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The study of Riemannian manifolds with positive sectional curvature has a long
history. There are very few known examples, many of them are homogeneous:
compact rank one symmetric spaces and certain homogeneous spaces in
dimensions 6, 7, 12, 13 and 24 due to Berger [6], Wallach [33], and
Aloff – Wallach [4]. The homogeneous spaces that admit invariant metrics with
positive sectional curvature have been classified by Bérard Bergery, Berger, and
Wallach [5, 6, 33]. As was recently observed by J. A. Wolf and M. Xu [35],
there is a gap in Bérard Bergery’s classification of odd dimensional positively
curved homogeneous spaces in the case of the Stiefel manifold
Sp(2)/U(1) = SO(5)/SO(2). A refined proof of the suitable result was
obtained by B. Wilking, see Theorem 5.1 in [35]. The recent paper [34] by
B. Wilking and W. Ziller gives a new and short proof of the classification of
homogeneous manifolds of positive curvature. A detailed exposition of various
results on the set of invariant metrics with positive sectional curvature, the best
pinching constant, and full connected isometry groups could be found in the
papers by Püttmann, Shankar, Valiev, Verdiani, Ziller, and Vol’per
[25, 27, 28, 29, 30, 31, 32].
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It is a natural type of problems to investigate whether or not the positiveness of
the sectional curvature or positiveness of the Ricci curvature is preserved under
the Ricci flow. This idea is based on original results of R. Hamilton [15].
A recent survey on the evolution of positively curved Riemannian metrics under
the Ricci flow could be found in the survey by Lei Ni [20]. Interesting results on
the evolution of invariant Riemannian metrics could also be found in the papers
by Böhm, Wilking, Buzano, Jablonski, Lafuente, Lauret, Payne, Cheung, and
Wallach [8, 10, 11, 14, 17, 18, 24, 13] and the references therein. Sometimes it
is helpful to use the (volume) normalized Ricci flow, see details e. g. on
pp. 259–260 of [15]. The main object of our study in this paper are
the Wallach spaces

W6 := SU(3)/Tmax,

W12 := Sp(3)/Sp(1) × Sp(1) × Sp(1),

W24 := F4/Spin(8)

(1)

that admit invariant Riemannian metrics of positive sectional curvature [33].
Note that the Wallach spaces are the total spaces of the following submersions:

S2 → W6 → CP
2, S4 → W12 → HP

2, S8 → W24 → CaP
2.
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In the papers [2] and [3] by N. A. Abiev, A. Arvanitoyeorgos, Yu. G. Nikonorov,
and P. Siasos, the authors studied the normalized Ricci flow equation

∂

∂t
g(t) = −2Ricg + 2g(t)

Sg

n
(2)

on one special class of Riemannian manifolds Mn called generalized Wallach
spaces (or three-locally-symmetric spaces in other terms) according to the
definitions of [19] and [23], where g(t) means a 1-parameter family of
Riemannian metrics, Ricg is the Ricci tensor and Sg is the scalar curvature of
the Riemannian metric g.
Generalized Wallach spaces are characterized as compact homogeneous spaces
G/H whose isotropy representation decomposes into a direct sum

p = p1 ⊕ p2 ⊕ p3 (g = h ⊕ p)

of three Ad(H)-invariant irreducible modules satisfying

[pi, pi] ⊂ h, i ∈ {1, 2, 3},

see e. g. [19, 21].
The complete classification of generalized Wallach spaces is obtained recently
(independently) in the papers by Z. Chen, Y. Kang, K. Liang [12] and by
Yu. G. Nikonorov [22].
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For a fixed bi-invariant inner product 〈·, ·〉 on the Lie algebra g of the Lie group
G, any G-invariant Riemannian metric g on G/H is determined by an
Ad(H)-invariant inner product

(·, ·) = x1〈·, ·〉|p1
+ x2〈·, ·〉|p2

+ x3〈·, ·〉|p3
, (3)

where x1, x2, x3 are positive real numbers.
Therefore, the space of such metrics is 2-dimensional up to a scale factor. Any
metric with x1 = x2 = x3 is called normal, whereas the metric with
x1 = x2 = x3 = 1 is called standard or Killing.

For the Wallach spaces W6, W12, W24, we have

dim(p1) = dim(p2) = dim(p3) =: d ,

where d is equal to 2, 4, 8 respectively.
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On the given Wallach space G/H, the subspace of invariant metrics satisfying
xi = xj for some i 6= j, is invariant under the normalized Ricci flow, because
these special metrics have a larger connected isometry group. Indeed, such a
metric (x1, x2, x3) admits additional isometries generated by the right action of
the group K ⊂ G with the Lie algebra

k := h ⊕ pk, {i, j, k} = {1, 2, 3},

see details in [22].

All such metrics are related to the above mentioned submersions of the form
K/H → G/H → G/K, coming from inclusions H ⊂ K ⊂ G, see e. g. [7,
Chapter 9]. In what follows we call these metrics exceptional or submersion
metrics. These metrics constitute three one-parameter families up to a
homothety. All other metrics we call generic or non-exceptional.
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We briefly describe the evolution of submersion metrics under the normalized
Ricci flow. Without loss of generality we may consider the family

(x1, x2, x3) = (x−1/3, x−1/3, x2/3), x ∈ R+.

It comes from changing the scaling of the fibre and the base with keeping of
the volume. Here x is the ratio of the multiples of the normal metric on the
fibre and on the base. Since this family is invariant under the Ricci flow, the
behavior of the Ricci flow can be read off the behavior of the scalar curvature
function S(x). The Ricci flow is a gradient flow in this case.

The point x = 1 (the normal metric) is a local minimum and the second
Einstein metric (which is the Kähler — Einstein for W6) is a local maximum.
It is well-known, that when starting with the normal homogeneous metric and
shrinking the fibre (i. e. x < 1), these metrics will have positive sectional
curvature, moreover, S(x) → ∞ as x → 0. Note also that the non-normal
Einstein metric has positive Ricci curvature but mixed sectional curvature. It is
clear also that S(x) < 0 for sufficiently large x. This give us qualitative picture
of the Ricci flow’s behavior on submersion metrics. We illustrate this by
Figures 1 and 2 for W6. More general constructions of the canonical variation
for submersion metrics one can find in the Besse book [7, 9.72].
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Fig. 1: The scalar curvature of submersion metrics on the Wallach
space W6: the point x = 1 (the normal metric) is a local minimum,
the point x = 2 (the Kähler – Einstein metric) is a local maximum.
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Fig. 2: The scalar curvature of submersion metrics on the Wallach
space W6: the point x = 1 (the normal metric) is a local minimum,
the point x = 2 (the Kähler – Einstein metric) is a local maximum.
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Taking into account the above description of the Ricci flow on submersion
metrics, we preferably deal with generic invariant metrics
on the Wallach spaces. Our first main result is the following

Theorem (Theorem 1)

On the Wallach spaces W6, W12, and W24, the normalized Ricci flow evolves
all generic metrics with positive sectional curvature into metrics with mixed
sectional curvature.

Moreover, it is proved that the normalized Ricci flow removes every generic
metric from the set of metrics with positive sectional curvature in a finite time
and does not return it back to this set. This finite time depends of the initial
points and could be as long as we want.

Theorem 1 easily implies the following result by Man-Wai Cheung and
N. R. Wallach [13]: on the Wallach spaces W6, W12, and W24, the normalized
Ricci flow evolves some metrics with positive sectional curvature into metrics
with mixed sectional curvature.
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Our second main result is related to the evolution of metrics with positive Ricci
curvature.

Theorem (Theorem 2)

On the Wallach spaces W12 and W24, the normalized Ricci flow evolves all
generic metrics with positive Ricci curvature into metrics with mixed Ricci
curvature.

Moreover, the normalized Ricci flow removes every generic metric from the set
of metrics with positive Ricci curvature in a finite time and does not return it
back to this set. This finite time depends of the initial points and could be as
long as we want.

Note also that the normalized Ricci flow can evolve some metrics with mixed
Ricci curvature to metrics with positive Ricci curvature. Moreover, there is a
non-extendable integral curve of the normalized Ricci flow with exactly one
metric of non-negative Ricci curvature.
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In the paper [10], C. Böhm and B. Wilking studied (in particular) some
properties of the (normalized) Ricci flow on the Wallach space W12. They
proved that the (normalized) Ricci flow on W12 evolves certain positively curved
metrics into metrics with mixed Ricci curvature (see Theorem 3.1 in [10]).

The same assertion for the space W24 obtained by Man-Wai Cheung and
N. R. Wallach in [13] (see Theorem 3 in [13]). On the other hand, it was
proved in Theorem 8 of [13] that every invariant metric with positive sectional
curvature on the space W6 retains positive Ricci curvature under the Ricci flow.
Hence, Theorem 2 fails for W6.

Note also that for some invariant metrics with positive Ricci curvature on W6,
the Ricci flow can evolve them to metrics with mixed Ricci curvature, see
Theorem 3 in [13].

We emphasize that the special status of W6 follows from Proposition 1 below
and the description of the boundary of R, the set of metrics with positive Ricci
curvature (13).
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The Ricci curvature of invariant Riemannian metrics on a given generalized
Wallach space be easily expressed in terms of the variables x1, x2, x3 (that are
the multiples of the normal metrics) and special constants a1, a2, a3, that
determine many geometric properties of this generalized Wallach space, see
details e. g. in [2].

Note that a1 = a2 = a3 =: a for the Wallach spaces W6, W12, and W24.
Moreover, for these spaces, a is equal to 1/6, 1/8, 1/9 respectively.

We deal also with all generalized Wallach spaces with the property
dim(p1) = dim(p2) = dim(p3), which is just equivalent to
a1 = a2 = a3 =: a (see [2]). We will consider such spaces only for
a ∈ (0, 1/4) ∪ (1/4, 1/2), because every generalized Wallach space with
a = 1/4 has very special properties, e. g. it admits a unique Einstein metric
up to a homothety, see [2] for detailed discussion.
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Theorem 2 can be extended to some other generalized Wallach spaces.

Theorem (Theorem 3)

Let G/H be a generalized Wallach space with a1 = a2 = a3 =: a, where
a ∈ (0, 1/4) ∪ (1/4, 1/2). If a < 1/6, then the normalized Ricci flow evolves all
generic metrics with positive Ricci curvature into metrics with mixed Ricci
curvature. If a ∈ (1/6, 1/4)∪ (1/4, 1/2), then the normalized Ricci flow evolves
all generic metrics into metrics with positive Ricci curvature.

For instance, the spaces Sp(3k)/Sp(k) × Sp(k) × Sp(k) correspond to the
case a = k

6k+2
< 1/6, whereas the spaces SO(3k)/SO(k) × SO(k) × SO(k),

k > 2, correspond to the case 1/6 < a = k
6k−4

< 1/4. Note also that

SO(6)/SO(2) × SO(2) × SO(2) corresponds to a = 1/4, that is a very special
case of generalized Wallach spaces with a unique Einstein invariant metric up
to a homothety, and SO(3) correspond to a = 1/2, the maximal possible value
for a = a1 = a2 = a3, see details in [2] and [3]. It is interesting also that 1/9 is
the minimal possible value for a = a1 = a2 = a3 among non-symmetric
generalized Wallach spaces, see [22].
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It should also be noted that there are many generalized Wallach spaces with
a = 1/6, for example, the spaces SU(3k)/S(U(k) × U(k) × U(k)). All these
spaces are Kähler C-spaces, see [22]. We state the following result, that
generalizes Theorem 8 of [13].

Theorem (Theorem 4)

Let G/H be a generalized Wallach space with a1 = a2 = a3 = 1/6. Suppose
that it is supplied with the invariant Riemannian metric (3) such that
xk < xi + xj for all indices with {i, j, k} = {1, 2, 3}, then the normalized Ricci
flow on G/H with this metric as the initial point, preserves the positivity of the
Ricci curvature.

It should be noted that xk = xi + xj is just the unstable manifold of the
Kähler – Einstein metric for all generalized Wallach spaces with a = 1/6.
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Recall that the Ricci operator Ric of the metric (3) is given by

Ric = r1 Id|
p1

+ r2 Id|
p2

+ r3 Id|
p3

,

where

ri :=
xjxk + a(x2

i − x2
j − x2

k)

2x1x2x3

are the principal Ricci curvatures, {i, j, k} = {1, 2, 3}. Hence, the scalar
curvature of this metric is

S = d ·
x1x2 + x1x3 + x2x3 − a(x2

1 + x2
2 + x2

3)

2x1x2x3
.

By using the above equalities, the (volume) normalized Ricci flow equation (2)
on the Wallach spaces can be reduced to a system of ODE’s of the following
form:

dxi

dt
= −2xi(t)

„

ri −
S

n

«

, i = 1, 2, 3, (4)

where n = dim(p1) + dim(p2) + dim(p3).
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Note that the metric (3) has the same volume as the standard metric if and
only if x1x2x3 = 1. It suffices to prove Theorems 1, 2, 3, and 4 only for
invariant metrics with

Vol = x1x2x3 ≡ 1. (5)

Indeed, the case of general volume is reduced to this one by a suitable
homothety. This observation is the main argument to apply the normalized
Ricci flow instead of the non-normalized Ricci flow in the case of the Wallach
spaces, as far as in the case of generalized Wallach spaces, see details in [2]
and [3].
It is easy to check that Vol = x1x2x3 is a first integral of the system (4).
Therefore, we can reduce (4) to the following system of two differential
equations on the surface (5):

dx1

dt
=

`

x1x
−1
2 + x2

1x2 − 2
´

− 2ax1

`

2x2
1 − x2

2 − x−2
1 x−2

2

´

,

dx2

dt
=

`

x2x
−1
1 + x1x

2
2 − 2

´

− 2ax2

`

2x2
2 − x2

1 − x−2
1 x−2

2

´

.
(6)

Yurii Nikonorov The evolution of positively curved . . .



Introduction and main results
How to handle
How to prove

Additional remarks

We consider also a system of ODE’s obtaining in scale invariant variables

w1 :=
x3

x1
, w2 :=

x3

x2
. (7)

Since (4) is autonomous and

1

wi

dwi

dt
=

1

x3

dx3

dt
−

1

xi

dxi

dt
= −2(r3 − ri),

for i = 1, 2, then (4) can be reduced to the following system for w1 > 0 and
w2 > 0:

dw1

dt
= f(w1, w2) := (w1 − 1)(w1 − 2aw1w2 − 2aw2),

dw2

dt
= g(w1, w2) := (w2 − 1)(w2 − 2aw1w2 − 2aw1),

(8)

where t := tx3 is a new time-parameter not changing integral curves and their
orientation (x3 > 0).

One can prove the above mentioned theorems with using either the system (6)
or the system (8) as the main tool. Comparisons show that the system (8) in
the scale invariant variables (w1, w2) is more convenient. On the other hand,
we prefer to give visual interpretations of the results in both coordinate systems
(w1, w2) and (x1, x2).
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Lemma

Let w1 > 0 and w2 > 0. Then
1) The curves c1, c2 and c3 determined by the equations

w2 = 1, w1 = 1 and w2 = w1

respectively are invariant sets of the system (8);
2) At a 6= 1/4, the system (8) has exactly four different singular points
E0 = (1, 1), E1 = (q, 1), E2 = (1, q), E3 =

`

q−1, q−1
´

, where

q := 2a(1 − 2a)−1. Moreover, E1, E2 and E3 are hyperbolic saddles and E0 is
a hyperbolic unstable node.

The curves c1, c2 and c3 have the common point E0 and separate the domain
(0,∞)2 into 6 connected invariant components (see Figure 3). The study of
normalized Ricci flow in each pair of these components are equivalent due to
the following property of the Wallach spaces: there is a finite group of
isometries fixing the isotropy and permuting the modules p1, p2, and p3.
Therefore, it suffices to study solutions of (8) with initial points given only in
the following set

Ω :=
˘

(w1, w2) ∈ R
2 | w2 > w1 > 1

¯

. (9)
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Fig. 3: The curves c1, c2, c3 and the singular points E0, E1, E2, E3

corresponding to the system (8) for a = 1/8.
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A simple analysis of the right hand sides of the system (8) provides elementary
tools for studying the behavior of its integral curves. For instance, we can
predict the slope of integral curves of (8) in Ω and interpret them geometrically
etc.

According to this observations, let us consider the curves

ω :=
˘

(w1, w2) ∈ R
2
+ | w1 − 2aw1w2 − 2aw2 = 0

¯

,

λ :=
˘

(w1, w2) ∈ R
2
+ | w2 − 2aw1w2 − 2aw1 = 0

¯

.

Note that the curves ω and λ consist of invariant metrics with the equality
r3 = r1 and r3 = r2 for the principal Ricci curvatures, see Figure 4.

Yurii Nikonorov The evolution of positively curved . . .



Introduction and main results
How to handle
How to prove

Additional remarks

Fig. 4: The curves c1, c2, c3 and the singular points E0, E1, E2, E3

corresponding to the system (6) for a = 1/8.
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The domain of positive sectional curvature D \ {(1, 1)}

A detailed description of invariant metrics of positive sectional curvature on the
Wallach spaces (1) was given by F. M. Valiev in [28]. We reformulate his
results in our notation. It should be noted that this description is universal for
all Wallach spaces.
Recall that we deal with only positive xi. Let us consider the functions

γi = γi(x1, x2, x3) := (xj − xk)2 + 2xi(xj + xk) − 3x2
i ,

where {i, j, k} = {1, 2, 3}. Note that under the restrictions xi > 0, the
equations γi = 0, i = 1, 2, 3, determine cones congruent each to other under
the permutation i → j → k → i. Note also that these cones have the empty
intersections pairwise.

According to results of [28] and the symmetry in γ1, γ2, and γ3 under
permutations of x1, x2, and x3, the set of metrics with non-negative sectional
curvature is the following:

˘

(x1, x2, x3) ∈ R
3
+ | γ1 ≥ 0, γ2 ≥ 0, γ3 ≥ 0

¯

. (10)
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The domain of positive sectional curvature D \ {(1, 1)}

By Theorem 3 in [28] and the above mentioned symmetry, the set of metrics
with positive sectional curvature is the following:

˘

(x1, x2, x3) ∈ R
3
+ | γ1 > 0, γ2 > 0, γ3 > 0

¯

\
˘

(t, t, t) ∈ R
3 | t > 0

¯

. (11)

Let us describe the domain of positive sectional curvature in the coordinates
(w1, w2). Denote by si curves on the plane (w1, w2) determined by the
equations γi

`

1
w1

, 1
w2

, 1
´

= 0 (see Figure 5 and also Figure 6 for other

coordinates). For w1 > 0 and w2 > 0, these equations are respectively
equivalent to

l1 := w2
1w2

2 − 2w2
1w2 + 2w1w

2
2 + w2

1 + 2w1w2 − 3w2
2 = 0,

l2 := w2
1w2

2 + 2w2
1w2 − 2w1w

2
2 − 3w2

1 + 2w1w2 + w2
2 = 0,

l3 := −3w2
1w2

2 + 2w2
1w2 + 2w1w

2
2 + w2

1 − 2w1w2 + w2
2 = 0.

(12)

It is easy to check that (10) is a connected set with a boundary consisting of
the union of the cones γ1 = 0, γ2 = 0 and γ3 = 0. Therefore, solving the
system of inequalities γi

`

1
w1

, 1
w2

, 1
´

> 0, i = 1, 2, 3, we get a connected

domain on the plane (w1, w2) bounded by the curves s1, s2 and s3. Let us
denote it by D.
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Fig. 5: The curves s1, s2, s3 corresponding to the system (8).
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Fig. 6: The curves s1, s2, s3 corresponding to the system (6).
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Fig. 7: The case a = 1/8: The phase portraits of the system (8).
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Fig. 8: The case a = 1/8: The phase portraits of the system (6).
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The domain of positive Ricci curvature R

Let us describe the set R of invariant metrics with positive Ricci curvature on
the given Wallach space. Since the principal Ricci curvatures ri are expressed

as
xjxk+a(x2

i −x2

j−x2

k)

2x1x2x3
, we consider the functions

ki := xjxk + a(x2
i − x2

j − x2
k),

where xi > 0, i 6= j 6= k 6= i, i, j, k ∈ {1, 2, 3}.
Now, consider the description of the domain R in the coordinates (w1, w2).
Denote by ri curves determined by the equations ki

`

1
w1

, 1
w2

, 1
´

= 0

respectively (see Figure 9). For w1 > 0 and w2 > 0, these equations are
respectively equivalent to

ρ1 := −aw2
1w2

2 − aw2
1 + aw2

2 + w2
1w2 = 0,

ρ2 := −aw2
1w2

2 + aw2
1 − aw2

2 + w1w
2
2 = 0,

ρ3 := aw2
1w2

2 − aw2
1 − aw2

2 + w1w2 = 0.

(13)

We easily get on the plane (w1, w2) a connected domain R bounded by the
curves r1, r2 and r3 solving the system of inequalities ki

`

1
w1

, 1
w2

, 1
´

> 0,
i = 1, 2, 3.

Yurii Nikonorov The evolution of positively curved . . .



Introduction and main results
How to handle
How to prove

Additional remarks

Fig. 9: The case a = 1/8: The curves r1, r2, r3 and the points
P1, P2, P3 corresponding to the system (8).
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Fig. 10: The case a = 1/8: The curves r1, r2, r3 and the points
P1, P2, P3 corresponding to the system (8).
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In the Figure 11 we can see the domain R together with the phase portraits of
the systems (8) for a = 1/8.

The point Q is a unique point on the “necessary” part of the boundary of R,
such that the normalized Ricci flow is tangent to ∂(R).

The corresponding picture for the the systems (6) is in the Figure 12.
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Fig. 11: The case a = 1/8: The phase portraits of the system (8).
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Fig. 12: The case a = 1/8: The phase portraits of the system (6).
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The main idea

The main idea is to compare the growth rates of trajectories of the normilazed
Ricci flow and the corresponding parts of the boundaries ∂(D) and ∂(R) in the
coordinate system w1, w2. It is useful to deal with the set
Ω =

˘

(w1, w2) ∈ R
2 | w2 > w1 > 1

¯

and with the asymptotic presentations

(for curves) of the type w2 ∼ C · (w1 − 1)−α as w1 → 1 + 0 for some
positive C and some real α.

Proposition (Proposition 1)

Suppose that a curve γ given in Ω satisfies the asymptotic equality

w2 ∼ C · (w1 − 1)−α as w1 → 1 + 0,

where α > 0, C > 0. Then the following assertion holds: If 1−2a
4a

< α

(respectively, 1−2a
4a

> α), then every integral curve (w1(t), w2(t)) of (8) in Ω
lies under (respectively, over) γ for sufficiently large t.
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Sketch of the proof of Theorem 1

Sketch of the proof of Theorem 1. Without loss of generality consider only the
part D ∩ Ω of D. Consider any trajectory

`

w1(t), w2(t)
´

of (8) initiated at

(w0
1, w0

2) ∈ D ∩ Ω.

The equation of s3 (see (12)) has an unique positive solution

w2 ∼
1

2
(w1 − 1)−1/2 as w1 → 1 + 0.

It describes the “upper” part of the boundary of D ∩ Ω. Therefore, we have
α = 1/2 in Proposition 1. Since 1−2a

4a
> α = 1/2 whenever 0 < a < 1/4 the

trajectory
`

w1(t), w2(t)
´

lies over the curve s3 for w1 → 1 + 0 (corresponding
to t → +∞).

Hence, there exists a point on the curve s3 ∩ Ω at which
`

w1(t), w2(t)
´

intersects s3 ∩ Ω and leaves the set D.
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Sketch of the proof of Theorem 2 and Theorem 3

Sketch of the proof of Theorem 2 and Theorem 3. It is sufficient to consider
only the set R ∩ Ω, where Ω given by (9).
The equation ρ1 = 0 for the curve r1 (see (13)) has the solution

w2 ∼
1

2a
(w1 − 1)−1 as w1 → 1 + 0 ,

corresponding to the “upper” part γ of the curve r1, which is the “upper” part
of the boundary of R ∩ Ω, the set of metric with positive Ricci curvature in Ω.

Consider the case a ∈ (0, 1/6) and any trajectory
`

w1(t), w2(t)
´

of the

system (8) initiated at a point of R ∩ Ω. Note that 1−2a
4a

> 1 for all

0 < a < 1/6. Then according to Proposition 1 the trajectory
`

w1(t), w2(t)
´

lies over γ for w1 → 1 + 0 (corresponding to t → +∞).

Now, consider the case a ∈ (1/6, 1/4) ∪ (1/4, 1/2). Clearly, 1−2a
4a

< 1 for all
a ∈ (1/6, 1/2). Proposition 1 implies that the normalized Ricci flow evolves
every initial metric in Ω into metrics with positive Ricci curvature.
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Sketch of the proof of Theorem 4

Sketch of the proof of Theorem 4. It is easy to check that the set of metrics
with the property xi = xj + xk is an invariant set of the system (4) with right
hand sides Fi := −2xi(t)

`

ri −
S
n

´

for a = 1/6.
Hence, in the scale invariant coordinates (w1, w2) we have an invariant curve
w−1

1 + w−1
2 = 1 of the system (8) passing through the point E3 = (2, 2). Since

E3 is a saddle of the system (8), the curve w−1
1 + w−1

2 = 1 is necessarily
one of the separatrices (more exactly, the unstable manifold) of this point E3

(obviously the line w2 = w1 is the second separatrix).
We may suppose that the initial metric is in Ω. By the above discussion, the

set
n

(w1, w2) |w2 < w1

w1−1

o

∩ Ω is an invariant set of the system (8). Simple

calculations show that the curve
n

(w1, w2) |w2 = w1

w1−1

o

∩ Ω lies under the

curve r1 ∩ Ω ⊂ ∂(R). Hence, every trajectory of (8) initiated in the set
n

(w1, w2) |w2 < w1

w1−1

o

∩ Ω remains in the domain R ∩ Ω, that proves the

theorem.

It should be noted that the metrics (3) with xi = xj + xk constitute the set of
Kähler invariant metrics for W6.
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Fig. 13: The case a = 1/6: The domains of positive sectional and
positive Ricci curvatures, Kähler metrics, the phase portraits of the
system (8).
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Fig. 14: The case a = 1/6: The domains of positive sectional and
positive Ricci curvatures, Kähler metrics, the phase portraits of the
system (6).
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The evolution of the scalar curvature

For completeness of the exposition, we discuss shortly the evolution of the
scalar curvature under normalized Ricci flow. We have the following general
result related to the evolution of G-invariant metrics on a homogeneous space
G/H under the normalized Ricci flow.

Proposition (Proposition 2, R. S. Hamilton [16], J. Lauret [18])

Let (M = G/H, g0) be a Riemannian homogeneous space. Consider the
solution of the normalized Ricci flow (2) on M with g(0) = g0. Then

∂S

∂t
= 2 ‖Ricg‖

2 −
2

n
· S2,

where S = S(t) is the scalar curvature of metrics g(t) and n = dim(M). In
particular, the scalar curvature t 7→ S(t) increases unless g0 is Einstein.
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Therefore, we see that the normalized Ricci flow (on every compact
homogeneous space) with an invariant Riemannian metric of positive scalar
curvature as the initial point, do not leave the set of the metrics with positive
scalar curvature.

For the Wallach space W12, we reproduce an illustration for this observation in
Figure 15 (the curve s is the boundary of the set of metrics with positive scalar
curvature). Note, that the curve s satisfies the equation

a
`

w2
1w2

2 + w2
1 + w2

2

´

− w2
1w2 − w1w

2
2 − w1w2 = 0.

The corresponding picture for the coordinate system x1, x2, we reproduce in
Figure 16.
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Fig. 15: The case a = 1/8: The curve s for the system (8).
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Fig. 16: The case a = 1/8: The curve s for the system (6).
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Finally, we reproduce additional illustrations suggested us by Wolfgang Ziller.
We draw our pictures for the system (4) in the plane x1 + x2 + x3 = 1. These
pictures preserves the dihedral symmetry of the initial problem.

We reproduce in Figure 17 the domains of positive sectional, positive Ricci, and
positive scalar curvatures (we denote them by D, R, and S respectively) of the
system (4) in the plane x1 + x2 + x3 = 1 for a = 1/8.

We also reproduce the phase portrait (of the tangent component) for the
system (4) in Figure 18. Note that Riemannian metrics constitute a triangle
and the set S is bounded by a circle.
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Fig. 17: The case a = 1/8: The domains of positive sectional,
positive Ricci, and positive scalar curvatures in the plane
x1 + x2 + x3 = 1.
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Fig. 18: The case a = 1/8: The domains of positive sectional,
positive Ricci, and positive scalar curvatures, the phase portrait of
the system (4) in the plane x1 + x2 + x3 = 1.
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Similar pictures could be produced for a = 1/9 and a = 1/6. We reproduce
here only Figure 19 for a = 1/6, because the space W6 admits Kähler invariant
metrics, that constitute a small triangle in Figure 19.

Note also that three non-normal Einstein metrics in this case are
Kähler – Einstein and one can easily get main properties of
the Kähler – Ricci flow on the space W6 using this picture.
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Fig. 19: The case a = 1/6: The domains of positive sectional,
positive Ricci, and positive scalar curvatures, Kähler metrics, the
phase portrait of the system (4) in the plane x1 + x2 + x3 = 1.
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Thank you for your time and attention!
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