Lightlike manifolds and Conformal Geometry

Francisco J. Palomo Department of Applied Mathematics

UNIVERSIDAD DE MÁLAGA

∃ ⊳

Lie Theory and Geometry Marburg, 2016

INTRODUCTION

Let (M, g) be a (n + 2)-dimensional Lorentz manifold (a pseudo-Riemannian manifold with signature (-, +, ..., +)).

Lightlike hypersurface

A lightlike hypersurface in M is a smooth co-dimension one embedded submanifold $\psi : \mathcal{L} \to M$ such that the pullback of the metric g to \mathcal{L} is degenerate at every point: $\operatorname{Rad}(T_p\mathcal{L}) := (T_p\mathcal{L})^{\perp} \cap T_p\mathcal{L} \neq \{0\}$ for all $p \in \mathcal{L}$.

The first picture is taken from R. Penrose: Rev. Mod. Phys. 37, 215 (1965)

Let $\psi : \mathcal{L} \to M$ be a lightlike hypersurface of a Lorentz manifold.

 $\operatorname{Rad}(T_{\rho}\mathcal{L}) := (T_{\rho}\mathcal{L})^{\perp} \cap T_{\rho}\mathcal{L} \neq \{0\}, \quad p \in \mathcal{L}$

 $\mathcal{R}_p = \operatorname{Rad}(\mathcal{T}_p \mathcal{L})$ defines a 1-dimensional distribution on \mathcal{L} .

∜

- Intrinsical geometry: there is no distinguished linear connection on L, in general.
- Extrinsical geometry: the normal vector fiber bundle $(T\mathcal{L})^{\perp} = \mathcal{R} \subset T\mathcal{L}$ is not transverse to \mathcal{L} .

 $TM_{|\mathcal{L}} \neq T\mathcal{L} \oplus (T\mathcal{L})^{\perp}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Several motivations...

1) Cauchy Horizons $H^+(S)$

For an acronal spacelike hypersurface S in a Lorentz manifold, the Cauchy horizon $H^+(S)$ marks the limit of the spacetime region controled by S.

2) Degenerate orbits of Lorentz isometric actions.

Let G be a Lie group acting isometrically on a Lorentz manifold (M, g). Any orbit which is lightlike at a point is lightlike everywhere and hence yields a lightlike submanifold of M.

3) Lightlike cones on Lorentz manifolds.

The Gauss lemma implies that for every $p \in M$, the exponential map exp_p applies a portion of the lightlike cone in T_pM on a lightlike hypersurface in M.

4) Lorentz manifolds foliated by lightlike hypersurfaces.

- Cahen-Wallach spaces.
- 2-symmetric Lorentzian spaces (which are not 1-symmetric).
- Plane-fronted waves.

イロト 不得下 不良下 不良下 …

3

A quotient construction for the extrinsical study of lightlike hypersurfaces.

It was introduced by Kupeli (1987) and developed by Galloway (2000)...

For a lightlike hypersurface $\psi : \mathcal{L} \to (M, g)$ which admits a (global non vanishing) lightlike vector field $\mathcal{Z} \in \mathfrak{X}(\mathcal{L})$ and radical distribution \mathcal{R} . The quotient vector fiber bundle $T\mathcal{L}/\mathcal{R}$ inherits a Riemannian metric

$$\bar{g}([x],[y]) = g(x,y), \quad [x],[y] \in T_p\mathcal{L}/\mathcal{R}_p.$$

We can introduce (with respect to \mathcal{Z}):

• The null Wiengarten operator (∇^{g} the Levi-Civita connection of M)

$$A: T_p \mathcal{L}/\mathcal{R}_p \to T_p \mathcal{L}/\mathcal{R}_p, \quad A[x] = [\nabla^g_x \mathcal{Z}]$$

The null second fundamental form

$$\mathrm{II}: T_p\mathcal{L}/\mathcal{R}_p \times T_p\mathcal{L}/\mathcal{R}_p \to \mathbb{R}, \quad \mathrm{II}([x], [y]) = \bar{g}(\mathcal{A}[x], [y]).$$

イロト 不得下 不良下 不良下 …

3

This technique seems to provide an accurate method to study the extrinsical geometry of $\ensuremath{\mathcal{L}}.$

An ad hoc technique for the intrinsical study of lightlike hypersurfaces.

Introduced by Duggal and Bejancu in 1996.

Let $\psi:\mathcal{L}
ightarrow (M,g)$ be a lightlike hypersurface.

Fix an arbitrary *n*-distribution $S(\mathcal{L})$ (the Screen distribution) on \mathcal{L} such that $T\mathcal{L} = \mathcal{R} \oplus S(\mathcal{L})$. Then,

- **1** $S(\mathcal{L})$ inherits a Riemannian metric.
- 2 There exists a unique lightlike transverse vector fiber bundle $tr(\mathcal{L})$ orthogonal to $S(\mathcal{L})$ such that

$$TM\mid_{\mathcal{L}}=T\mathcal{L}\oplus tr(\mathcal{L}).$$

For $X, Y \in \mathfrak{X}(\mathcal{L})$, the following decompositions strongly depend on $S(\mathcal{L})$.

$$\nabla^{g}_{X}Y = \overline{\nabla_{X}Y} + \sigma_{s(\mathcal{L})}(X, Y),$$
 Gauss equation

• The induced linear connection ∇ on \mathcal{L} depends on $S(\mathcal{L})$.

 In the above case, the connection depended on an arbitrary choice of a screen distribution.

Is there some way of constructing a torsion free metric linear connection on \mathcal{L} ?: NOO!

Duggal-Jin, 2007

A torsion free linear connection on a lightlike hypersurface \mathcal{L} compatible with g exists if and only if \mathcal{R} is a Killing distribution. Even in this case, there is an infinitude of connections with none distinguished.

For a lightlike hypersurface $\psi : \mathcal{L} \to (M, g)$, the distribution \mathcal{R} is said to be Killing when every vector field $\mathcal{Z} \in \mathcal{R}$ is Killing $(L_{\mathcal{Z}}g = 0.)$

There are coordinates systems $(r, x_1, ..., x_n)$ such that $\frac{\partial}{\partial r}$ spans \mathcal{R} and

$$\frac{\partial g_{ij}}{\partial r} = 0$$

イロン 不同と 不同と 不同とう

Summing up... from my point of view:

- **1** The Screen distribution construction is not a good approach to study intrinsic geometric properties of \mathcal{L} .
- 2 The lightlike hypersurfaces are conformal invariants. It would be desirable certain conformal invariance.

Natural questions

- Is it possible to construct an *intrinsic geometric structure* on \mathcal{L} ?
- This *intrinsic geometric structure* should be independent of any arbitrary election...
- ... and should provide local invariants which permit to distinguish locally two lightlike manifolds.

Although I do not have a definitive answer to the above questions, let me introduce you the tangle of ideas I have developed hoping to find these geometric structures.

-∢ ⊒ ▶

A new suitable definition

Let us start with an intrinsic definition of lightlike manifold \mathcal{L} of signature (p,q)

Lightlike manifolds

- A lightlike manifold of signature (p,q) is a pair (\mathcal{L}^{p+q+1},h) where
 - $h \in \mathcal{T}_{0,2}(\mathcal{L})$ is a symmetric tensor (the degenerate metric tensor).
 - Rad(h) := R defines a 1-dimensional distribution on L (i.e., the radical is the smallest possible).
 - The quotient vector fiber bundle *TL*/*R* inherits a pseudo-Riemannian metric *h* of signature (*p*, *q*)

$$\bar{h}([u],[v]) = h(u,v), \quad [u],[v] \in T_x \mathcal{L}/\mathcal{R}_x$$

for $x \in \mathcal{L}$.

The main ideas to study this kind of *intrinsic geometric structure* on \mathcal{L} will come from the notion of Cartan geometry.

イロン 不同と 不同と 不同とう

KLEIN AND CARTAN GEOMETRIES

In the early 1920s, Elie Cartan found a common generalization for the Klein's Erlangen program and Riemann geometry. He called *Espaces* généralizés and now we call Cartan Geometries.

Elie Cartan (1869-1951) (Wikimedia Commons)

Charles Ehresmann (1905-1979)

イロト 不得下 不良下 不良下 一度

 Around 1950, Charles Ehresmann gave for the first time a rigorous global definition of a Cartan connection as a particular case of a more general notion now called Ehresmann connection (principal connections).

This is the point of view of the influential book *Foundations of Differential Geometry, Volumes I and II* by S. Kobayashi and K. Nomizu.

Introduction Klein and Cartan Geometries Lightlike manifolds

First step: Klein Geometry. The Homogeneous model G/H

- **1** G is a Lie group and H a closed subgroup of G such that G/H is connected and is considered with a *geometric structure* such that:
- **2** The left translations, ℓ_{g} for $g \in G$, are all the automorphisms of the geometric structure (even locally).

Second step: Cartan connection on M modeled on (G, H)

イロン 不同と 不同と 不同とう

The Cartan connection permits to associate a differential geometric structure to M and so M may be thought as a curved analog of the homogeneous space G/H.

Third step: The equivalence problem

Starting from the differential geometric structure on M, is it possible to construct a (unique) Cartan connection on M modeled on (G, H) such that the related geometric structure from second step is the original one?

-∢ ⊒ ▶

First step:

The Klein Geometry: looking for the model of lightlike manifolds $\mathcal{L} = G/H$

- A homogeneous (p + q + 1)-dimensional manifold $\mathcal{L} = G/H$ endowed with a degenerate metric tensor *h* of signature (p, q).
- 2 The isometries of h should be exactly the left translations by elements of G. Even locally...
- **3** ... suppose that $\mathcal{L} = G/H$ is connected. Then any isometry between two connected open subsets of \mathcal{L} uniquely globalizes to a left translation by an element of *G* (Liouville Theorem).

What could it be the model for lightlike manifolds?

Consider \mathbb{R}^{p+q+2} with basis $(\ell, e_1, ..., e_p, t_1, ..., t_q, \eta)$ and endowed with scalar product \langle , \rangle of signature (p + 1, q + 1) corresponding to the matrix

$$\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & \mathrm{I}_{p,q} & 0 \\ 1 & 0 & 0 \end{array} \right), \quad \text{where } \mathrm{I}_{p,q} = \left(\begin{array}{ccc} \mathrm{I}_p & 0 \\ 0 & -\mathrm{I}_q \end{array} \right).$$

The (p + q + 1)-dimensional isotropic (lightlike) cone is given by

$$C := \left\{ v \in \mathbb{R}^{p+q+2} : \langle v, v \rangle = 0, \quad v \neq 0 \right\}.$$

 $C = C^{p+q+1}$ inherits from \langle , \rangle a degenerate metric tensor of signature (p,q) with radical distribution $\mathcal{R}_v = \mathbb{R} \cdot v$ for any $v \in C$.

(The cone *C* is almost our model)

The antipodal map $x \mapsto -x$ preserves the degenerate metric tensor.

Our candidate to homogeneous model: $\left(\mathcal{L}^{p+q+1} := C/\mathbb{Z}_2, \quad h := \langle , \rangle \right)$

For later use, let us denote by $\tau: \mathcal{C} \to \mathcal{L}$ the projection.

・ロト ・ 一下・ ・ ヨト・・ ヨト・・

Image: A matrix

- ∢ ≣ ▶

3

\mathcal{L} as homogeneous space

- The action, $O(p+1, q+1) \times C \rightarrow C$ is transitive and preserves \langle , \rangle .
- Consider the Möbius group

$$G := PO(p+1, q+1) = O(p+1, q+1)/\{\pm Id\}.$$

The induced action

$$G \times \mathcal{L} \to \mathcal{L}, \quad [g] \cdot \tau(v) := \tau(g \cdot v)$$

is still transitive and preserves h.

Thus, we can identify L with G/H, where H ⊂ G is the isotropy group of the class τ(ℓ) = {±ℓ} ∈ L (ℓ ∈ C the first vector of the above basis). Moreover,

$$G \subset \operatorname{Iso}(h).$$

 $G = \operatorname{Iso}(h)$??

Looking for a geometric description of the model of lightlike manifolds $\mathcal{L}=G/H$

- Denote by $\pi : \mathbb{R}^{p+q+2} \setminus \{0\} \to \mathbb{R}P^{p+q+1}$ the natural projection.
- Let us consider the space of lines in C (i.e., the Möbius space of signature (p, q))

$$\mathbb{S}^{(p,q)}:=\pi(C).$$

- G = PO(p+1, q+1) acts naturally on $\mathbb{S}^{(p,q)}$.
- The Möbius space S^(ρ,q) carries a conformal structure [c] of signature (p, q) (inherited from π).
- For p + q ≥ 2, the Lie group Conf(S^(p,q)) of global conformal transformations of S^(p,q) satisfies

$$G = \operatorname{Conf}(\mathbb{S}^{(p,q)}).$$

An explicit description of the Möbius space:

$$(\mathbb{S}^p imes \mathbb{S}^q)/\mathbb{Z}_2=\mathbb{S}^{(p,q)}, \quad [x^+,x^-]\mapsto \pi(x^+,x^-)$$

and [c] corresponds to the conformal class of the metric tensor c: the product of the two round metrics of radius one with opposite signs.

Introduction Klein and Cartan Geometries Lightlike manifolds

The manifold $\mathbb{S}^{(p,q)} \times \mathbb{R}_{>0}$ admits the degenerate metric tensor $h := t^2 \cdot c \oplus 0$.

Denoting every element of $(\mathbb{S}^p \times \mathbb{S}^q)/\mathbb{Z}_2 = \mathbb{S}^{(p,q)}$ by $[x^+, x^-]$ for $x^+ \in \mathbb{S}^p$ and $x^- \in \mathbb{S}^q$, we have the following isometry

$$\mathbb{S}^{(p,q)} \times \mathbb{R}_{>0} \to \mathcal{L}^{p+q+1}, \quad ([x^+,x^-],t) \mapsto \tau(t \cdot (x^+,x^-))$$

Theorem ¹

- For $p + q \ge 2$, the group $Iso(\mathcal{L})$ is the Lie group G.
- For $p + q \ge 3$, every isometry betweeen two connected open subsets of \mathcal{L} is the restriction of the left translation by an element of $G = \text{Iso}(\mathcal{L})$.
- If p = 2 and q = 0, the (global) isometry group of L ⊂ L³ is also isomorphic to G = Conf(S²) but the group of local isometries of L is the group of local conformal transformations of S².

\Rightarrow First step satisfied!!

¹Bekkara, Frances and Zeghib (2009) for Lorentzian signature (p = 1, 4) $\rightarrow (a = 1, 4$) $\rightarrow (a = 1, 4$) $\rightarrow (a = 1, 4$)

Taking a look at the model $\mathcal{L}^{p+q+1} = G/H$ at Lie groups level The Möbius sphere $(\mathbb{S}^{(p,q)}, [c])$ as a Klein Geometry

Recall, the Lie group $G = \operatorname{Conf}(\mathbb{S}^{(p,q)})$ acts transitively by conformal transformations on $\mathbb{S}^{(p,q)}$. The isotropy group of $\pi(\ell) := \mathbb{R} \cdot \ell \in \mathbb{S}^{(p,q)}$ is

$$P = \left\{ \begin{bmatrix} \lambda & -\lambda w^t C & -\frac{\lambda}{2} \langle w, w \rangle \\ 0 & C & w \\ 0 & 0 & \lambda^{-1} \end{bmatrix} : \lambda \in \mathbb{R} \setminus \{0\}, w \in \mathbb{R}^{p+q}, C \in O(p,q) \right\}$$

Thus, $\mathbb{S}^{(p,q)} = G/P$. (*P* is called the Poincaré conformal group)

The Klein Geometry (G, P) is the model of conformal geometry.

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のなべ

On the other hand, $\mathcal{L}^{p+q+1} = G/H$ where H is the isotropy group of $\tau(\ell) = \{\pm \ell\}.$

$$H = \{[g] \in P : \lambda = \pm 1\} \cong \mathbb{R}^{p+q} \rtimes O(p,q) = \operatorname{Iso}(\mathbb{R}^{p,q})$$

We also have a natural projection

$$\mathbb{P}:\mathcal{L} o\mathbb{S}^{(
ho,q)},\quad au(m{v})\mapsto\pi(m{v})$$

that corresponds with the projection \mathbb{P}

$$\mathbb{P}: \mathcal{L} = G/H \longrightarrow \mathbb{S}^{(p,q)} = G/P, \quad g H \mapsto g P.$$

 \mathbb{P} is a fiber bundle with fiber the homogeneous space $P/H \simeq \mathbb{R}_{>0}$. Our identification of \mathcal{L} gives another interpretation for \mathbb{P} .

$$\mathbb{P}: \mathbb{S}^{(p,q)} imes \mathbb{R}_{>0} \longrightarrow \mathbb{S}^{(p,q)}, \quad (\pi(v),t) \mapsto \pi(v).$$

Thus, every section of \mathbb{P} corresponds to an election of a metric tensor in the conformal class [c].

· < 프 > < 프 >

э

 Introduction
 Klein Geometry for lightlike manifolds

 Lightlike manifolds
 Cartan geometries

Taking a look at the model $\mathcal{L}^{p+q+1} = G/H$ at Lie algebras level

$$\mathfrak{g} = \left\{ \begin{pmatrix} \mathbf{a} & z & 0\\ x & A & -z^t\\ 0 & -x^t & -\mathbf{a} \end{pmatrix} : \mathbf{a} \in \mathbb{R}, x \in \mathbb{R}^{p+q}, z \in (\mathbb{R}^{p+q})^*, A \in \mathfrak{o}(p,q) \right\}$$
$$\boxed{\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1} \quad \text{and} \quad \boxed{\mathfrak{p} = \mathfrak{g}_0 \oplus \mathfrak{g}_1}$$
$$\mathfrak{h} = \left\{ \begin{pmatrix} 0 & z & 0\\ 0 & A & -z^t\\ 0 & 0 & 0 \end{pmatrix} : z \in (\mathbb{R}^n)^*, A \in \mathfrak{o}(p,q) \right\} = [\mathfrak{g}_0, \mathfrak{g}_0] \oplus \mathfrak{g}_1 \le \mathfrak{p} \le \mathfrak{g}$$
$$(\mathbf{a}, x) \in \mathbb{R} \oplus \mathbb{R}^{p+q} \simeq \mathfrak{g}/\mathfrak{h} \simeq T_{\tau(\ell)}\mathcal{L}$$

An arbitrary Klein Geometry (G, H) is said to be...

• First order when the representation of H given by

 $\underline{\mathrm{Ad}}: H \to \mathrm{Gl}(\mathfrak{g}/\mathfrak{h}), \quad h \mapsto \underline{\mathrm{Ad}}(h)(X + \mathfrak{h}) = \mathrm{Ad}(h)(X) + \mathfrak{h}.$

is injective.

In this case, $G \subset L(G/H)$ (a fiber bundle of frames over G/H).

Reductive (with complement fixed m)

 $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ as vector spaces and

 $\operatorname{Ad}(H)(\mathfrak{m}) \subset \mathfrak{m}.$

• | k |-graded ($k \ge 1$ and the grading is assumed to be fixed)

 $\mathfrak{g}=\mathfrak{g}_{-k}\oplus\ldots\oplus\mathfrak{g}_{-1}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_1\oplus\ldots\oplus\mathfrak{g}_k,$

 $[\mathfrak{g}_i,\mathfrak{g}_j]\subset\mathfrak{g}_{i+j},\quad\mathfrak{h}=\mathfrak{g}_0\oplus\mathfrak{g}_1\oplus...\oplus\mathfrak{g}_k.$

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のなべ

where $\mathfrak{g}_{-k} \neq \{0\}$, $\mathfrak{g}_k \neq \{0\}$ and $\mathfrak{g}_i = \{0\}$ for $\mid i \mid > k$.

$$\mathfrak{g}=\mathfrak{g}_{-1}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_1,\quad \mathfrak{p}=\mathfrak{g}_0\oplus\mathfrak{g}_1\ \text{ conformal model}$$

$$\mathfrak{g}=\mathfrak{g}_{-1}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_1,\quad\mathfrak{h}=[\mathfrak{g}_0,\mathfrak{g}_0]\oplus\mathfrak{g}_1\leq\mathfrak{p}\ \ \text{lightlike model}$$

The model of conformal geometry $\mathbb{S}^{(p,q)}=G/P$ is a $\mid 1\mid$ -graded Klein Geometry.

The lightlike Klein Geometry $\mathcal{L} = G/H$ is of first order but is not reductive.

$$\underline{\mathrm{Ad}}: H \to \mathrm{Gl}(\mathfrak{g}/\mathfrak{h}), \quad h \mapsto \underline{\mathrm{Ad}}(h)(a, x) = (a - \langle C^{-1}x, w \rangle, Cx),$$

where $h \simeq (w, C) \in \mathbb{R}^{p+q} \rtimes O(p, q)$.

$$\mathbb{P}: G/H \to G/P$$

applies a first order non reductive geometry to a 1-graded geometry.

イロン 不同と 不同と 不同とう

э

Cartan Geometry of type (G, H) on M

- A principal fiber bundle $\pi : \mathcal{P} \to M$ with structure group H.
- A g-valuated one form $\omega \in \Omega^1(\mathcal{P}, \mathfrak{g})$, called the Cartan connection such that:
 - 1 $\omega(u): T_u \mathcal{P} \to \mathfrak{g}$ is a linear isomorphism for all $u \in \mathcal{P}$.
 - **2** For ξ_{χ} , the fundamental vector field corresponding to $X \in \mathfrak{h}$,

$$\omega(\xi_X) = X$$
 (where $\xi_X(u) := \frac{d}{dt} \mid_0 (u \cdot \exp(tX))$)

B For every $h \in H$, let r^h be the corresponding right multiplication on \mathcal{P} . Then $(r^h)^*\omega = \operatorname{Ad}(h^{-1}) \circ \omega$

That is, the following diagram commutes.

Introduction Klein and Cartan Geometries Lightlike manifolds Cartan geometries

The tangent bundle of a Cartan geometry of type (G, H)

Consider the representation of H given by

$$\underline{\mathrm{Ad}}: H \to \mathrm{Gl}(\mathfrak{g}/\mathfrak{h}), \quad h \mapsto \underline{\mathrm{Ad}}(h)(X + \mathfrak{h}) = \mathrm{Ad}(h)(X) + \mathfrak{h}.$$

For each $u \in \mathcal{P}$ with $\pi(u) = x \in M$, there is a canonical linear isomorphism ϕ_u such that the following diagram commutes

イロト イポト イヨト イヨト

3

Introduction Klein and Cartan Geometries Lightlike manifolds

イロト 不得下 不足下 不足下 一日

From now on, we return to the homogeneous model for lightlike manifolds $\mathcal{L}=G/H.$

Second step: Cartan Geometry on \mathcal{M} modeled on (G, H)

Proposition

Let $(\pi : \mathcal{P} \to \mathcal{M}, \omega)$ be a Cartan geometry with model (G, H).

Then, \mathcal{M} can be endowed with a lightlike manifold structure with degenerate metric tensor h. Moreover, there is a vector field $\mathcal{Z} \in \mathfrak{X}(\mathcal{M})$ which globally spans the radical distribution $\mathcal{R} = \operatorname{Rad}(h)$.

1 For every $u \in \mathcal{P}$ with $\pi(u) = x$, consider

 $\phi_u: T_x \mathcal{M} \to \mathfrak{g}/\mathfrak{h} \cong \mathbb{R} \oplus \mathbb{R}^{p+q} \cong T_{\tau(\ell)} \mathcal{L}$

and then we introduce a degenerate metric product h_u on each $T_x\mathcal{M}$ **2** h_u does not depend on the election of $u \in \mathcal{P}$ with $\pi(u) = x$.

The *natural* hyperplane of $\mathbb{R} \oplus \mathbb{R}^{p+q}$ is not invariant by $\underline{Ad}(H)$. There is no screen distribution.

 \Rightarrow Second step satisfied!!

Third step: The equivalence problem for lightlike manifolds

Work in progress...

Correspondence spaces

Let $(\pi : \mathcal{P} \to M, \omega)$ be a Cartan geometry with arbitrary model (G, P). We define the correspondence space $\mathcal{C}(M)$ of M for $H \subset P$ to be the quotient space \mathcal{P}/H :

$$\begin{array}{ccc} \mathcal{P} & & \\ \downarrow & \searrow & \\ \mathcal{P}/\mathcal{H} = \mathcal{C}(\mathcal{M}) & \xrightarrow{\mathbb{P}} & \mathcal{M} = \mathcal{P}/\mathcal{P} \end{array}$$

The projection $\mathbb{P}: \mathcal{C}(M) \to M$ is a fiber bundle with fiber the homogeneous space P/H and

 $(\Pi : \mathcal{P} \to \mathcal{C}(M), \omega)$ is a Cartan geometry of type (G, H).

Return to ours fixed Lie groups $H \subset P \subset G$...

イロト 不得下 不良下 不良下 一度

Introduction Klein and Cartan Geometries Lightlike manifolds

Lightlike manifolds as Cartan geometries Correspondence spaces

イロト 不得 トイヨト イヨト

3

Which are the correspondence spaces for $H \subset P \subset G$?

Conformal Riemannian structures on M 1-1 correspondenceCartan connections on M with model (G, P)(satisfying certain *curvature* properties)

Proposition

Let (M, [g]) be a conformal pseudo-Riemannian manifold of signature (p, q)and $(\pi : \mathcal{P} \to M, \omega)$ the corresponding Cartan geometry with model (G, \mathcal{P}) .

Then the correspondence space for $H \subset P$ is

$$\mathcal{C}(M) = M \times \mathbb{R}_{>0}$$

endowed with the degenerate metric tensor of signature (p, q)

$$h=t^2\cdot g\oplus 0.$$

In particular, $\mathcal{E}(M)$ admits a distinguished Cartan connection of type (G, H) and $\mathcal{C}(M)$ can be view as the bundle of scales associated to (M, [g]).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Let (\mathcal{M}, h) be a lightlike manifold with radical distribution $\mathcal{R} = \operatorname{Span}(\mathcal{Z})$.

Under which conditions is the lightlike manifold \mathcal{M} the bundle of scales of pseudo-Riemann conformal manifold? (these will admit a distinguished Cartan connection of type (*G*, *H*))

We hope to find an answer from the next two approaches:

- **1** By analyzing the orbit space $\mathcal{V} = \mathcal{M}/\mathcal{Z}...$
- **2** By constructing a Cartan connection on \mathcal{M} of type (G, H) using dual connections.

A dual connection on $\mathcal M$ is an $\mathbb R\text{-bilinear}$ map

 $\Box:\mathfrak{X}(\mathcal{M}) imes\mathfrak{X}(\mathcal{M}) o \Omega^1(\mathcal{M})$

such that $\Box_{fX}Y = f\Box_XY$ and $\Box_X(fY) = X(f)h(Y, -) + f\Box_XY$.

The torsion tensor is $T(X, Y, Z) = \Box_X Y(Z) - \Box_Y X(Z) - h([X, Y], Z)$ and \Box is compatible with *h* whenever $X h(Y, Z) = \Box_X Y(Z) + \Box_X Z(Y)$.

For every election of a torsion tensor T, there is a unique dual connection \Box on \mathcal{M} such that \Box is compatible with h and has torsion T.