Arakalov Inequalities

or

A Course on Higgs Bundles

Stefan Müller-Stach

SFB/Transregio 45 MZ

Goal of this lecture

Some applications of Higgs bundle in complex geometry, in order to study e.g.

- Arakelov Inequalities
- Totally Geodesic (Special) Subvarieties in Period Domains Special Subvarieties are usually arithmetic and characterized by (Periods and) extra Hodge Classes.

Literature

History: Nigel Hitchin, Carlos Simpson (+ analysis of Hermitian Yang-Mills equation)
Book: Jim Carlson/SMS/Chris Peters (Cambridge, 2003/2017)
Articles: in particular by Eckart Viehweg and Kang Zuo since ~2000, partially together with Jürgen Jost, Martin Möller and (to a lesser extent) myself.

Set-Up

$f: A \rightarrow X$ smooth, projective holomorphic map between complex manifolds A and X, extending to compactifications:

$D=\bar{X} \backslash X$: Set of singular fibers of \bar{f}.
We will construct Higgs bundles on \bar{X} arising from f :

$$
(E, \vartheta): E \xrightarrow{\vartheta} E \otimes \Omega_{\bar{\chi}}^{1}(\log D), \quad \vartheta \wedge \vartheta=0
$$

$\vartheta \in \operatorname{End}(E) \otimes \Omega_{\bar{X}}^{1}(\log D)$ Higgs field.

Monodromy

Fix $w \in \mathbb{N}$ (weight). The fibers A_{t} are all diffeomorphic (Ehresmann). Therefore:

The cohomology groups $H^{w}\left(A_{t}, \mathbb{C}\right)$ form a local system $\mathbb{V}=R^{w} f_{*} \mathbb{C}$ of complex vector spaces.
\mathbb{V} corresponds to a monodromy representation $\rho: \pi_{1}(X, *) \rightarrow G L_{n}(\mathbb{C})$, where $n=\operatorname{dim}_{\mathbb{C}} H^{w}\left(A_{t}, \mathbb{C}\right)$.

The local monodromies around the divisor D at infinity are denoted by T.

Unipotency

Theorem (Borel, Landman)
T is always quasi-unipotent:

$$
\left(T^{\nu}-1\right)^{w+1}=0
$$

We will often assume that $\nu=1$, hence the local monodromy T is unipotent:

$$
T=\left(\begin{array}{ccccc}
1 & * & * & \cdots & * \\
0 & 1 & * & \cdots & * \\
0 & 0 & 1 & \cdots & * \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right)
$$

Semistable implies Unipotent

Theorem
A semistable family has unipotent monodromies.
$\bar{f}: \bar{A} \rightarrow \bar{X}$ is called semistable, if \bar{f} is a flat morphism, $D \subset \bar{X}$ is a normal crossing divisor and the inverse image $\bar{f}^{-1}(D)$ is also a normal crossing divisor in \bar{A}.

Semistable Reduction Theorem
If X is a curve, then - after passing to a finite cover of X - we may assume that f is semistable.

Gauß-Manin connection

We have a vector bundle $V=\mathbb{V} \otimes \mathcal{O}_{X}$ on X.
Gauß-Manin connection:

$$
\nabla: V \rightarrow V \otimes \Omega_{X}^{1}, \nabla^{2}=0
$$

is \mathbb{C}-linear. There is a Hodge filtration

$$
V=F^{0} \supset F^{1} \supset \cdots
$$

By Griffiths transversality we have \mathcal{O}_{x}-linear maps

$$
\vartheta^{p}=\mathrm{Gr}^{p} \nabla: F^{p} / F^{p+1} \rightarrow F^{p-1} / F^{p} \otimes \Omega_{X}^{1}
$$

Example: Families of Abelian Varieties (Riemann)

An Abelian Variety of dimension g : compact torus $A_{\tau}=\mathbb{C}^{g} / \Lambda$. $\Lambda=$ columns of $g \times 2 g$-matrix $(\mathbb{I} \tau)$, with $\tau \in \mathbb{H}_{g}$ (Siegel space).
Cohomology: $H^{1}\left(A_{\tau}, \mathbb{Z}\right)=\mathbb{Z}^{2 g}$ and $H^{m}\left(A_{\tau}, \mathbb{Z}\right)=\Lambda^{m} H^{1}\left(A_{\tau}, \mathbb{Z}\right)$.
Hodge bundles for smooth family $f: A \rightarrow X$ of abelian varieties:

$$
\mathbb{V}=F^{0}=R^{1} f_{*} \mathbb{C}, F^{1}=f_{*} \Omega_{A / X}^{1}
$$

Specialty: $\Omega_{\mathbb{H}_{g}, \tau}^{1}=S^{2} H^{0}\left(A_{\tau}, \Omega_{A_{\tau}}^{1}\right)$.
Higgs field: $H^{0}\left(A_{\tau}, \Omega_{A_{\tau}}^{1}\right) \longrightarrow \underbrace{H^{1}\left(A_{\tau}, \mathcal{O}_{A_{\tau}}\right)}_{\text {dual of } H^{0}\left(A_{\tau}, \Omega_{A_{\tau}}^{1}\right)} \otimes S^{2} H^{0}\left(A_{\tau}, \Omega_{A_{\tau}}^{1}\right)$.

Deligne extension, Higgs bundles

Theorem (Deligne 70)
V and the Hodge bundles F^{p} have extensions as vector bundles to \bar{X} such that

$$
\mathrm{Gr}^{p} \nabla: F^{p} / F^{p+1} \rightarrow F^{p-1} / F^{p} \otimes \Omega_{\bar{\chi}}^{1}(\log D)
$$

are maps of vector bundles, i.e., $\mathcal{O}_{\bar{X}}$-linear.

The bundles $E^{p, w-p}=F^{p} / F^{p+1}$ form the Higgs bundle

$$
E=\bigoplus_{p+q=w} E^{p, q}
$$

with Higgs field $\vartheta=\bar{\nabla}: E \rightarrow E \otimes \Omega_{\bar{\chi}}^{1}(\log D)$. One has $\vartheta \wedge \vartheta=0$.

The case $w=1$ in general

Assume we have a semistable family $f: A \rightarrow X$.
Then $\mathbb{V}=R^{1} f_{*} \mathbb{C}$ has the extended Hodge bundles $F^{1}=\bar{f}_{*} \Omega_{\bar{A} / \bar{X}}^{1}\left(\log \bar{f}^{-1} D\right)$ and one has $F^{0} / F^{1}=R^{1} \bar{f}_{*} \mathcal{O}_{\bar{X}}$.
The associated Higgs bundle is

$$
E=E^{1,0} \oplus E^{0,1}=\bar{f}_{*} \Omega_{\bar{A} / \bar{X}}^{1}\left(\log \bar{f}^{-1} D\right) \oplus R^{1} \bar{f}_{*} \mathcal{O}_{\bar{\chi}}
$$

The Higgs field $\vartheta: E^{1,0} \rightarrow E^{0,1} \otimes \Omega_{\bar{X}}^{1}(\log D)$ comes pointwise from (adjoint of) Kodaira-Spencer map:

$$
H^{0}\left(A_{t}, \Omega_{A_{t}}^{1}\right) \longrightarrow H^{1}\left(A_{t}, \mathcal{O}_{A_{t}}\right) \otimes H^{1}\left(A_{t}, T_{A_{t}}\right)^{\vee}
$$

First application: Arakelov inequalities

Theorem (Arakelov 71, Faltings 83, Deligne 87, Peters 00, ViehwegZuo 01/04, Jost-Zuo 02)
$\bar{f}: \bar{A} \rightarrow \bar{X}$ semistable family of abelian varieties of dimension g over a curve $\bar{X}, E=E^{1,0} \oplus E^{0,1}$ associated Higgs bundle, then

$$
\operatorname{deg}\left(E^{1,0}\right) \leq \frac{g}{2} \operatorname{deg} \Omega_{\bar{X}}^{1}(\log D)=\frac{g}{2}(2 g(\bar{X})-2+\sharp D) .
$$

Corollary
$\bar{X}=\mathbb{P}^{1}, g=1, f$ not isotrivial, then $\sharp D \geq 4$.

Proof

By Simpson correspondence: After splitting off the maximal unitary local subsystem in \mathbb{V}, may assume $\theta: E^{1,0} \xlongequal{\cong} B \otimes \Omega_{\bar{\chi}}^{1}(\log D)$ with $B \subset E^{0,1}$.
$E^{1,0} \oplus B \subseteq E$ sub Higgs bundle $\stackrel{\text { stability }}{\Rightarrow} \operatorname{deg}\left(E^{1,0} \oplus B\right) \leq 0$.
Hence, $\operatorname{deg}\left(E^{1,0}\right)=\operatorname{deg}(B)+\operatorname{rk}(B) \cdot \operatorname{deg} \Omega_{\bar{x}}^{1}(\log D)$

$$
\leq-\operatorname{deg}\left(E^{1,0}\right)+g \cdot \operatorname{deg} \Omega_{\bar{x}}^{1}(\log \hat{D})
$$

Equality implies $E^{0,1}=B$, i.e., in the non-flat part θ is an isomorphism (maximal Higgs field).

Equality

Theorem (Viehweg-Zuo 2004)
Equality in the theorem holds iff in the non-flat part θ is an isomorphism. This implies (if $D \neq \emptyset$) up to an étale cover that $f: A \rightarrow X$ is a product $Z \times E \times_{X} E \times_{X} \cdots \times_{X} E$, where $E \rightarrow X$ is a modular family of elliptic curves and Z is a constant abelian variety.

Sketch of proof: Equality \Rightarrow local system is $\mathbb{L} \otimes \mathbb{U}_{1} \oplus \mathbb{U}_{2}$ with \mathbb{U}_{i} unitary. \mathbb{L} Higgs bundle of rank two, uniformizing: $\tilde{\varphi}: X \rightarrow \mathbb{H}$ period map. θ maximal $\Rightarrow \tilde{\varphi}$ locally biholomorphic, hence isomorphism and $X=\Gamma \backslash \mathbb{H}$.

Upshot: Extremal cases in Arakelov inequalities lead to special arithmetically defined families (also if $D=\emptyset$).

A Generalization: Hyperbolicity

Theorem (Viehweg-Zuo 01)
$\bar{f}: \bar{A} \rightarrow \bar{X}$ semistable family of m-folds over a curve \bar{X}, then for all $\nu \geq 1$ with $f_{*} \omega_{\bar{A} / \bar{X}}^{\nu} \neq 0$ one has

$$
\frac{\operatorname{deg}\left(f_{*} \omega_{\bar{A} / \bar{X}}^{\nu}\right)}{\operatorname{rank}\left(f_{*} \omega_{\bar{A} / \bar{X}}^{\nu}\right)} \leq \frac{m \cdot \nu}{2} \operatorname{deg} \Omega_{\bar{X}}^{1}(\log D)
$$

Corollary
$\bar{X}=\mathbb{P}^{1}, f$ not isotrivial, then $\sharp D \geq 3$ (since left side is >0).
Example
Non-isotrivial families of Calabi-Yau manifolds ($\nu=1$, called minimal in case of equality), here local Torelli holds.

Generalization to base X a surface

Theorem (Viehweg-Zuo 2005)
$f: \bar{A} \rightarrow \bar{X}$ semistable family of abelian varieties of dimension g over a surface \bar{X}, smooth over $X=\bar{X} \backslash D$, and with period map $\varphi: X \rightarrow A_{g}$ generically finite. Then:

$$
c_{1}\left(f_{*} \omega_{\bar{A} / \bar{X}}\right) \cdot c_{1}\left(\omega_{\bar{X}}(D)\right) \leq \frac{g}{4} c_{1}^{2}\left(\omega_{\bar{X}}(D)\right)
$$

Here $A_{g}:=\Gamma \backslash \mathbb{H}_{g}, \Gamma \subset S p_{g}(\mathbb{Z})$, where $\mathbb{H}_{g}=\operatorname{Sp}(\mathbb{R}) / U(g)$ is Siegel upper half space. A_{g} parametrizes all abelian varieties.

Equality

If one has equality, and the Griffiths-Yukawa Coupling
$\tau^{g}: \Lambda^{g} E^{1,0} \rightarrow \Lambda^{g-1} E^{1,0} \otimes E^{0,1} \otimes \Omega_{\bar{\chi}}^{1}(\log S) \rightarrow \cdots \rightarrow \Lambda^{g} E^{0,1} \otimes S^{g} \Omega_{\bar{\chi}}^{1}(\log S)$
does not vanish, then X is a generalized Hilbert modular surface.
If, in the above, $g=3$ and $\tau^{3}=0$, then

$$
c_{1}\left(f_{*} \omega_{\bar{A} / \bar{X}}\right) \cdot c_{1}\left(\omega_{\bar{X}}(D)\right) \leq \frac{2}{3} c_{1}^{2}\left(\omega_{\bar{X}}(D)\right)
$$

and X is a generalized Picard modular surface (ball quotient).
The proof uses again stability arguments.

Shimura varieties and special subvarieties

Shimura variety: $X=\Gamma \backslash G(\mathbb{R}) / K, \Gamma$ arithmetic subgroup.
G semisimple, adjoint algebraic group/ \mathbb{Q} of Hermitian type, i.e., $G(\mathbb{R}) / K$ Hermitian symmetric domain.

Examples: $G=S L_{2}$ and $G=S O(2,2)$: modular curves and Hilbert modular surfaces
$S O(2,19)$: Moduli space of polarized K 3 surfaces
$S p_{2 g}: A_{g}$
$S U(1, n)$: Ball quotients
Special subvariety: Image of $\Gamma^{\prime} \backslash H(\mathbb{R}) / K^{\prime} \xrightarrow{H \subset G} \Gamma \backslash G(\mathbb{R}) / K$. Totally geodesic + CM-point!

Problems for special subvarieties

André-Oort Conjecture: Let $Y^{0} \subset A_{g}$ be a smooth algebraic subvariety. If there are sufficiently many special subvarieties $C^{0} \subset Y^{0}$, then Y^{0} itself is special.

Solved by Jacob Tsimerman in 2015 for a dense infinite set of CM-points in A_{g}.

We want to use finitely many special curves.

Results for A_{g}

Theorem (SMS/Viehweg/Zuo 2009, 2011, 2015)
Let Y^{0} be a smooth, algebraic subvariety of A_{g} such that Y^{0} has unipotent monodromies at infinity. Assume there is a finite set $/$ of compactified special curves C_{i} with:
(BIG) The \mathbb{Q}-Zariski closure H of the monodromy representation of $\pi_{1}\left(\bigcup_{i \in I} C_{i}^{0}, y\right)$ in $G=\mathrm{Sp}_{2 g}$ equals the Zariski closure of the representation of $\pi_{1}\left(Y^{0}, y\right)$.
(LIE) H is of Hermitian type, and its Lie algebra $\mathfrak{h}=$ Lie $H(\mathbb{R})$ has Hodge decomposition $\mathfrak{h}_{\mathbb{C}}=\mathfrak{h}^{-1,1} \oplus \mathfrak{h}^{0,0} \oplus \mathfrak{h}^{1,-1}$ such that $\mathfrak{h}^{-1,1}=$ $T_{Y^{0}, y}$ for the holomorphic tangent space of Y^{0} at y.
(RPC) All special curves C_{i}^{0} satisfy relative proportionality.
Then, Y^{0} is a special subvariety of A_{g}.
Remarks: (LIE) and (RPC) are necessary. Condition (BIG) ?

Relative Proportionality for A_{g}

Definition (Relative Proportionality Condition)

Let $C \subset Y \subset \bar{A}_{g}$ be an irreducible special curve with logarithmic normal bundle $N_{C / Y}$ and Harder-Narasimhan filtration $N_{C / Y}^{\bullet}$. Then one has the relative proportionality inequality

$$
\operatorname{deg} N_{C / Y} \leq \frac{\operatorname{rank}\left(N_{C / Y}^{1}\right)+\operatorname{rank}\left(N_{C / Y}^{0}\right)}{2} \cdot \operatorname{deg} T_{C}\left(-\log S_{C}\right)
$$

If C^{0} and Y^{0} are special subvarieties of A_{g}, then equality holds (RPC).

Example: C^{0} special curve on a Hilbert modular surfaces, then

$$
\left(K_{X}+D\right) \cdot C+2 C^{2}=4 \delta+2 \varepsilon
$$

Sketch of Proof of the Theorem

Using H, we define a special subvariety

$$
Z^{0}=\Gamma \backslash H(\mathbb{R}) / K \subset A_{g}
$$

where Γ is the image of $\pi_{1}\left(\bigcup_{i \in I} C_{i}^{0}, y\right)$ in $G=\mathrm{Sp}_{2 g}$.
$\left.(\mathrm{RPC}) \Rightarrow T_{Y}\left(-\log S_{Y}\right)\right|_{C} \cong T_{C}\left(-\log S_{C}\right) \oplus N_{C \mid Y}$ (thickening).
$(\mathrm{RPC})+(\mathrm{BIG}) \Rightarrow$ we know all (p, p)-classes surviving over all points $y \in Y^{0}$ (coming from the C_{i}).
$($ RPC $)+(\mathrm{BIG})+($ LIE $) \Rightarrow Y^{0}=Z^{0}$ for dimension reasons.

Results for Mumford-Tate domains

Theorem (Abolfazl/SMS/Zuo 2015)
Let $X=\Gamma \backslash D$ be a Mumford-Tate variety, i.e., a locally symmetric quotient of a Mumford-Tate domain D associated to the MumfordTate group G. Let Y^{0} be a smooth, horizontal algebraic subvariety of X such that Y^{0} has unipotent monodromies at infinity. Assume (BIG), (LIE) and (RPC) as before.

Then, Y^{0} is a special subvariety of X of Shimura type.

Relative Proportionality for Mumford-Tate domains

Definition (Relative Proportionality Condition (RPC))
The curve $\varphi: C \rightarrow Y$ satisfies (RPC), if the slope inequalities

$$
\mu\left(N_{C / Y}^{i} / N_{C / Y}^{i-1}\right) \leq \mu\left(N_{C / X}^{i} / N_{C / X}^{i-1}\right), \quad i=0, \ldots, s
$$

are equalities. The sheaves $N_{C / X}^{i}$ come from the HN-filtration.

The length s depends on the Lie group G.

Modular Curves

A Modular Curve is a (non-compact) quotient $X=\Gamma \backslash \mathbb{H}$, where

$$
\Gamma \subset S L_{2}(\mathbb{Z})
$$

is an discrete, torsion-free, "arithmetic" subgroup.
「 can be a Congruence Subgroup: The curves

$$
X(N)=\Gamma(N) \backslash \mathbb{H}, \quad X_{1}(N)=\Gamma_{1}(N) \backslash \mathbb{H}, \quad X_{0}(N)=\Gamma_{0}(N) \backslash \mathbb{H},
$$

parametrize elliptic curves with additional structures:

$$
\begin{gathered}
X(N)=\left\{(E, \varphi) \mid \varphi: E_{\mathrm{N}-\text { tor }} \cong(\mathbb{Z} / N \mathbb{Z})^{2}\right\} \\
X_{1}(N)=\{(E, P) \mid N \cdot P=0\}, X_{0}(N)=\{(E, C) \mid C \cong \mathbb{Z} / N \mathbb{Z}\}
\end{gathered}
$$

For $N \geq 3$ there is a universal family $f: A(N) \rightarrow X(N)$ of elliptic curves over $X(N)$, everything defined over \mathbb{Q}.

Hilbert modular surfaces

F totally real number field of degree d.
Lie group is $G=\operatorname{Res}_{F / \mathbb{Q}} S L_{2} \subset S L_{2} \times S L_{2} \times \cdots \times S L_{2}($ d-fold product)
$\Gamma \subset S L_{2}\left(\mathcal{O}_{F}\right)$ (torsion-free) arithmetic subgroup.
Hilbert modular variety: $X=\Gamma \backslash G(\mathbb{R}) / K$ carries a family of d-dim. abelian varieties with extra endomorphisms.

Hilbert modular surface: $X=\Gamma \backslash \mathbb{H} \times \mathbb{H}$.

Ball quotients/Picard modular surfaces

\mathcal{O} ring of integers for imaginary quadratic number field, e.g. $\mathcal{O}=\mathbb{Z}\left[\frac{-1+\sqrt{-3}}{2}\right] \subset \mathbb{Q}(\sqrt{-3})$.

Picard modular surfaces: $X=\Gamma \backslash \mathbb{B}_{2}$, where $\Gamma \subset U(2,1 ; \mathcal{O})$ arithmetic subgroup, i.e., X is a special surface in A_{3}.

