ twisted loop algebra.
- There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathfrak{g})$, given by $\kappa\left(t^{r} \otimes x, t^{s} \otimes y\right):=\delta_{r,-s} \AA(x, y)$.
- Let $D \in \operatorname{der}\left(\mathcal{L}_{\varphi}(\mathfrak{g})\right)$ be a skew-symmetric derivation. Then $\omega_{D}(x, y):=\kappa(D x, y)$ is a 2-cocycle on $\mathcal{L}_{\varphi}(\mathfrak{g})$. Extend D to the derivation $\widetilde{D}(z, x)=(0, D x)$ of the corresponding central extension $\mathbb{C} \oplus_{\omega_{D}} \mathcal{L}_{\varphi}(\mathfrak{g})$.
- $\mathfrak{g}=\left(\mathbb{C} \oplus_{\omega_{D}} \mathcal{L}_{\varphi}(\mathfrak{g})\right) \rtimes_{\widetilde{D}}$ affinisation of \mathfrak{g}, with Lie bracket $\left[(z, x, t),\left(z^{\prime}, x, t^{\prime}\right)\right]=\left(\omega_{D}\left(x, x^{\prime}\right),\left[x, x^{\prime}\right]+t D x^{\prime}-t^{\prime} D x, 0\right)$.

Locally affine Lie algebras (1/2)

Locally affine Lie algebras

- \mathfrak{g} is locally affine $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac-Moody algebras.
- $\rightsquigarrow \mathfrak{g}$ has a locally affine root system Δ of type $A_{J}^{(1)}, B_{J}^{(1)}, C_{J}^{(1)}, D_{J}^{(1)}, B_{J}^{(2)}$, $C_{J}^{(2)}$ or $B C_{J}^{(2)}$ for some infinite set J.
- \mathfrak{g} can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra \mathfrak{g} :
- Set $\mathcal{L}(\mathfrak{g}):=\mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}\left[t, t^{-1}\right]$. Let $\varphi \in \operatorname{Aut}(\mathfrak{g})$ of finite order $N \in \mathbb{N}$ and let $\zeta=e^{2 i \pi / N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathfrak{g}))$ by $\widehat{\varphi}(t \otimes x):=\zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathfrak{g}):=\mathcal{L}(\mathfrak{g})^{\widehat{\varphi}}$ twisted loop algebra.
- There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathfrak{g})$, given by $\kappa\left(t^{r} \otimes x, t^{s} \otimes y\right):=\delta_{r,-s} \dot{\kappa}(x, y)$.
- Let $D \in \operatorname{der}\left(\mathcal{L}_{\varphi}(\mathfrak{g})\right)$ be a skew-symmetric derivation. Then $\omega_{D}(x, y):=\kappa(D x, y)$ is a 2 -cocycle on $\mathcal{L}_{\varphi}(\mathfrak{g})$. Extend D to the derivation $\widetilde{D}(z, x)=(0, D x)$ of the corresponding central extension $\mathbb{C} \oplus_{\omega_{D}} \mathcal{L}_{\varphi}(\mathfrak{g})$.
- $\mathfrak{g}=\left(\mathbb{C} \oplus_{\omega_{D}} \mathcal{L}_{\varphi}(\mathfrak{g})\right) \rtimes_{\widetilde{D}}$ affinisation of \mathfrak{g}, with Lie bracket $\left[(z, x, t),\left(z^{\prime}, x, t^{\prime}\right)\right]=\left(\omega_{D}\left(x, x^{\prime}\right),\left[x, x^{\prime}\right]+t D x^{\prime}-t^{\prime} D x, 0\right)$.
- $\mathfrak{h}:=\mathbb{C} \oplus \mathfrak{h} \oplus \mathbb{C}$ is a Cartan subalgebra of \mathfrak{g} for some Cartan subalgebra \mathfrak{h} of $\mathfrak{g}^{\varphi} \subseteq \mathcal{L}_{\varphi}(\mathfrak{g})$.

Locally affine Lie algebras (1/2)

Locally affine Lie algebras

- \mathfrak{g} is locally affine $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac-Moody algebras.
- $\rightsquigarrow \mathfrak{g}$ has a locally affine root system Δ of type $A_{J}^{(1)}, B_{J}^{(1)}, C_{J}^{(1)}, D_{J}^{(1)}, B_{J}^{(2)}$, $C_{J}^{(2)}$ or $B C_{J}^{(2)}$ for some infinite set J.
- \mathfrak{g} can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra \mathfrak{g} :
- Set $\mathcal{L}(\mathfrak{g}):=\mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}\left[t, t^{-1}\right]$. Let $\varphi \in \operatorname{Aut}(\mathfrak{g})$ of finite order $N \in \mathbb{N}$ and let $\zeta=e^{2 i \pi / N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathfrak{g}))$ by $\widehat{\varphi}(t \otimes x):=\zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathfrak{g}):=\mathcal{L}(\mathfrak{g})^{\widehat{\varphi}}$ twisted loop algebra.
- There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathfrak{g})$, given by $\kappa\left(t^{r} \otimes x, t^{s} \otimes y\right):=\delta_{r,-s} \AA(x, y)$.
- Let $D \in \operatorname{der}\left(\mathcal{L}_{\varphi}(\mathfrak{g})\right)$ be a skew-symmetric derivation. Then $\omega_{D}(x, y):=\kappa(D x, y)$ is a 2 -cocycle on $\mathcal{L}_{\varphi}(\mathfrak{g})$. Extend D to the derivation $\widetilde{D}(z, x)=(0, D x)$ of the corresponding central extension $\mathbb{C} \oplus_{\omega_{D}} \mathcal{L}_{\varphi}(\mathfrak{g})$.
- $\mathfrak{g}=\left(\mathbb{C} \oplus_{\omega_{D}} \mathcal{L}_{\varphi}(\mathfrak{g})\right) \rtimes_{\widetilde{D}}$ affinisation of \mathfrak{g}, with Lie bracket $\left[(z, x, t),\left(z^{\prime}, x, t^{\prime}\right)\right]=\left(\omega_{D}\left(x, x^{\prime}\right),\left[x, x^{\prime}\right]+t D x^{\prime}-t^{\prime} D x, 0\right)$.
- $\mathfrak{h}:=\mathbb{C} \oplus \mathfrak{h} \oplus \mathbb{C}$ is a Cartan subalgebra of \mathfrak{g} for some Cartan subalgebra \mathfrak{h} of $\mathfrak{g}^{\varphi} \subseteq \mathcal{L}_{\varphi}(\mathfrak{g})$.
- $\Delta=\Delta(\mathfrak{g}, \mathfrak{h}) \subseteq\{0\} \times(\Delta(\mathfrak{g}, \mathfrak{h}) \cup\{0\}) \times \mathbb{C} \subseteq \mathfrak{h}^{*} \approx \mathbb{C} \times \mathfrak{h}^{*} \times \mathbb{C}$.

Locally affine Lie algebras (1/2)

Locally affine Lie algebras

- \mathfrak{g} is locally affine $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac-Moody algebras.
- $\rightsquigarrow \mathfrak{g}$ has a locally affine root system Δ of type $A_{J}^{(1)}, B_{J}^{(1)}, C_{J}^{(1)}, D_{J}^{(1)}, B_{J}^{(2)}$, $C_{J}^{(2)}$ or $B C_{J}^{(2)}$ for some infinite set J.
- \mathfrak{g} can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra \mathfrak{g} :
- Set $\mathcal{L}(\mathfrak{g}):=\mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}\left[t, t^{-1}\right]$. Let $\varphi \in \operatorname{Aut}(\mathfrak{g})$ of finite order $N \in \mathbb{N}$ and let $\zeta=e^{2 i \pi / N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathfrak{g}))$ by $\widehat{\varphi}(t \otimes x):=\zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathfrak{g}):=\mathcal{L}(\mathfrak{g})^{\widehat{\varphi}}$ twisted loop algebra.
- There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathfrak{g})$, given by $\kappa\left(t^{r} \otimes x, t^{s} \otimes y\right):=\delta_{r,-s} \AA(x, y)$.
- Let $D \in \operatorname{der}\left(\mathcal{L}_{\varphi}(\mathfrak{g})\right)$ be a skew-symmetric derivation. Then $\omega_{D}(x, y):=\kappa(D x, y)$ is a 2 -cocycle on $\mathcal{L}_{\varphi}(\mathfrak{g})$. Extend D to the derivation $\widetilde{D}(z, x)=(0, D x)$ of the corresponding central extension $\mathbb{C} \oplus_{\omega_{D}} \mathcal{L}_{\varphi}(\mathfrak{g})$.
- $\mathfrak{g}=\left(\mathbb{C} \oplus_{\omega_{D}} \mathcal{L}_{\varphi}(\mathfrak{g})\right) \rtimes_{\widetilde{D}}$ affinisation of \mathfrak{g}, with Lie bracket $\left[(z, x, t),\left(z^{\prime}, x, t^{\prime}\right)\right]=\left(\omega_{D}\left(x, x^{\prime}\right),\left[x, x^{\prime}\right]+t D x^{\prime}-t^{\prime} D x, 0\right)$.
- $\mathfrak{h}:=\mathbb{C} \oplus \mathfrak{h} \oplus \mathbb{C}$ is a Cartan subalgebra of \mathfrak{g} for some Cartan subalgebra \mathfrak{h} of $\mathfrak{g}^{\varphi} \subseteq \mathcal{L}_{\varphi}(\mathfrak{g})$.
- $\Delta=\Delta(\mathfrak{g}, \mathfrak{h}) \subseteq\{0\} \times(\Delta(\mathfrak{g}, \mathfrak{h}) \cup\{0\}) \times \mathbb{C} \subseteq \mathfrak{h}^{*} \approx \mathbb{C} \times \mathfrak{h}^{*} \times \mathbb{C}$.
- $\Delta(\mathfrak{g}, \mathfrak{h})$ is of type $A_{J}, B_{J}, C_{J}, D_{J}$ or $B C_{J}$, and can be realised inside $\operatorname{span}_{\mathbb{Z}}\left\{\varepsilon_{j}\right\}_{j \in J} \subseteq \mathfrak{h}^{*}$.

Locally affine Lie algebras (2/2)

Setting

- Let $(\mathfrak{g}, \mathfrak{h})$ be a locally affine Lie algebra, and let $\rho_{\lambda}: \mathfrak{g} \rightarrow \mathfrak{u}\left(V^{\lambda}\right)$ be a unitary HWR (these exist for λ integral, non-vanishing on the center of \mathfrak{g}, cf. [Neeb '10 and '14]).
- Extend ρ_{λ} to a representation $\tilde{\rho}_{\lambda}: \mathfrak{g} \rtimes \mathbb{C} D \rightarrow \operatorname{End}\left(V^{\lambda}\right)$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D\left(x_{\alpha}\right)=i \chi(\alpha) x_{\alpha}$ for all $\alpha \in \Delta, x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi: \mathbb{Z}[\Delta] \rightarrow \mathbb{R}$. Then $\tilde{\rho}_{\lambda}$ is a PER $\Leftrightarrow \inf \chi(W \cdot \lambda-\lambda)>-\infty$.
- $\Delta \subseteq\{0\} \times \Delta\left(X_{J}\right) \times \mathbb{C}$ for some $X \in\{A, B, C, D, B C\}$, where $\Delta\left(X_{J}\right)$ can be realised inside $\operatorname{span}_{\mathbb{Z}}\left\{\varepsilon_{j}\right\}_{j \in J} \subseteq \mathfrak{h}^{*}$.

Locally affine Lie algebras (2/2)

Setting

- Let $(\mathfrak{g}, \mathfrak{h})$ be a locally affine Lie algebra, and let $\rho_{\lambda}: \mathfrak{g} \rightarrow \mathfrak{u}\left(V^{\lambda}\right)$ be a unitary HWR (these exist for λ integral, non-vanishing on the center of \mathfrak{g}, cf. [Neeb '10 and '14]).
- Extend ρ_{λ} to a representation $\tilde{\rho}_{\lambda}: \mathfrak{g} \rtimes \mathbb{C} D \rightarrow \operatorname{End}\left(V^{\lambda}\right)$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D\left(x_{\alpha}\right)=i \chi(\alpha) x_{\alpha}$ for all $\alpha \in \Delta, x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi: \mathbb{Z}[\Delta] \rightarrow \mathbb{R}$. Then $\tilde{\rho}_{\lambda}$ is a PER $\Leftrightarrow \inf \chi(W \cdot \lambda-\lambda)>-\infty$.
- $\Delta \subseteq\{0\} \times \Delta\left(X_{J}\right) \times \mathbb{C}$ for some $X \in\{A, B, C, D, B C\}$, where $\Delta\left(X_{J}\right)$ can be realised inside $\operatorname{span}_{\mathbb{Z}}\left\{\varepsilon_{j}\right\}_{j \in J} \subseteq \mathfrak{h}^{*}$.

Theorem 2 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi=\chi_{\text {min }}+\chi_{\text {sum }}$ with $\inf \chi_{\min }(W \cdot \lambda-\lambda)=0$ and $\sum_{j \in J}\left|\chi_{\text {sum }}\left(\varepsilon_{j}\right)\right|<\infty$.

Locally affine Lie algebras (2/2)

Theorem 2 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi=\chi_{\text {min }}+\chi_{\text {sum }}$ with $\inf \chi_{\min }(W . \lambda-\lambda)=0$ and $\sum_{j \in J}\left|\chi_{\text {sum }}\left(\varepsilon_{j}\right)\right|<\infty$.

Methods

- Use explicit descriptions of the Weyl group and root system for the 7 standard affinisations, corresponding to "minimal" realisations of the root systems $X_{J}^{(1)}, Y_{J}^{(2)}$ for $X \in\{A, B, C, D\}$ and $Y \in\{B, C, B C\}$.
- Describe an explicit isomorphism from an arbitrary affinisation to a standard affinisation, as a deformation between two twists compatible with the root space decompositions.

Thank you for your attention!

