Invariant Einstein Metrics on Stiefel Manifolds

Marina Statha

Ph.D. Student
(Joint work with A. Arvanitoyeorgos and Y. Sakane)

ПАNЕПIГTHMIO
ПATP $\Omega \mathrm{N}$
UNIVERSITY OF PATRAS

Stiefel manifolds

Stiefel manifolds $V_{k} \mathbb{F}^{n}, \mathbb{F} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ are the set of all orthonormal k-frames in \mathbb{F}^{n}. It can be shown that $V_{k} \mathbb{F}^{n}$ is diffeomorphic to a homogeneous space G / H. In particular:

- In case $\mathbb{F}=\mathbb{R}$

$$
V_{k} \mathbb{R}^{n} \cong \mathrm{SO}(n) / \mathrm{SO}(n-k)
$$

- In case $\mathbb{F}=\mathbb{C}$

$$
V_{k} \mathbb{C}^{n} \cong \mathrm{SU}(n) / \mathrm{SU}(n-k)
$$

- In case $\mathbb{F}=\mathbb{H}$

$$
V_{k} \mathbb{H}^{n} \cong \operatorname{Sp}(n) / \operatorname{Sp}(n-k)
$$

In all cases the Stiefel manifolds are reductive homogeneous spaces, with reductive decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$, where $\operatorname{Ad}(H) \mathfrak{m} \subset \mathfrak{m}$ and $\mathfrak{m} \cong$ $T_{o}(G / H)$, with respect to negative of Killing form of \mathfrak{g}.
If H is connected then $\operatorname{Ad}(H) \mathfrak{m} \subset \mathfrak{m} \Leftrightarrow[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$.

G-invariant metrics on G / H

A G-invariant metric g on homogeneous space G / H is the metric for which the diffeomorphism $\tau_{\alpha}: G / H \rightarrow G / H, g H \mapsto \alpha g H$ is an isometry. It can be shown that

Proposition 1

There exists a one-to-one correspondence between:
(1) G-invariant metrics g on G / H
(2) $\mathrm{Ad}^{G / H}$-invariant inner products $\langle\cdot, \cdot\rangle$ on \mathfrak{m}, that is

$$
\left\langle\operatorname{Ad}^{G / H}(h) X, \operatorname{Ad}^{G / H}(h) Y\right\rangle=\langle X, Y\rangle \quad \text { for all } X, Y \in \mathfrak{m}, h \in H
$$

(3) (if H is compact and $\mathfrak{m}=\mathfrak{h}^{\perp}$ with respect to the negative of the Killing form B of $G) \mathrm{Ad}^{G / H}$-equivariant, B-symmetric and positive definite operators $A: \mathfrak{m} \rightarrow \mathfrak{m}$ such that $\langle X, Y\rangle=B(A(X), Y)$.
We call such an inner product $\mathrm{Ad}^{G}(H)$-invariant, or simply $\operatorname{Ad}(H)$-invariant

Isotropy irreducible homogeneous space

In the case where the isotropy representation of a reductive homogeneous space G / H

$$
\begin{aligned}
\operatorname{Ad}^{G / H}: H & \longrightarrow \operatorname{Aut}(\mathfrak{m}) \\
h & \longmapsto\left(d \tau_{h}\right)_{o}: \mathfrak{m} \rightarrow \mathfrak{m}
\end{aligned}
$$

is irreducible, then G / H admits a unique (up to scalar) G-invariant metric g, which is also Einstein $\rightarrow \operatorname{Ric}_{g}=\lambda \cdot g$.

Isotropy irreducible homogeneous space

In the case where the isotropy representation of a reductive homogeneous space G / H

$$
\begin{aligned}
\operatorname{Ad}^{G / H}: H & \longrightarrow \operatorname{Aut}(\mathfrak{m}) \\
h & \longmapsto\left(d \tau_{h}\right)_{o}: \mathfrak{m} \rightarrow \mathfrak{m}
\end{aligned}
$$

is irreducible, then G / H admits a unique (up to scalar) G-invariant metric g, which is also Einstein $\rightarrow \operatorname{Ric}_{g}=\lambda \cdot g$.

- These spaces have been studied in 1968 by J. Wolf.

Some examples of such spaces are the following:

- $\mathrm{SO}(n+1) / \mathrm{SO}(n) \cong S^{n}$
- $\operatorname{Spin}(7) / \mathrm{G}_{2} \cong S^{7}$
- $\mathrm{G}_{2} / \mathrm{SU}(3) \cong S^{6}$
- $\mathrm{SU}(n) / \mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(n)) \cong \mathbb{C} P^{n}$.

Isotropy reducible homogeneous space

In the case where the isotropy representation is a direct sum of irreducible representations $\varphi_{i}: H \rightarrow \operatorname{Aut}\left(\mathfrak{m}_{i}\right), i=1,2, \ldots s$, that is

$$
\mathrm{Ad}^{G / H} \cong \varphi_{1} \oplus \varphi_{2} \oplus \cdots \oplus \varphi_{s} \rightarrow \operatorname{Aut}\left(\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \cdots \oplus \mathfrak{m}_{s}\right)
$$

then we have the following two cases:

(A)

- The representations φ_{i} are non equivalent.

In 2004 Böhm-Wang-Ziller conjectured the following: Let G / H be a compact homogeneous space whose isotropy representation splits into a finite sum of non-equivalent and irreducible, subrepresentations. Then the number of G-invariant Einstein metrics on G / H is finite.

Isotropy reducible homogeneous space

In the case where the isotropy representation is a direct sum of irreducible representations $\varphi_{i}: H \rightarrow \operatorname{Aut}\left(\mathfrak{m}_{i}\right), i=1,2, \ldots s$, that is

$$
\mathrm{Ad}^{G / H} \cong \varphi_{1} \oplus \varphi_{2} \oplus \cdots \oplus \varphi_{s} \rightarrow \operatorname{Aut}\left(\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \cdots \oplus \mathfrak{m}_{s}\right)
$$

then we have the following two cases:

(A)

- The representations φ_{i} are non equivalent.

In 2004 Böhm-Wang-Ziller conjectured the following: Let G / H be a compact homogeneous space whose isotropy representation splits into a finite sum of non-equivalent and irreducible, subrepresentations. Then the number of G-invariant Einstein metrics on G / H is finite.
(B)

- Some of the representations φ_{i} are equivalent, that is $\varphi_{i} \approx \varphi_{j}(i \neq j)$.

Isotropy reducible homogeneous space, case (A)

When the representations φ_{i} are non equivalent then the decomposition of \mathfrak{m}

$$
\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \cdots \oplus \mathfrak{m}_{s}
$$

is unique and $\mathfrak{m}_{i}, \mathfrak{m}_{j} i \neq j$ are perpendicular.

- In this case all $\operatorname{Ad}(H)$ - invariant inner products on \mathfrak{m} are described as follows:

$$
\langle\cdot, \cdot\rangle=\left.x_{1}(-B)\right|_{\mathfrak{m}_{1}}+\left.x_{2}(-B)\right|_{\mathfrak{m}_{2}}+\cdots+\left.x_{s}(-B)\right|_{\mathfrak{m}_{s}} x_{i} \in \mathbb{R}^{+}, i=1,2, \ldots, s
$$

- The matrix of the operator $A: \mathfrak{m} \rightarrow \mathfrak{m}$ with respect to $(-B)$-orthonormal basis is:

$$
\left(\begin{array}{cccc}
x_{1} \mathrm{Id}_{\mathfrak{m}_{1}} & & 0 & \\
& \ddots & & \\
0 & & & x_{s} \operatorname{Id}_{\mathfrak{m}_{s}}
\end{array}\right)
$$

Isotropy reducible homogeneous space, case (A)

When the representations φ_{i} are non equivalent then the decomposition of \mathfrak{m}

$$
\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \oplus \cdots \oplus \mathfrak{m}_{s}
$$

is unique and $\mathfrak{m}_{i}, \mathfrak{m}_{j} i \neq j$ are perpendicular.

- In this case all $\operatorname{Ad}(H)$ - invariant inner products on \mathfrak{m} are described as follows:

$$
\langle\cdot, \cdot\rangle=\left.x_{1}(-B)\right|_{\mathfrak{m}_{1}}+\left.x_{2}(-B)\right|_{\mathfrak{m}_{2}}+\cdots+\left.x_{s}(-B)\right|_{\mathfrak{m}_{s}} x_{i} \in \mathbb{R}^{+}, i=1,2, \ldots, s
$$

- The matrix of the operator $A: \mathfrak{m} \rightarrow \mathfrak{m}$ with respect to $(-B)$-orthonormal basis is:

$$
\left(\begin{array}{cccc}
x_{1} \mathrm{Id}_{\mathfrak{m}_{1}} & & 0 & \\
& \ddots & & \\
0 & & & x_{s} \operatorname{Id}_{\mathfrak{m}_{s}}
\end{array}\right)
$$

The G-invariant metrics that correspond to these inner products are called diagonal.

Ricci tensor for diagonal metrics

Now for the Ricci tensor of diagonal G-invariant metrics we have the following:
We set $d_{i}:=\operatorname{dim} \mathfrak{m}_{i}$ and let $\left\{e_{\alpha}^{i}\right\}_{\alpha=1}^{d_{i}}$ be a $(-B)$-orthonormal basis adapted to the above decomposition of \mathfrak{m}, i.e. $e_{\alpha}^{i} \in \mathfrak{m}_{i} i=1,2, \ldots, s$.
Consider the numbers $A_{\alpha \beta}^{\gamma}=(-B)\left(\left[e_{\alpha}^{i}, e_{\beta}^{j}\right], e_{\gamma}^{k}\right)$ such that

$$
\left[e_{\alpha}^{i}, e_{\beta}^{j}\right]=\sum_{\gamma} A_{\alpha \beta}^{\gamma} e_{\gamma}^{k}
$$

and set

$$
A_{i j k}:=\left[\begin{array}{c}
k \\
i j
\end{array}\right]=\sum\left(A_{\alpha \beta}^{\gamma}\right)^{2}
$$

where the sum taken over all three indices α, β, γ with $e_{\alpha}^{i} \in \mathfrak{m}_{i}, e_{\beta}^{j} \in \mathfrak{m}_{j}$, $e_{\gamma}^{k} \in \mathfrak{m}_{k}$.
The numbers $A_{i j k}$ are non-negative, independent of the $(-B)$-orthonormal bases chosen for $\mathfrak{m}_{i}, \mathfrak{m}_{j}, \mathfrak{m}_{k}$, and are symmetric in all three indices:

$$
A_{i j k}=A_{j i k}=A_{k i j}
$$

Ricci tensor for diagonal metrics

- The Ricci tensor $\operatorname{Ric}_{\langle\cdot, \cdot\rangle}$ of a G-invariant Riemannian metric on G / H has also a diagonal form, i.e. $\operatorname{Ric}_{\langle\cdot, \cdot\rangle}=\left.\sum_{k=0}^{s} r_{k} x_{k}(-B)\right|_{\mathfrak{m}_{k}}$. We have the following proposition due to Park and Sakane (1997).

Proposition 2

The components r_{1}, \ldots, r_{q} of the Ricci tensor $\operatorname{Ric}_{\langle\cdot, \cdot\rangle}$ on G / H are given by

$$
r_{k}=\frac{1}{2 x_{k}}+\frac{1}{4 d_{k}} \sum_{j, i} \frac{x_{k}}{x_{j} x_{i}}\left[\begin{array}{c}
k \tag{1}\\
j i
\end{array}\right]-\frac{1}{2 d_{k}} \sum_{j, i} \frac{x_{j}}{x_{k} x_{i}}\left[\begin{array}{c}
j \\
k i
\end{array}\right] \quad(k=1, \ldots, q)
$$

where the sum is taken over $i, j=1, \ldots, q$. In particular for each k it holds that

$$
\sum_{i, j}^{s}\left[\begin{array}{c}
j \tag{2}\\
k i
\end{array}\right]=\sum_{i, j} A_{k i j}=d_{k}:=\operatorname{dim} \mathfrak{m}_{k}
$$

Isotropy reducible homogeneous space, case (B)

When some of the φ_{i}, φ_{j} in the isotropy representation of G / H are equivalent, then

- the diagonal G-nvariant metrics is not unique, and
- the submodules $\mathfrak{m}_{i}, \mathfrak{m}_{j}$ does not necessarily perpendicular.

In this case the matrix of the operator $(\cdot, \cdot)=\langle A \cdot, \cdot\rangle$ has some non zero non diagonal elements.

- Also the Ricci tensor is not easy to describe

Isotropy reducible homogeneous space, case (B)--Examples

- For the real Stiefel manifolds $V_{k} \mathbb{R}^{n} \cong \mathrm{SO}(n) / \mathrm{SO}(n-k)$ the isotropy representation is given as follows:

$$
\left.\mathrm{Ad}^{\mathrm{SO}(n)}\right|_{\mathrm{SO}(n-k)}=\cdots=\underbrace{\wedge^{2} \lambda_{n-k}}_{\mathrm{Ad}^{\mathrm{SO}(n-k)}} \oplus \underbrace{1 \oplus \cdots \oplus 1}_{\binom{k}{2}-\text { times }} \oplus \underbrace{\lambda_{n-k} \oplus \cdots \oplus \lambda_{n-k}}_{k-\text { times }}
$$

Isotropy reducible homogeneous space, case (B)--Examples

- For the real Stiefel manifolds $V_{k} \mathbb{R}^{n} \cong \mathrm{SO}(n) / \mathrm{SO}(n-k)$ the isotropy representation is given as follows:

$$
\left.\operatorname{Ad}^{\mathrm{SO}(n)}\right|_{\mathrm{SO}(n-k)}=\cdots=\underbrace{\wedge^{2} \lambda_{n-k}}_{\operatorname{Ad}^{\mathrm{SO}(n-k)}} \oplus \underbrace{1 \oplus \cdots \oplus 1}_{\binom{k}{2}-\text { times }} \oplus \underbrace{\lambda_{n-k} \oplus \cdots \oplus \lambda_{n-k}}_{k-\text { times }}
$$

For $n=4$ and $k=2$ the matrix of the operator $A: \mathfrak{m} \rightarrow \mathfrak{m}$ has the following form:

$$
\left(\begin{array}{ccccc}
x_{0} & 0 & 0 & 0 & 0 \\
0 & x_{1} & 0 & \lambda & 0 \\
0 & 0 & x_{1} & 0 & \lambda \\
0 & \lambda & 0 & x_{2} & 0 \\
0 & 0 & \lambda & 0 & x_{2}
\end{array}\right) \quad \lambda \in \mathbb{R}, x_{i} \in \mathbb{R}^{+} i=0,1,2
$$

- For the quaternionic Stiefel manifolds $V_{k} \mathbb{H}^{n}$ the isotropy representation is given as follows:

$$
\left.\operatorname{Ad}^{S p(n)} \otimes \mathbb{C}\right|_{\operatorname{Sp}(n-k)}=\ldots=\underbrace{S^{2} \nu_{n-k}}_{\operatorname{Ad}^{\operatorname{Sp}(n-k)}} \oplus \underbrace{1 \oplus \cdots \oplus+\text { times }}_{\substack{2+2 k-1 \\ 2}} \oplus \underbrace{\nu_{n-k} \oplus \cdots \oplus \nu_{n-k}}_{2 k-\text { times }}
$$

Some history

- Kobayashi (1963): Proved the existence of an $\mathrm{SO}(n)$-invariant Einstein metric on the unit tangent bundle $T_{1} S^{n} \cong \mathrm{SO}(n) / \mathrm{SO}(n-2)$.
- Sagle (1970) - Jensen (1973): Proved the existence of $\mathrm{SO}(n)$-invariant Einstein metrics on the Stiefel manifolds $V_{k} \mathbb{R}^{n} \cong \mathrm{SO}(n) / \mathrm{SO}(n-k)$, for $k \geq 3$

$$
\text { metrics of the form: } \leftrightarrow\langle\cdot, \cdot\rangle=\left(\begin{array}{ccc}
0 & a & 1 \\
a & a & 1 \\
1 & 1 & *
\end{array}\right) \text {. }
$$

- Back - Hsiang (1987) and Kerr (1998): Proved that for $n \geq 5$ the Stiefel manifolds $V_{2} \mathbb{R}^{n} \cong \mathrm{SO}(n) / \mathrm{SO}(n-2)$ admit exactly one (diagonal) $\mathrm{SO}(n)$-invariant Einstein metric.
- Arvanitoyeorgos-Dzhepko-Nikonorov (2009): Showed that for $s>1$ and $l>k>3$ the Stiefel manifolds $V_{s k} \mathbb{F}^{s k+l} \cong G(s k+l) / G(l)$ admit at least four $G(s k+l)$-invariant Einstein metrics which are also $\operatorname{Ad}\left(G(k)^{s} \times\right.$ $G(l)$)-invariant (two of these are Jensen's metrics) where $G(\ell) \in\{\mathrm{SO}(\ell)$, $\operatorname{Sp}(\ell)\}$.

$$
\text { metrics of the form: } \leftrightarrow\langle\cdot, \cdot\rangle=\left(\begin{array}{ccc}
\alpha & \beta & 1 \\
\beta & \alpha & 1 \\
1 & 1 & *
\end{array}\right)
$$

General construction

As seen before, the G-invariant metrics \mathcal{M}^{G} on $G / H \cong V_{k} \mathbb{F}^{n}, \mathbb{F} \in\{\mathbb{R}, \mathbb{H}\}$ are not only diagonal. For this reason the complete description of G-invariant Einstein metrics is difficult, because the Ricci tensor is not easy to describe. So we search for a subset of these metrics which are diagonal.

General construction

Let G / H a homogeneous spaces with reductive decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$. We consider the operator

$$
\operatorname{Ad}(n): \mathfrak{g} \rightarrow \mathfrak{g}
$$

where $n \in N_{G}(H)=\left\{g \in G: g H g^{-1}=H\right\}$. Then

Proposition 3

The operator $\left.\operatorname{Ad}(n)\right|_{\mathfrak{m}}: \mathfrak{m} \rightarrow \mathfrak{g}$ takes values in \mathfrak{m}, that is $\varphi=\left.\operatorname{Ad}(n)\right|_{\mathfrak{m}}$ $\in \operatorname{Aut}(\mathfrak{m})$. Also, $\left(\left.\operatorname{Ad}(n)\right|_{\mathfrak{m}}\right)^{-1}=(\operatorname{Ad}(n) \mid \mathfrak{m})^{t}$.

General construction

We define the isometric action

$$
\Phi \times \mathcal{M}^{G} \rightarrow \mathcal{M}^{G}, \quad(\varphi, A) \mapsto \varphi \circ A \circ \varphi^{-1} \equiv \tilde{A}
$$

where Φ is the set $\left\{\varphi=\left.\operatorname{Ad}(n)\right|_{\mathfrak{m}}: n \in N_{G}(H)\right\} \subset \operatorname{Aut}(\mathfrak{m})$.

Proposition 4

The action of Φ on \mathcal{M}^{G} is well defined, i.e. \tilde{A} is $\operatorname{Ad}(H)$-equivariant, symmetric and positive definite.

Remark: Metrics corresponding to the operator A are equivalent, up to automorphism $\operatorname{Ad}(n): \mathfrak{m} \rightarrow \mathfrak{m}$, to the metrics corresponding to the operator \tilde{A}.

General construction

We define the isometric action

$$
\Phi \times \mathcal{M}^{G} \rightarrow \mathcal{M}^{G}, \quad(\varphi, A) \mapsto \varphi \circ A \circ \varphi^{-1} \equiv \tilde{A}
$$

where Φ is the set $\left\{\varphi=\left.\operatorname{Ad}(n)\right|_{\mathfrak{m}}: n \in N_{G}(H)\right\} \subset \operatorname{Aut}(\mathfrak{m})$.

Proposition 4

The action of Φ on \mathcal{M}^{G} is well defined, i.e. \tilde{A} is $\operatorname{Ad}(H)$-equivariant, symmetric and positive definite.

Remark: Metrics corresponding to the operator A are equivalent, up to automorphism $\operatorname{Ad}(n): \mathfrak{m} \rightarrow \mathfrak{m}$, to the metrics corresponding to the operator \tilde{A}.
From the above action we consider the set of all fixed points (subset of \mathcal{M}^{G}):

$$
\left(\mathcal{M}^{G}\right)^{\Phi}=\left\{A \in \mathcal{M}^{G}: \varphi \circ A \circ \varphi^{-1}=A \text { far all } \varphi \in \Phi\right\}
$$

- Any element of $\left(\mathcal{M}^{G}\right)^{\Phi}$ parametrizes all $\operatorname{Ad}\left(N_{G}(H)\right)$-invariant inner products of \mathfrak{m} and thus it defines a subset of all inner products on \mathfrak{m}.

General construction

- Since $H \subset N_{G}(H)$ we have:

Proposition 5

Let G / H be a homogeneous space. Then there exists a one-to-one correspondence between:
(1) G-invariant metrics on G / H,
(2) $\operatorname{Ad}(H)$-invariant inner products on \mathfrak{m},
(3) Fixed points

$$
\left(\mathcal{M}^{G}\right)^{\Phi_{H}}=\left\{A \in \mathcal{M}^{G}: \psi \circ A \circ \psi^{-1}=A, \text { for all } \psi \in \Phi_{H}\right\}
$$

of the action $\Phi_{H}=\left\{\phi=\left.\operatorname{Ad}(h)\right|_{\mathfrak{m}}: h \in H\right\} \subset \Phi$ on \mathcal{M}^{G}.

- $\left(\mathcal{M}^{G}\right)^{\Phi} \subset\left(\mathcal{M}^{G}\right)^{\Phi_{H}}$.

K closed subgroup of G

- We work with some closed subgroup K of G such that

$$
H \subset K \subset N_{G}(H) \subset G .
$$

Then the fixed point set of the non trivial action of

$$
\Phi_{K}=\left\{\varphi=\left.\operatorname{Ad}(k)\right|_{\mathfrak{m}}: k \in K\right\} \subset \Phi \text { on } \mathcal{M}^{G} \text { is }
$$

$$
\left(\mathcal{M}^{G}\right)^{\Phi_{K}}=\left\{A \in \mathcal{M}^{G}: \varphi \circ A \circ \varphi^{-1}=A \text { for all } \varphi \in \Phi_{K}\right\},
$$

and this set determines a subset of all $\operatorname{Ad}(K)$-invariant inner products of \mathfrak{m}.
We have the inclusions $\left(\mathcal{M}^{G}\right)^{\Phi} \subset\left(\mathcal{M}^{G}\right)^{\Phi_{K}} \subset\left(\mathcal{M}^{G}\right)^{\Phi_{H}}$.

K closed subgroup of G

By Proposition 5 the subset $\left(\mathcal{M}^{G}\right)^{\Phi_{K}}$ is in one-to-one correspondence with a subset $\mathcal{M}^{G, K}$ of all G-invariant metrics, call it $\operatorname{Ad}(K)$-invariant, as shown in the following figure:

K closed subgroup of G

By Proposition 5 the subset $\left(\mathcal{M}^{G}\right)^{\Phi_{K}}$ is in one-to-one correspondence with a subset $\mathcal{M}^{G, K}$ of all G-invariant metrics, call it $\operatorname{Ad}(K)$-invariant, as shown in the following figure:

Proposition 6

Let K be a subgroup of G with $H \subset K \subset G$ and such that $K=L \times H$, for some subgroup L of G. Then K is contained in $N_{G}(H)$.

K closed subgroup of G

- We apply the previous proposition for the Stiefel manifolds

$$
V_{k_{1}+k_{2}} \mathbb{F}^{k_{1}+k_{2}+k_{3}} \cong G_{k_{1}+k_{2}+k_{3}} / G_{3}
$$

$G_{k_{1}+k_{2}+k_{3}} \in\left\{\mathrm{SO}\left(k_{1}+k_{2}+k_{3}\right), \operatorname{Sp}\left(k_{1}+k_{2}+k_{3}\right)\right\}, G_{i} \in\left\{\operatorname{SO}\left(k_{i}\right)\right.$, $\left.\operatorname{Sp}\left(k_{i}\right)\right\}(i=1,2,3)$ and $\mathbb{F} \in\{\mathbb{R}, \mathbb{H}\}$, where we take the following two cases for the subgroup $K=L \times G_{3}$:
(A) $K=\left(G_{1} \times G_{2}\right) \times G_{3}$, and search for

$$
\operatorname{Ad}(K) \equiv \operatorname{Ad}\left(\left(G_{1} \times G_{2}\right) \times G_{3}\right) \text {-invariant metrics. }
$$

K closed subgroup of G

- We apply the previous proposition for the Stiefel manifolds

$$
V_{k_{1}+k_{2}} \mathbb{F}^{k_{1}+k_{2}+k_{3}} \cong G_{k_{1}+k_{2}+k_{3}} / G_{3}
$$

$G_{k_{1}+k_{2}+k_{3}} \in\left\{\mathrm{SO}\left(k_{1}+k_{2}+k_{3}\right), \operatorname{Sp}\left(k_{1}+k_{2}+k_{3}\right)\right\}, G_{i} \in\left\{\operatorname{SO}\left(k_{i}\right)\right.$,
$\left.\operatorname{Sp}\left(k_{i}\right)\right\}(i=1,2,3)$ and $\mathbb{F} \in\{\mathbb{R}, \mathbb{H}\}$, where we take the following two cases for the subgroup $K=L \times G_{3}$:
(A) $K=\left(G_{1} \times G_{2}\right) \times G_{3}$, and search for

$$
\operatorname{Ad}(K) \equiv \operatorname{Ad}\left(\left(G_{1} \times G_{2}\right) \times G_{3}\right) \text {-invariant metrics. }
$$

(B) $K=\mathrm{U}\left(k_{1}+k_{2}\right) \times \operatorname{Sp}\left(k_{3}\right)$, and search for

$$
\operatorname{Ad}(K) \equiv \operatorname{Ad}\left(\mathrm{U}\left(k_{1}+k_{2}\right) \times \operatorname{Sp}\left(k_{3}\right)\right) \text {-invariant metrics. }
$$

The benefit for such metrics is that they are diagonal metrics on the homogeneous space.

We study the case (A)

$$
K=\left(G_{1} \times G_{2}\right) \times G_{3} \text { where } G_{i} \in\left\{\operatorname{SO}\left(k_{i}\right), \operatorname{Sp}\left(k_{i}\right)\right\}, i=1,2,3
$$

that is

$$
\begin{gathered}
K=\operatorname{SO}\left(k_{1}\right) \times \operatorname{SO}\left(k_{2}\right) \times \operatorname{SO}\left(k_{3}\right) \longrightarrow V_{k_{1}+k_{2}} \mathbb{R}^{n} \\
K=\operatorname{Sp}\left(k_{1}\right) \times \operatorname{Sp}\left(k_{2}\right) \times \operatorname{Sp}\left(k_{3}\right) \longrightarrow V_{k_{1}+k_{2}} H^{n}
\end{gathered}
$$

$$
K=\left(G_{1} \times G_{2}\right) \times G_{3}, \quad G_{i} \in\left\{\operatorname{SO}\left(k_{i}\right), \operatorname{Sp}\left(k_{i}\right)\right\}
$$

We view the Stiefel manifold $V_{k_{1}+k_{2}} \mathbb{F}^{n}$, where $n=k_{1}+k_{2}+k_{3}$ as total space over the generalized Wallach space, i.e:

$$
\frac{G_{1} \times G_{2} \times G_{3}}{G_{3}} \longrightarrow \frac{G_{n}}{G_{3}} \longrightarrow \frac{G_{n}}{G_{1} \times G_{2} \times G_{3}}
$$

- The tangent space \mathfrak{p} of the generalized Wallach space has three non equivalent $\operatorname{Ad}(K)$-invariant, irreducible isotropy summands, that is

$$
\mathfrak{p}=\mathfrak{p}_{12} \oplus \mathfrak{p}_{13} \oplus \mathfrak{p}_{23}
$$

and the tangent space of the fiber is the Lie algebra
$\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \quad$ where $\mathfrak{g}_{i} \in\left\{\mathfrak{s o}\left(k_{i}\right), \mathfrak{s p}\left(k_{i}\right)\right\}, i=1,2$.

$K=\left(G_{1} \times G_{2}\right) \times G_{3}, \quad G_{i} \in\left\{\operatorname{SO}\left(k_{i}\right), \operatorname{Sp}\left(k_{i}\right)\right\}$

We view the Stiefel manifold $V_{k_{1}+k_{2}} \mathbb{F}^{n}$, where $n=k_{1}+k_{2}+k_{3}$ as total space over the generalized Wallach space, i.e:

$$
\frac{G_{1} \times G_{2} \times G_{3}}{G_{3}} \longrightarrow \frac{G_{n}}{G_{3}} \longrightarrow \frac{G_{n}}{G_{1} \times G_{2} \times G_{3}}
$$

- The tangent space \mathfrak{p} of the generalized Wallach space has three non equivalent $\operatorname{Ad}(K)$-invariant, irreducible isotropy summands, that is

$$
\mathfrak{p}=\mathfrak{p}_{12} \oplus \mathfrak{p}_{13} \oplus \mathfrak{p}_{23}
$$

and the tangent space of the fiber is the Lie algebra

$$
\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \quad \text { where } \quad \mathfrak{g}_{i} \in\left\{\mathfrak{s o}\left(k_{i}\right), \mathfrak{s p}\left(k_{i}\right)\right\}, i=1,2
$$

- Therefore, the tangent space \mathfrak{m} of the total space can be written as a direct sum of five non equivalent $\operatorname{Ad}(K)$-invariant, irreducible components:

$$
\begin{aligned}
\mathfrak{m} & =\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{p}_{12} \oplus \mathfrak{p}_{13} \oplus \mathfrak{p}_{23} \\
& =\left(\begin{array}{ccc}
\mathfrak{g}_{1} & \mathfrak{p}_{12} & \mathfrak{p}_{13} \\
-\mathfrak{p}_{12} & \mathfrak{g}_{2} & \mathfrak{p}_{23} \\
-\mathfrak{p}_{13} & -\mathfrak{p}_{23} & 0
\end{array}\right)
\end{aligned}
$$

$$
K=\left(G_{1} \times G_{2}\right) \times G_{3}, \quad G_{i} \in\left\{\operatorname{SO}\left(k_{i}\right), \operatorname{Sp}\left(k_{i}\right)\right\}
$$

From the previous decomposition any $\operatorname{Ad}(K)$-invariant metric is diagonal and is determined by $\operatorname{Ad}(K)$-invariant inner products of the form:

$$
\begin{gather*}
\langle\cdot, \cdot\rangle=\left.\quad x_{1}(-B)\right|_{\mathfrak{g}_{1}}+\left.x_{2}(-B)\right|_{\mathfrak{g}_{2}} \tag{3}\\
\quad+\left.x_{12}(-B)\right|_{\mathfrak{p}_{12}}+\left.x_{13}(-B)\right|_{\mathfrak{p}_{13}}+\left.x_{23}(-B)\right|_{\mathfrak{p}_{23}} \\
\leftrightarrow
\end{gathered} \begin{gathered}
\langle\cdot, \cdot\rangle=\left(\begin{array}{ccc}
x_{1} & x_{12} & x_{13} \\
x_{12} & x_{2} & x_{23} \\
x_{13} & x_{23} & *
\end{array}\right) . \quad \text { Here } k_{1} \geq 2, k_{2} \geq 2 \text { and } k_{3} \geq 1 .
\end{gather*}
$$

In the case where we have $k_{1}=1$, then for the real Stiefel manifold $V_{1+k_{2}} \mathbb{R}^{1+k_{2}+k_{3}}$ the above inner products take the form

$$
\begin{gathered}
\langle\cdot, \cdot\rangle=\left.x_{2}(-B)\right|_{\mathfrak{s o}\left(k_{2}\right)}+\left.x_{12}(-B)\right|_{\mathfrak{m}_{12}}+\left.x_{13}(-B)\right|_{\mathfrak{m}_{13}}+\left.x_{23}(-B)\right|_{\mathfrak{m}_{23}} \\
\langle\cdot, \cdot\rangle=\left(\begin{array}{ccc}
0 & x_{12} & x_{13} \\
x_{12} & x_{2} & x_{23} \\
x_{13} & x_{23} & *
\end{array}\right) . \quad \text { Here } k_{1}=1, k_{2} \geq 2 \text { and } k_{3} \geq 1
\end{gathered}
$$

$$
K=\left(G_{1} \times G_{2}\right) \times G_{3}, \quad G_{i} \in\left\{\operatorname{SO}\left(k_{i}\right), \operatorname{Sp}\left(k_{i}\right)\right\}
$$

We need to determine the Ricci components $r_{1}, r_{2}, r_{i j}(1 \leq i<j \leq 3$ for the metric that correspond to the inner products (3) and (4). We first need to identify the non zero numbers $A_{i j k}:=\left[\begin{array}{c}k \\ i j\end{array}\right]$. From some Lie bracket relations of \mathfrak{g}_{i} and $\mathfrak{p}_{i j}$ we have: $A_{111}, A_{222}, A_{1(12)(12)}, A_{1(13)(13)}, A_{2(12)(12)}, A_{2(23)(23)}, A_{(12)(23)(13)}$. From the Lemma below (due to Arvanitoyeorgos, Dzhepko and Nikonorov) we have,

Lemma 5

For $a, b, c=1,2,3$ and $(a-b)(b-c)(c-a) \neq 0$ the following relations hold:

$$
\begin{array}{l|l}
\text { real case } & \text { quaternionic case } \\
\hline A_{a a a}=\frac{k_{a}\left(k_{a}-1\right)\left(k_{a}-2\right)}{2(n-2)} & A_{a a a}=\frac{k_{a}\left(k_{a}+1\right)\left(2 k_{a}+1\right)}{n+1} \\
A_{(a b)(a b) a}=\frac{k_{a} k_{b}\left(k_{a}-1\right)}{2(n-2)} & A_{(a b)(a b) a}=\frac{k_{a} k_{b}\left(2 k_{a}+1\right)}{(n+1)} \\
A_{(a b)(b c)(a c)}=\frac{k_{a} k_{b} k_{c}}{2(n-2)} & A_{(a b)(b c)(a c)}=\frac{2 k_{a} k_{b} k_{c}}{n+1} .
\end{array}
$$

$$
K=\left(G_{1} \times G_{2}\right) \times G_{3}, \quad G_{i} \in\left\{\operatorname{SO}\left(k_{i}\right), \operatorname{Sp}\left(k_{i}\right)\right\}
$$

Lemma 6

The components of the Ricci tensor for the $\operatorname{Ad}(K)$-invariant metric determined by (3) for the real case are given as follows:

$$
\begin{aligned}
r_{1}= & \frac{k_{1}-2}{4(n-2) x_{1}}+\frac{1}{4(n-2)}\left(k_{2} \frac{x_{1}}{x_{12}{ }^{2}}+k_{3} \frac{x_{1}}{x_{13}{ }^{2}}\right), \\
r_{2}= & \frac{k_{2}-2}{4(n-2) x_{2}}+\frac{1}{4(n-2)}\left(k_{1} \frac{x_{2}}{x_{12}{ }^{2}}+k_{3} \frac{x_{2}}{x_{23}{ }^{2}}\right), \\
r_{12}= & \frac{1}{2 x_{12}}+\frac{k_{3}}{4(n-2)}\left(\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right) \\
& -\frac{1}{4(n-2)}\left(\left(k_{1}-1\right) \frac{x_{1}}{x_{12}{ }^{2}}+\left(k_{2}-1\right) \frac{x_{2}}{x_{12}{ }^{2}}\right), \\
r_{13}= & \frac{1}{2 x_{13}}+\frac{k_{2}}{4(n-2)}\left(\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right)-\frac{1}{4(n-2)}\left(\left(k_{1}-1\right) \frac{x_{1}}{x_{13}{ }^{2}}\right) \\
r_{23}= & \frac{1}{2 x_{23}}+\frac{k_{1}}{4(n-2)}\left(\frac{x_{23}}{x_{13} x_{12}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{23} x_{13}}\right)-\frac{1}{4(n-2)}\left(\left(k_{2}-1\right) \frac{x_{2}}{x_{23}{ }^{2}}\right)
\end{aligned}
$$

where $n=k_{1}+k_{2}+k_{3}$.

$$
K=\left(G_{1} \times G_{2}\right) \times G_{3}, \quad G_{i} \in\left\{\operatorname{SO}\left(k_{i}\right), \operatorname{Sp}\left(k_{i}\right)\right\}
$$

Lemma 7

The components of the Ricci tensor for the $\operatorname{Ad}(K)$-invariant metric determined by (3) for the quaternionic case are given as follows:

$$
\begin{aligned}
r_{1} & =\frac{k_{1}+1}{4(n+1) x_{1}}+\frac{k_{2}}{4(n+1)} \frac{x_{1}}{x_{12}^{2}}+\frac{k_{3}}{4(n+1)} \frac{x_{1}}{x_{13}^{2}}, \\
r_{2} & =\frac{k_{2}+1}{4(n+1) x_{2}}+\frac{k_{1}}{4(n+1)} \frac{x_{2}}{x_{12}^{2}}+\frac{k_{3}}{4(n+1)} \frac{x_{2}}{x_{23}^{2}}, \\
r_{12} & =\frac{1}{2 x_{12}}+\frac{k_{3}}{4(n+1)}\left(\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right) \\
& -\frac{2 k_{1}+1}{8(n+1)} \frac{x_{1}}{x_{12}^{2}}-\frac{2 k_{2}+1}{8(n+1)} \frac{x_{2}}{x_{12}^{2}}, \\
r_{13} & =\frac{1}{2 x_{13}}+\frac{k_{2}}{4(n+1)}\left(\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right)-\frac{2 k_{1}+1}{8(n+1)} \frac{x_{1}}{x_{13}^{2}} \\
r_{23} & =\frac{1}{2 x_{23}}+\frac{k_{1}}{4(n+1)}\left(\frac{x_{23}}{x_{13} x_{12}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{23} x_{13}}\right)-\frac{2 k_{2}+1}{8(n+1)} \frac{x_{2}}{x_{23}^{2}} .
\end{aligned}
$$

$$
K=\left(G_{1} \times G_{2}\right) \times G_{3}, \quad G_{i} \in\left\{\operatorname{SO}\left(k_{i}\right), \operatorname{Sp}\left(k_{i}\right)\right\}
$$

Lemma 8

The components of the Ricci tensor for the $\operatorname{Ad}(K)$-invariant metric determined by (4) (real case only), are given as follows:

$$
\begin{aligned}
& r_{2}=\frac{k_{2}-2}{4(n-2) x_{2}}+\frac{1}{4(n-2)}\left(\frac{x_{2}}{x_{12}^{2}}+k_{3} \frac{x_{2}}{x_{23}^{2}}\right) \\
& r_{12}=\frac{1}{2 x_{12}}+\frac{k_{3}}{4(n-2)}\left(\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right)-\frac{1}{4(n-2)}\left(\left(k_{2}-1\right) \frac{x_{2}}{x_{12}^{2}}\right), \\
& r_{23}=\frac{1}{2 x_{23}}+\frac{1}{4(n-2)}\left(\frac{x_{23}}{x_{13} x_{12}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{23} x_{13}}\right)-\frac{1}{4(n-2)}\left(\left(k_{2}-1\right) \frac{x_{2}}{x_{23}^{2}}\right), \\
& r_{13}=\frac{1}{2 x_{13}}+\frac{k_{2}}{4(n-2)}\left(\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right)
\end{aligned}
$$

where $n=1+k_{2}+k_{3}$.

Einstein metrics on $V_{1+k_{2}} \mathbb{R}^{n}$

- For the Stiefel manifolds $V_{4} \mathbb{R}^{n} \cong \mathrm{SO}(n) / \mathrm{SO}(n-4)$, where $k_{2}=3$ and $k_{3}=n-4$, the

$$
\operatorname{Ad}(\mathrm{SO}(3) \times \mathrm{SO}(n-4)) \text {-invariant Einstein metrics }
$$

are the solutions of the system

$$
r_{2}=r_{12}, \quad r_{12}=r_{13}, \quad r_{13}=r_{23}
$$

and we set $x_{23}=1$. Then we have

$$
\begin{align*}
f_{1}= & -(n-4) x_{12}{ }^{3} x_{2}+(n-4) x_{12}{ }^{2} x_{13} x_{2}^{2}+(n-4) x_{12} x_{13}{ }^{2} x_{2} \\
& -2(n-2) x_{12} x_{13} x_{2}+(n-4) x_{12} x_{2}+x_{12}{ }^{2} x_{13}+3 x_{13} x_{2}^{2}=0, \\
f_{2}= & (n-3) x_{12}{ }^{3}-2(n-2) x_{12}{ }^{2} x_{13}-(n-5) x_{12} x_{13}^{2} \\
& +2(n-2) x_{12} x_{13}+(3-n) x_{12}+2 x_{12}{ }^{2} x_{13} x_{2}-2 x_{13} x_{2}=0, \\
f_{3}= & (n-2) x_{12} x_{13}-(n-2) x_{12}+x_{12}{ }^{2}-x_{12} x_{13} x_{2} \\
& -2 x_{13}{ }^{2}+2=0 . \tag{5}
\end{align*}
$$

We take a Gröbner basis for the ideal I of the polynomial ring $R=\mathbb{Q}\left[z, x_{2}, x_{12}, x_{13}\right]$ which is generated by $\left\{f_{1}, f_{2}, f_{3}, z x_{2} x_{12} x_{13}-1\right\}$, to find non zero solutions of the above system.

Einstein metrics on Real Stiefel manifolds $V_{k_{1}+k_{2}} \mathbb{R}^{n}$

By the aid of computer programs for symbolic computations we obtain the following results:

Theorem 1 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifolds $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)(n \geq 6)$ admit at least four invariant Einstein metrics. Two of them are Jensen's metrics and the other two are given by the $\operatorname{Ad}(\mathrm{SO}(3) \times \mathrm{SO}(n-4))$-invariant inner products of the form (4).

In the same way, for the Stiefel manifolds $V_{5} \mathbb{R}^{7}$, we consider the cases

$$
k_{1}=2, k_{2}=3, k_{3}=2 \quad k_{1}=1, k_{2}=4, k_{3}=2
$$

Then we have:

Theorem 2 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifold $V_{5} \mathbb{R}^{7}=\mathrm{SO}(7) / \mathrm{SO}(2)$ admits at least six invariant Einstein metrics. Two of them are Jensen's metrics, the other two are given by $\mathrm{Ad}(\mathrm{SO}(2) \times \mathrm{SO}(3) \times \mathrm{SO}(2))$-invariant inner products of the form (3), and the rest two are given by $\operatorname{Ad}(\mathrm{SO}(4) \times \mathrm{SO}(2))$-invariant inner products of the

Einstein metrics on quaternionic Stiefel manifolds $V_{k_{1}+k_{2}} \mathbb{H}^{n}$

For the quaternionic Stiefel manifolds we solve the system
$r_{1}=r_{2}, r_{2}=r_{12}, r_{12}=r_{13}, r_{13}=r_{23}$ and we obtain the following results:

- For the case $k_{1}=1, k_{2}=1, k_{3}=1$ the $\operatorname{Ad}(\operatorname{Sp}(1) \times \operatorname{Sp}(1) \times \operatorname{Sp}(1))$-invariant Einstein metrics on $V_{2} \mathbb{H}^{3}$ are

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{12}, x_{13}, x_{23}\right) & \approx(0.276281,0.251266,0.460887,0.568722,1) \\
& \approx(1.112249,0.417937,1.598741,0.595776,1) \\
& \approx(0.701500,1.866891,2.683459,1.678482,1) \\
& \approx(0.441809,0.485793,0.810389,1.758325,1)
\end{aligned}
$$

Two are Jensen's metrics:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{12}, x_{13}, x_{23}\right) & \approx(0.472797,047.2797,0.472797,1,1) \\
& \approx(1.812916,1.812916,1.812916,1,1)
\end{aligned}
$$

and the other two are Arvanitoyeorgos-Dzhepko-Nikonorov metrics:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{12}, x_{13}, x_{23}\right) & \approx(0.3448897,0.3448897,0.800199,1,1) \\
& \approx(0.483972,0.483972,2.585187,1,1)
\end{aligned}
$$

Einstein metrics on Quaternionic Stiefel manifolds $V_{k_{1}+k_{2}} \mathbb{H}^{n}$

- In the same way for $k_{1}=n-2, k_{2}=1, k_{3}=1$ the
$\operatorname{Ad}(\operatorname{Sp}(n-2) \times \operatorname{Sp}(1) \times \operatorname{Sp}(1))$-invariant Einstein metrics on $V_{n-1} \mathbb{H}^{n}$ are
(1) $3<n<8$ there are 8 metrics, 2 of Jensen's metrics and 6 are new.
(2) $7<n<30$ there are 10 metrics, 2 of Jensen's and 8 are new.
(3) $n>29$ there are 12 metrics, 2 Jensen's and the rest 10 are new.

Einstein metrics on Quaternionic Stiefel manifolds $V_{k_{1}+k_{2}} \mathbb{H}^{n}$

- In the same way for $k_{1}=n-2, k_{2}=1, k_{3}=1$ the $\operatorname{Ad}(\operatorname{Sp}(n-2) \times \operatorname{Sp}(1) \times \operatorname{Sp}(1))$-invariant Einstein metrics on $V_{n-1} \mathbb{H}^{n}$ are
(1) $3<n<8$ there are 8 metrics, 2 of Jensen's metrics and 6 are new.
(2) $7<n<30$ there are 10 metrics, 2 of Jensen's and 8 are new.
(3) $n>29$ there are 12 metrics, 2 Jensen's and the rest 10 are new.
- In case where $k_{1}=n-3, k_{2}=1, k_{3}=2$ the
$\operatorname{Ad}(\operatorname{Sp}(n-3) \times \operatorname{Sp}(1) \times \operatorname{Sp}(2))$-invariant Einstein metrics on $V_{n-2} \mathbb{H}^{n}$ are
(1) $n=4$ there are 8 metrics, 2 Jensen's, two

Nikonorov-Arvanitoyeorgos-Dzhepko and 4 are new.
(2) $4<n<10$ there are 8 metrics, 2 Jensen's and 6 new.
(3) $n=10$ there are 10 metrics, 2 Jensen's and 8 new.
(4) $11<n<28$ there are 8 metrics, 2 Jensen's and 6 new.
(5) $27<n<41$ there are 10 metrics, 2 Jensen's and 8 new.
(6) $n>40$ there are 12 metrics, 2 Jensen's and 10 are new.

We now study the case (B)

$$
K=\mathbf{U}\left(k_{1}+k_{2}\right) \times \operatorname{Sp}\left(k_{3}\right)
$$

for the quaternionic Stiefel manifolds $V_{k_{1}+k_{2}} \mathbb{H}^{n}$, where $n=k_{1}+k_{2}+k_{3}$.

$$
\text { We set } p=k_{1}+k_{2} \text {, so } k_{3}=n-p \text {. }
$$

$$
K=\mathrm{U}(p) \times \operatorname{Sp}(n-p)
$$

In this case we view the Stiefel manifold $V_{p} \mathbb{H}^{n}$, where $n=k_{1}+k_{2}+k_{3}$, as a total space over the flag manifold with two isotropy summands i.e:

$$
\frac{\mathrm{U}(p) \times \operatorname{Sp}(n-p)}{\operatorname{Sp}(n-p)} \longrightarrow \frac{\operatorname{Sp}(n)}{\operatorname{Sp}(n-p)} \longrightarrow \frac{\operatorname{Sp}(n)}{\mathrm{U}(p) \times \operatorname{Sp}(n-p)}
$$

- The tangent space \mathfrak{m} of the base space is written as a direct sum of two non equivalent $\operatorname{Ad}(K)$-invariant irreducible isotropy summands $\mathfrak{m}_{1}, \mathfrak{m}_{2}$ of dimension $d_{2}=\operatorname{dim}\left(\mathfrak{m}_{1}\right)=4 p(n-p)$ and $d_{3}=\operatorname{dim}\left(\mathfrak{m}_{2}\right)=p(p+1)$.

Also, the tanent space of the fiber $\mathrm{U}(p) \cong \mathrm{U}(1) \times \mathrm{SU}(p)$ is the Lie algebra $\mathfrak{h}=\mathfrak{h}_{0} \oplus \mathfrak{h}_{1}$ where \mathfrak{h}_{0} is the center of $\mathfrak{u}(p)$ and $\mathfrak{h}_{1}=\mathfrak{s u}(p)$, with $d_{0}=$ $\operatorname{dim}\left(\mathfrak{h}_{0}\right)=1$ and $d_{1}=\operatorname{dim}\left(\mathfrak{h}_{1}\right)=p^{2}-1$.

- Therefore the tangent space \mathfrak{p} of Stiefel manifold can be written as direct sum of four non equivalent $\operatorname{Ad}(K)$-invariant irreducible submodules:

$$
\mathfrak{p}=\mathfrak{h}_{0} \oplus \mathfrak{h}_{1} \oplus \mathfrak{m}_{1} \oplus \mathfrak{m}_{2}
$$

$$
K=\mathrm{U}(p) \times \operatorname{Sp}(n-p)
$$

The diagonal $\operatorname{Ad}(K)$-invariant metrics on $V_{p} \mathbb{H}^{n}$ are determined by the following $\operatorname{Ad}(K)$-invariant inner products on \mathfrak{p}

$$
\begin{equation*}
\langle\cdot, \cdot\rangle=\left.u_{0}(-B)\right|_{\mathfrak{h}_{0}}+\left.u_{1}(-B)\right|_{\mathfrak{h}_{1}}+\left.x_{1}(-B)\right|_{\mathfrak{m}_{1}}+\left.x_{2}(-B)\right|_{\mathfrak{m}_{2}} \tag{6}
\end{equation*}
$$

We know that $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subset \mathfrak{h} \oplus \mathfrak{m}_{2},\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right] \subset \mathfrak{h},\left[\mathfrak{m}_{1}, \mathfrak{m}_{2}\right] \subset \mathfrak{m}_{1}$, hence the only non zero numbers $A_{i j k}=\left[\begin{array}{c}k \\ i j\end{array}\right]$ are

$$
A_{220}, A_{330}, A_{111}, A_{122}, A_{133}, A_{322}
$$

From Arvanitoyeorgos-Mori-Sakane we obtain the following:

Lemma 9

For the metric $\langle\cdot, \cdot\rangle$ on $\operatorname{Sp}(n) / \operatorname{Sp}(n-p)$, the non-zero numbers $A_{i j k}$ are given as follows:

$$
\begin{array}{lll}
A_{220}=\frac{d_{2}}{d_{2}+4 d_{3}} & A_{330}=\frac{4 d_{3}}{d_{2}+4 d_{3}} & A_{111}=\frac{2 d_{3}\left(2 d_{1}+2-d_{3}\right)}{d_{2}+4 d_{3}} \\
A_{122}=\frac{d_{1} d_{2}}{d_{2}+4 d_{3}} & A_{133}=\frac{2 d_{3}\left(d_{3}-2\right)}{d_{2}+4 d_{3}} & A_{322}=\frac{d_{2} d_{3}}{d_{2}+4 d_{3}}
\end{array}
$$

$$
K=\mathrm{U}(p) \times \operatorname{Sp}(n-p)
$$

Lemma 10

The components of the Ricci tensor for the $\operatorname{Ad}(K)$-invariant metric determined by (6) are given as follows:

$$
\begin{aligned}
& r_{0}=\frac{u_{0}}{4 x_{1}^{2}} \frac{d_{2}}{\left(d_{2}+4 d_{3}\right)}+\frac{u_{0}}{4 x_{2}^{2}} \frac{4 d_{3}}{\left(d_{2}+4 d_{3}\right)} \\
& r_{1}=\frac{1}{4 d_{1} u_{1}} \frac{2 d_{3}\left(2 d_{1}+2-d_{3}\right)}{\left(d_{2}+4 d_{3}\right)}+\frac{u_{1}}{4 x_{1}^{2}} \frac{d_{2}}{\left(d_{2}+4 d_{3}\right)}+\frac{u_{1}}{2 d_{1} x_{2}^{2}} \frac{d_{3}\left(d_{3}-2\right)}{\left(d_{2}+4 d_{3}\right)} \\
& r_{2}=\frac{1}{2 x_{1}}-\frac{x_{2}}{2 x_{1}^{2}} \frac{d_{3}}{\left(d_{2}+4 d_{3}\right)}-\frac{1}{2 x_{1}^{2}}\left(u_{0} \frac{1}{\left(d_{2}+4 d_{3}\right)}+u_{1} \frac{d_{1}}{\left(d_{2}+4 d_{3}\right)}\right) \\
& r_{3}=\frac{1}{x_{2}}\left(\frac{1}{2}-\frac{1}{2} \frac{d_{2}}{\left(d_{2}+4 d_{3}\right)}\right)+\frac{x_{2}}{4 x_{1}^{2}} \frac{d_{2}}{\left(d_{2}+4 d_{3}\right)}-\frac{1}{x_{2}^{2}}\left(u_{0} \frac{2}{\left(d_{2}+4 d_{3}\right)}+u_{1} \frac{d_{3}-2}{\left(d_{2}+4 d_{3}\right)}\right)
\end{aligned}
$$

where $d_{1}=p^{2}-1, d_{2}=4 p(n-p), d_{3}=p(p+1)$.
Next, we solve the Einstein equation for the Stiefel manifold $V_{2} \mathbb{H}^{n}$. In this case we have $d_{0}=1, d_{1}=3, d_{2}=8(n-2), d_{3}=6$.

$$
K=\mathrm{U}(2) \times \operatorname{Sp}(n-2)
$$

Theorem 3 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifold $V_{2} \mathbb{H}^{n} \cong \operatorname{Sp}(n) / \operatorname{Sp}(n-2)$ admits four invariant Einstein metrics. Two of them are Jensen's metrics and the other two are given by the $\operatorname{Ad}(\mathrm{U}(2) \times \operatorname{Sp}(n-2)$)-invariant inner products of the form (6).

$$
K=\mathrm{U}(2) \times \operatorname{Sp}(n-2)
$$

Theorem 3 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifold $V_{2} \mathbb{H}^{n} \cong \operatorname{Sp}(n) / \operatorname{Sp}(n-2)$ admits four invariant Einstein metrics. Two of them are Jensen's metrics and the other two are given by the $\operatorname{Ad}(\mathrm{U}(2) \times \operatorname{Sp}(n-2)$)-invariant inner products of the form (6).

Proof

We consider the system of equation

$$
\begin{equation*}
r_{0}=r_{1}, \quad r_{1}=r_{2}, \quad r_{2}=r_{3} \tag{7}
\end{equation*}
$$

We set $x_{2}=1$ and then system (7) reduces to

$$
\begin{align*}
& f_{1}=2 n u_{0} u_{1}-2 n u_{1}^{2}+6 u_{0} u_{1} x_{1}^{2}-4 u_{0} u_{1}-4 u_{1}^{2} x_{1}^{2}+4 u_{1}^{2}-2 x_{1}^{2}=0 \\
& f_{2}=4 n u_{1}^{2}-8 n u_{1} x_{1}+u_{0} u_{1}+8 u_{1}^{2} x_{1}^{2}-5 u_{1}^{2}-8 u_{1} x_{1}+6 u_{1}+4 x_{1}^{2}=0 \\
& f_{3}=8 n x_{1}-4 n+4 u_{0} x_{1}^{2}-u_{0}+8 u_{1} x_{1}^{2}-3 u_{1}-24 x_{1}^{2}+8 x_{1}+2=0 \tag{8}
\end{align*}
$$

$$
K=\mathrm{U}(2) \times \operatorname{Sp}(n-2)
$$

We consider a polynomial ring $R=\mathbb{Q}\left[z, u_{0}, u_{1}, x_{1}\right]$ and an ideal I generated by $\left\{f_{1}, f_{2}, f_{3}, z u_{0} u_{1} x_{1}-1\right\}$ to find non zero solutions for the system (8). We take a lexicographic order $>$ with $z>u_{0}>x_{1}>u_{1}$ for a monomial ordering on R. Then, the Gröbner basis for the ideal I contains the polynomial $\left(u_{1}-1\right) U_{1}\left(u_{1}\right)$ where U_{1} is a given by:

$$
\begin{aligned}
& U_{1}\left(u_{1}\right)=(4 n-1)^{4} u_{1}^{8}-2(4 n-55)(4 n-1)^{3} u_{1}^{7} \\
& +(4 n-1)^{2}\left(512 n^{3}-48 n^{2}-2040 n+2903\right) u_{1}{ }^{6}-4(4 n-1)\left(288 n^{4}\right. \\
& \left.-3224 n^{3}+216 n^{2}+10419 n-6076\right) u_{1}^{5}+\left(14336 n^{6}-5120 n^{5}\right. \\
& \left.-103168 n^{4}+78208 n^{3}+104608 n^{2}-104280 n+30583\right) u_{1}^{4} \\
& -2\left(2048 n^{6}-1536 n^{5}+3840 n^{4}-11408 n^{3}-28320 n^{2}\right. \\
& +59088 n-22489) u_{1}^{3}+\left(2048 n^{5}+832 n^{4}-10848 n^{3}+17924 n^{2}\right. \\
& -23472 n+13237) u_{1}^{2}-4(n-1)\left(64 n^{4}-96 n^{3}+336 n^{2}\right. \\
& -374 n+205) u_{1}+4(n-1)^{2}(4 n-1)^{2}
\end{aligned}
$$

```
K= U(2) }\times\operatorname{Sp}(n-2)\quad---(\mp@subsup{u}{1}{}-1)\mp@subsup{U}{1}{}(\mp@subsup{u}{1}{})--
```

Case A: $u_{1} \neq 1$
We prove that the equation $U_{1}\left(u_{1}\right)=0$ has two positive solutions. Observe that

$$
K=\mathrm{U}(2) \times \operatorname{Sp}(n-2) \quad---\left(u_{1}-1\right) U_{1}\left(u_{1}\right)---
$$

Case A: $u_{1} \neq 1$
We prove that the equation $U_{1}\left(u_{1}\right)=0$ has two positive solutions. Observe that

- For $u_{1}=0$

$$
\begin{aligned}
& U_{1}(0)=68112-133344 n+73744 n^{2}+47360 n^{3}-61696 n^{4} \\
& +3328 n^{5}+10240 n^{6} \text { is positive for all } n \geq 3
\end{aligned}
$$

- For $u_{1}=1 / 5$

$$
U_{1}(1 / 5)=1098.64-2511.49 n+1988.33 n^{2}-639.029 n^{3}
$$

$$
+15.3295 n^{4}+46.1537 n^{5}-9.8304 n^{6} \text { is negative for } n \geq 3
$$

so we have one solution $u_{1}=\alpha_{1}$ between $0<\alpha_{1}<1 / 5$.

$$
K=\mathrm{U}(2) \times \operatorname{Sp}(n-2) \quad---\left(u_{1}-1\right) U_{1}\left(u_{1}\right)---
$$

Case A: $u_{1} \neq 1$
We prove that the equation $U_{1}\left(u_{1}\right)=0$ has two positive solutions. Observe that

- For $u_{1}=0$

$$
\begin{aligned}
& U_{1}(0)=68112-133344 n+73744 n^{2}+47360 n^{3}-61696 n^{4} \\
& +3328 n^{5}+10240 n^{6} \text { is positive for all } n \geq 3
\end{aligned}
$$

- For $u_{1}=1 / 5$

$$
U_{1}(1 / 5)=1098.64-2511.49 n+1988.33 n^{2}-639.029 n^{3}
$$

$$
+15.3295 n^{4}+46.1537 n^{5}-9.8304 n^{6} \text { is negative for } n \geq 3
$$

so we have one solution $u_{1}=\alpha_{1}$ between $0<\alpha_{1}<1 / 5$.

- For $u_{1}=1$

$$
\begin{aligned}
& U_{1}(1)=68112-133344 n+73744 n^{2}+47360 n^{3}-61696 n^{4} \\
& +3328 n^{5}+10240 n^{6} \text { is always positive for } n \geq 3
\end{aligned}
$$

hence we have a second solution $u_{1}=\beta_{1}$ between $1 / 5<\beta_{1}<1$.

$$
K=\mathrm{U}(2) \times \operatorname{Sp}(n-2) \quad---\left(u_{1}-1\right) U_{1}\left(u_{1}\right)---
$$

Next, we consider the ideal J generated by the polynomials

$$
\left\{f_{1}, f_{2}, f_{3}, z u_{0} u_{1} x_{1}\left(u_{1}-1\right)-1\right\}
$$

We take the lexigographic orders $>$ with
(1) $z>u_{0}>x_{1}>u_{1}$. Then the Gröbner basis of J contains the polynomial $U_{1}\left(u_{1}\right)$ and the polynomial

$$
a_{1}(n) x_{1}+W_{1}\left(u_{1}, n\right)
$$

(2) $z>x_{1}>u_{0}>u_{1}$. Then the Gröbner basis of J contains the polynomial $U_{1}\left(u_{1}\right)$ and the polynomial

$$
a_{2}(n) u_{0}+W_{2}\left(u_{1}, n\right)
$$

where $a_{i}(n) i=1,2$ is a polynomial of n of degree 17 for $i=1$, and of degree 16 for $i=2$. For $n \geq 3$ the polynomial $a_{i}(n) i=1,2$ is positive. Thus for positive values $u_{1}=\alpha_{1}, \beta_{1}$ found above we obtain real values $x_{1}=\gamma_{1}, \gamma_{2}$ and $u_{0}=\alpha_{0}, \beta_{0}$ as solutions of system (8).

$$
K=\mathrm{U}(2) \times \operatorname{Sp}(n-2) \quad---\left(u_{1}-1\right) U_{1}\left(u_{1}\right)---
$$

Now we prove that the solutions $x_{1}=\gamma_{1}, \gamma_{2}$ and $u_{0}=\alpha_{0}, \beta_{0}$ are positive.
We consider the ideal J with the lexicographic order $>$ with
(1) $z>u_{0}>u_{1}>x_{1}$ then the Gröbner basis of J contains the $U_{1}\left(u_{1}\right)$ and the polynomial

$$
X_{1}\left(x_{1}\right)=\sum_{k=0}^{8} b_{k}(n) x_{1}^{k}
$$

(2) $z>x_{1}>u_{1}>u_{0}$ then the Gröbner basis of J contains the $U_{1}\left(u_{1}\right)$ and the polynomial

$$
U_{0}\left(u_{0}\right)=\sum_{k=0}^{8} c_{k}(n) u_{0}^{k}
$$

for $n \geq 3$ the coefficients of the polynomials $b_{k}(n), c_{k}(n)$ are positive when the k is even degree and negative for odd degree. Thus if the equations $X_{1}\left(x_{1}\right)=0$ and $U_{0}\left(u_{0}\right)=0$ has real solutions, then these are all positive. So the solutions $x_{1}=\gamma_{1}, \gamma_{2}$ and $u_{0}=\alpha_{0}, \beta_{0}$ are positive.

$$
K=\mathrm{U}(2) \times \operatorname{Sp}(n-2) \quad---\left(u_{1}-1\right) U_{1}\left(u_{1}\right)---
$$

Case B: $u_{1}=1$
Then from the system (8) we get the solutions:

$$
\left\{u_{0}=1, u_{1}=1, x_{1}=\frac{2+2 n-\sqrt{-2-4 n+4 n^{2}}}{6}, x_{2}=1\right\}
$$

and

$$
\left\{u_{0}=1, u_{1}=1, x_{1}=\frac{2+2 n+\sqrt{-2-4 n+4 n^{2}}}{6}, x_{2}=1\right\}
$$

which are Jensen's metrics.

So the new Einstein metrics on $V_{2} \mathbb{H}^{n}$ are of the form

$$
\begin{aligned}
& \left\{u_{0}=\alpha_{0}, u_{1}=\alpha_{1}, x_{1}=\gamma_{1}, x_{2}=1\right\} \\
& \left\{u_{0}=\beta_{0}, u_{1}=\beta_{1}, x_{1}=\gamma_{2}, x_{2}=1\right\}
\end{aligned}
$$

Comparison of the metrics on $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

- Jensen's metrics on Stiefel manifold $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

$$
\langle\cdot, \cdot\rangle=\left(\begin{array}{ccc}
0 & a & 1 \\
a & a & 1 \\
1 & 1 & *
\end{array}\right), \operatorname{Ad}(\mathrm{SO}(4) \times \mathrm{SO}(n-4)) \text {-invariant. }
$$

- Our Einstein metrics

$$
\langle\cdot, \cdot\rangle=\left(\begin{array}{lll}
0 & \beta & \gamma \\
\beta & \alpha & 1 \\
\gamma & 1 & *
\end{array}\right), \operatorname{Ad}(\mathrm{SO}(3) \times \mathrm{SO}(n-4)) \text {-invariant }
$$

($\alpha, \beta, \gamma \neq 1$ are all different).

- For the Stiefel manifolds $V_{\ell} \mathbb{R}^{k+k+\ell}=\mathrm{SO}(2 k+\ell) / \mathrm{SO}(\ell)(\ell>k \geq 3)$

Einstein metrics of Arvanitoyeorgos, Dzhepko and Nikonorov

$$
\langle\cdot, \cdot\rangle=\left(\begin{array}{ccc}
\alpha & \beta & 1 \\
\beta & \alpha & 1 \\
1 & 1 & *
\end{array}\right) \quad(\alpha, \beta \text { are different }) .
$$

New Einstein metrics on complex Stiefel manifold $V_{3} \mathbb{C}^{n+3}$

Theorem

On a complex Stiefel manifold $V_{3} \mathbb{C}^{n+3} \cong \mathrm{SU}(n+3) / \mathrm{SU}(n)$ for $n \geq 2$, there exist new invariant Einstein metrics which are different from Jensen's metrics.

- In this case we view the Stiefel manifold $V_{3} \mathbb{C}^{n+3}$ as a total space over the generalized flag manifold

$$
\mathrm{SU}(1+2+n) / \mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(2) \times \mathrm{U}(n)) \quad n \geq 2
$$

References

A. Arvanitoyeorgos, V.V. Dzhepko and Yu. G. Nikonorov: Invariant Einstein metrics on some homogeneous spaces of classical Lie groups, Canad. J. Math. 61 (6) (2009) 1201-1213.
圊
A. Arvanitoyeorgos, Y. Sakane and M. Statha: New homogeneous Einstein metrics on Stiefel manifolds, Differential Geom. Appl. 35(S1) (2014) 2-18.
G. Jensen: Einstein metrics on principal fiber bundles, J. Differential Geom. 8 (1973) 599-614.
击
J-S. Park and Y. Sakane: Invariant Einstein metrics on certain homogeneous spaces, Tokyo J. Math. 20(1) (1997) 51-61.
M. Statha: Invariant metrics on homogeneous spaces with equivalent isotropy summands, to appear in Toyama Math. J. Vol. 38 (2016).

