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INTRODUCTION

Let (M, g) be a (n + 2)-dimensional Lorentz manifold (a pseudo-Riemannian
manifold with signature (−,+, ...,+)).

Lightlike hypersurface

A lightlike hypersurface in M is a smooth co-dimension one embedded
submanifold ψ : L → M such that the pullback of the metric g to L is
degenerate at every point: Rad(TpL) := (TpL)⊥ ∩ TpL 6= {0} for all p ∈ L.

The first picture is taken from R. Penrose: Rev. Mod. Phys. 37, 215 (1965)
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Let ψ : L → M be a lightlike hypersurface of a Lorentz manifold.

Rad(TpL) := (TpL)⊥ ∩ TpL 6= {0}, p ∈ L

Rp = Rad(TpL) defines a 1-dimensional distribution on L.

⇓

Intrinsical geometry: there is no distinguished linear connection on L, in
general.

Extrinsical geometry: the normal vector fiber bundle (TL)⊥ = R ⊂ TL is
not transverse to L.

TM|L 6= TL ⊕ (TL)⊥
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Several motivations...

1) Cauchy Horizons H+(S)
For an acronal spacelike hypersurface S in a Lorentz manifold, the Cauchy
horizon H+(S) marks the limit of the spacetime region controled by S .

2) Degenerate orbits of Lorentz isometric actions.

Let G be a Lie group acting isometrically on a Lorentz manifold (M, g). Any
orbit which is lightlike at a point is lightlike everywhere and hence yields a
lightlike submanifold of M.

3) Lightlike cones on Lorentz manifolds.

The Gauss lemma implies that for every p ∈ M, the exponential map expp
applies a portion of the lightlike cone in TpM on a lightlike hypersurface in M.

4) Lorentz manifolds foliated by lightlike hypersurfaces.

Cahen-Wallach spaces.

2-symmetric Lorentzian spaces (which are not 1-symmetric).

Plane-fronted waves.
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A quotient construction for the extrinsical study of lightlike hypersurfaces.

It was introduced by Kupeli (1987) and developed by Galloway (2000)...

For a lightlike hypersurface ψ : L → (M, g) which admits a (global non
vanishing) lightlike vector field Z ∈ X(L) and radical distribution R.
The quotient vector fiber bundle TL/R inherits a Riemannian metric

ḡ([x ], [y ]) = g(x , y), [x ], [y ] ∈ TpL/Rp.

We can introduce (with respect to Z):

The null Wiengarten operator (∇g the Levi-Civita connection of M)

A : TpL/Rp → TpL/Rp, A[x ] = [∇g
xZ]

The null second fundamental form

II : TpL/Rp × TpL/Rp → R, II([x ], [y ]) = ḡ(A[x ], [y ]).

This technique seems to provide an accurate method to study the extrinsical
geometry of L.
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An ad hoc technique for the intrinsical study of lightlike hypersurfaces.

Introduced by Duggal and Bejancu in 1996.

Let ψ : L → (M, g) be a lightlike hypersurface.

Fix an arbitrary n-distribution S(L) (the Screen distribution) on L such that
TL = R⊕ S(L). Then,

1 S(L) inherits a Riemannian metric.

2 There exists a unique lightlike transverse vector fiber bundle tr(L)
orthogonal to S(L) such that

TM |L= TL ⊕ tr(L).

For X ,Y ∈ X(L), the following decompositions strongly depend on S(L).

∇g
XY = ∇XY + σ

S(L)
(X ,Y ), Gauss equation

The induced linear connection ∇ on L depends on S(L).

∇g = 0 ⇔ σ
S(L)

= 0 ⇔ L is totally geodesic.
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In the above case, the connection depended on an arbitrary choice of a screen
distribution.
Is there some way of constructing a torsion free metric linear connection on L?: NOO!

Duggal-Jin, 2007

A torsion free linear connection on a lightlike hypersurface L compatible
with g exists if and only if R is a Killing distribution.
Even in this case, there is an infinitude of connections with none
distinguished.

For a lightlike hypersurface ψ : L → (M, g), the distribution R is said to
be Killing when every vector field Z ∈ R is Killing (LZg = 0.)

m
There are coordinates systems (r , x1, ..., xn) such that ∂

∂r spans R and

∂gij

∂r
= 0.
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Summing up... from my point of view:

1 The Screen distribution construction is not a good approach to study
intrinsic geometric properties of L.

2 The lightlike hypersurfaces are conformal invariants. It would be desirable
certain conformal invariance.

Natural questions

Is it possible to construct an intrinsic geometric structure on L ?

This intrinsic geometric structure should be independent of any arbitrary
election...

... and should provide local invariants which permit to distinguish locally
two lightlike manifolds.

Although I do not have a definitive answer to the above questions, let me
introduce you the tangle of ideas I have developed hoping to find these
geometric structures.
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A new suitable definition

Let us start with an intrinsic definition of lightlike manifold L of signature (p, q)

Lightlike manifolds

A lightlike manifold of signature (p, q) is a pair (Lp+q+1, h) where

h ∈ T0,2(L) is a symmetric tensor (the degenerate metric tensor).

Rad(h) := R defines a 1-dimensional distribution on L
(i.e., the radical is the smallest possible).

The quotient vector fiber bundle TL/R inherits a pseudo-Riemannian
metric h̄ of signature (p, q)

h̄([u], [v ]) = h(u, v), [u], [v ] ∈ TxL/Rx

for x ∈ L.

The main ideas to study this kind of intrinsic geometric structure on L will
come from the notion of Cartan geometry.
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KLEIN AND CARTAN GEOMETRIES

In the early 1920s, Elie Cartan found a common generalization for the
Klein’s Erlangen program and Riemann geometry. He called Espaces
généralizés and now we call Cartan Geometries.

Elie Cartan (1869-1951) (Wikimedia Commons) Charles Ehresmann (1905-1979)

Around 1950, Charles Ehresmann gave for the first time a rigorous global
definition of a Cartan connection as a particular case of a more general
notion now called Ehresmann connection (principal connections).

This is the point of view of the influential book Foundations of Differential
Geometry, Volumes I and II by S. Kobayashi and K. Nomizu.
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First step: Klein Geometry. The Homogeneous model G/H

1 G is a Lie group and H a closed subgroup of G such that G/H is
connected and is considered with a geometric structure such that:

2 The left translations, `g for g ∈ G , are all the automorphisms of the
geometric structure (even locally).

Second step: Cartan connection on M modeled on (G ,H)

The Cartan connection permits to associate a differential geometric structure
to M and so M may be thought as a curved analog of the homogeneous space
G/H.

Third step: The equivalence problem

Starting from the differential geometric structure on M, is it possible to
construct a (unique) Cartan connection on M modeled on (G ,H) such that the
related geometric structure from second step is the original one?
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First step:

The Klein Geometry: looking for the model of lightlike manifolds L = G/H

1 A homogeneous (p + q + 1)-dimensional manifold L = G/H endowed with
a degenerate metric tensor h of signature (p, q).

2 The isometries of h should be exactly the left translations by elements of
G . Even locally...

3 ... suppose that L = G/H is connected. Then any isometry between two
connected open subsets of L uniquely globalizes to a left translation by an
element of G (Liouville Theorem).

What could it be the model for lightlike manifolds?
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Consider Rp+q+2 with basis (`, e1, ..., ep, t1, ..., tq, η) and endowed with scalar
product 〈 , 〉 of signature (p + 1, q + 1) corresponding to the matrix(

0 0 1
0 Ip,q 0

1 0 0

)
, where Ip,q =

(
Ip 0

0 −Iq

)
.

The (p + q + 1)-dimensional isotropic (lightlike) cone is given by

C :=
{
v ∈ Rp+q+2 : 〈v , v〉 = 0, v 6= 0

}
.

C = C p+q+1 inherits from 〈 , 〉 a degenerate metric tensor of signature (p, q)
with radical distribution Rv = R · v for any v ∈ C .

(The cone C is almost our model)

The antipodal map x 7→ −x preserves the degenerate metric tensor.

Our candidate to homogeneous model:(
Lp+q+1 := C/Z2, h := 〈 , 〉

)
For later use, let us denote by τ : C → L the projection.
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L as homogeneous space

The action, O(p + 1, q + 1)× C → C is transitive and preserves 〈 , 〉.

Consider the Möbius group

G := PO(p + 1, q + 1) = O(p + 1, q + 1)/{±Id}.

The induced action

G × L → L, [g ] · τ(v) := τ(g · v)

is still transitive and preserves h.

Thus, we can identify L with G/H, where H ⊂ G is the isotropy group of
the class τ(`) = {±`} ∈ L (` ∈ C the first vector of the above basis).
Moreover,

G ⊂ Iso(h).

G = Iso(h)??
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Looking for a geometric description of the model of lightlike manifolds
L = G/H

Denote by π : Rp+q+2 \ {0} → RPp+q+1 the natural projection.

Let us consider the space of lines in C (i.e., the Möbius space of signature
(p, q))

S(p,q) := π(C).

G = PO(p + 1, q + 1) acts naturally on S(p,q).

The Möbius space S(p,q) carries a conformal structure [c] of signature
(p, q) (inherited from π).

For p + q ≥ 2, the Lie group Conf(S(p,q)) of global conformal
transformations of S(p,q) satisfies

G = Conf(S(p,q)).

An explicit description of the Möbius space:

(Sp × Sq)/Z2 = S(p,q), [x+, x−] 7→ π(x+, x−)

and [c] corresponds to the conformal class of the metric tensor c: the
product of the two round metrics of radius one with opposite signs.
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The manifold S(p,q)×R>0 admits the degenerate metric tensor h := t2 · c ⊕ 0.

Denoting every element of (Sp × Sq)/Z2 = S(p,q) by [x+, x−] for x+ ∈ Sp and
x− ∈ Sq, we have the following isometry

S(p,q) × R>0 → L
p+q+1, ([x+, x−], t) 7→ τ(t · (x+, x−))

Theorem 1

For p + q ≥ 2, the group Iso(L) is the Lie group G .

For p + q ≥ 3, every isometry betweeen two connected open subsets of L
is the restriction of the left translation by an element of G = Iso(L).

If p = 2 and q = 0, the (global) isometry group of L ⊂ L3 is also
isomorphic to G = Conf(S2) but the group of local isometries of L is the
group of local conformal transformations of S2.

⇒ First step satisfied!!

1Bekkara, Frances and Zeghib (2009) for Lorentzian signature (p + 1, 1).
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Taking a look at the model Lp+q+1 = G/H at Lie groups level

The Möbius sphere (S(p,q), [c]) as a Klein Geometry

Recall, the Lie group G = Conf(S(p,q)) acts transitively by conformal
transformations on S(p,q).
The isotropy group of π(`) := R · ` ∈ S(p,q) is

P =


 λ −λw tC −λ

2
〈w ,w〉

0 C w
0 0 λ−1

 : λ ∈ R \ {0},w ∈ Rp+q,C ∈ O(p, q)


Thus, S(p,q) = G/P. (P is called the Poincaré conformal group)

The Klein Geometry (G ,P) is the model of conformal geometry.
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On the other hand, Lp+q+1 = G/H where H is the isotropy group of
τ(`) = {±`}.

H = {[g ] ∈ P : λ = ±1} ∼= Rp+q o O(p, q) = Iso(Rp,q)

We also have a natural projection

P : L → S(p,q), τ(v) 7→ π(v)

that corresponds with the projection P

P : L = G/H −→ S(p,q) = G/P, g H 7→ g P.

P is a fiber bundle with fiber the homogeneous space P/H ' R>0 .
Our identification of L gives another interpretation for P.

P : S(p,q) × R>0 −→ S(p,q), (π(v), t) 7→ π(v).

Thus, every section of P corresponds to an election of a metric tensor in the
conformal class [c].
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Taking a look at the model Lp+q+1 = G/H at Lie algebras level

g =


 a z 0

x A −z t
0 −x t −a

 : a ∈ R, x ∈ Rp+q, z ∈ (Rp+q)∗,A ∈ o(p, q)


g = g−1 ⊕ g0 ⊕ g1 and p = g0 ⊕ g1

h =


 0 z 0

0 A −z t
0 0 0

 : z ∈ (Rn)∗,A ∈ o(p, q)

 = [g0, g0]⊕ g1 ≤ p ≤ g

(a, x) ∈ R⊕ Rp+q ' g/h ' Tτ(`)L
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An arbitrary Klein Geometry (G ,H) is said to be...

First order when the representation of H given by

Ad : H → Gl(g/h), h 7→ Ad(h)(X + h) = Ad(h)(X ) + h.

is injective.
In this case, G ⊂ L(G/H) (a fiber bundle of frames over G/H).

Reductive (with complement fixed m)

g = h⊕m as vector spaces and

Ad(H)(m) ⊂ m.

| k |-graded (k ≥ 1 and the grading is assumed to be fixed)

g = g−k ⊕ ...⊕ g−1 ⊕ g0 ⊕ g1 ⊕ ...⊕ gk ,

[gi , gj ] ⊂ gi+j , h = g0 ⊕ g1 ⊕ ...⊕ gk .

where g−k 6= {0}, gk 6= {0} and gi = {0} for | i |> k.
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g = g−1 ⊕ g0 ⊕ g1, p = g0 ⊕ g1 conformal model

g = g−1 ⊕ g0 ⊕ g1, h = [g0, g0]⊕ g1 ≤ p lightlike model

The model of conformal geometry S(p,q) = G/P is a | 1 |-graded Klein
Geometry.

The lightlike Klein Geometry L = G/H is of first order but is not reductive.

Ad : H → Gl(g/h), h 7→ Ad(h)(a, x) = (a− 〈C−1x ,w〉,Cx),

where h ' (w ,C) ∈ Rp+q o O(p, q).

P : G/H → G/P

applies a first order non reductive geometry to a 1-graded geometry.
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Cartan Geometry of type (G ,H) on M

A principal fiber bundle π : P → M with structure group H.

A g-valuated one form ω ∈ Ω1(P, g), called the Cartan connection such
that:

1 ω(u) : TuP → g is a linear isomorphism for all u ∈ P.

2 For ξX , the fundamental vector field corresponding to X ∈ h,

ω(ξX ) = X

(
where ξX (u) :=

d

dt
|0 (u · exp(tX ))

)
3 For every h ∈ H, let rh be the corresponding right multiplication on P. Then

(rh)∗ω = Ad(h−1) ◦ ω
That is, the following diagram commutes.

TuP
ω(u)−−−−−→ g

Tu r
h

y yAd(h−1)

TuhP −−−−−→
ω(uh)

g

dim(P) = dim(G) ⇒ dim(M) = dim(G/H)
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The tangent bundle of a Cartan geometry of type (G ,H)

Consider the representation of H given by

Ad : H → Gl(g/h), h 7→ Ad(h)(X + h) = Ad(h)(X ) + h.

For each u ∈ P with π(u) = x ∈ M, there is a canonical linear isomorphism φu

such that the following diagram conmutes

TuP
ω(u)−−−−−→ g

Tuπ

y yρ
TxM −−−−−→

φu∼=
g/h

with φuh = Ad(h−1)φu for all h ∈ H.

m

To(G/H)
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From now on, we return to the homogeneous model for lightlike manifolds
L = G/H.

Second step: Cartan Geometry on M modeled on (G ,H)

Proposition

Let (π : P →M, ω) be a Cartan geometry with model (G ,H).

Then, M can be endowed with a lightlike manifold structure with degenerate
metric tensor h. Moreover, there is a vector field Z ∈ X(M) which globally
spans the radical distribution R = Rad(h).

1 For every u ∈ P with π(u) = x , consider

φu : TxM→ g/h ∼= R⊕ Rp+q ∼= Tτ(`)L

and then we introduce a degenerate metric product hu on each TxM
2 hu does not depend on the election of u ∈ P with π(u) = x .

The natural hyperplane of R⊕ Rp+q is not invariant by Ad(H). There is no
screen distribution.

⇒ Second step satisfied!!

Francisco J. Palomo Lightlike manifolds



Introduction
Klein and Cartan Geometries

Lightlike manifolds

Lightlike manifolds as Cartan geometries
Correspondence spaces

Third step: The equivalence problem for lightlike manifolds

Work in progress...

Correspondence spaces

Let (π : P → M, ω) be a Cartan geometry with arbitrary model (G ,P).

We define the correspondence space C(M) of M for H ⊂ P to be the quotient
space P/H:

P
↓ ↘

P/H = C(M)
P−→ M = P/P

The projection P : C(M)→ M is a fiber bundle with fiber the homogeneous
space P/H and

(Π : P → C(M), ω) is a Cartan geometry of type (G ,H).

Return to ours fixed Lie groups H ⊂ P ⊂ G ...
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Which are the correspondence spaces for H ⊂ P ⊂ G?

Conformal Riemannian structures on M
m 1-1 correspondence

Cartan connections on M with model (G ,P)
(satisfying certain curvature properties)

Proposition

Let (M, [g ]) be a conformal pseudo-Riemannian manifold of signature (p, q)
and (π : P → M, ω) the corresponding Cartan geometry with model (G ,P).

Then the correspondence space for H ⊂ P is

C(M) = M × R>0

endowed with the degenerate metric tensor of signature (p, q)

h = t2 · g ⊕ 0.

In particular, E(M) admits a distinguished Cartan connection of type (G ,H)
and C(M) can be view as the bundle of scales associated to (M, [g ]).
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Let (M, h) be a lightlike manifold with radical distribution R = Span(Z).

Under which conditions is the lightlike manifold M
the bundle of scales of pseudo-Riemann conformal manifold?

(these will admit a distinguished Cartan connection of type (G ,H))

We hope to find an answer from the next two approaches:

1 By analyzing the orbit space V =M/Z...

2 By constructing a Cartan connection on M of type (G ,H) using dual
connections.

A dual connection on M is an R-bilinear map

� : X(M)× X(M)→ Ω1(M)

such that �f XY = f�XY and �X (f Y ) = X (f )h(Y ,−) + f�XY .

The torsion tensor is T(X ,Y ,Z) = �XY (Z)−�YX (Z)− h([X ,Y ],Z) and
� is compatible with h whenever X h(Y ,Z) = �XY (Z) + �XZ(Y ).

For every election of a torsion tensor T, there is a unique dual connection � on
M such that � is compatible with h and has torsion T.
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