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Stiefel manifolds

Stiefel manifolds VkFn, F ∈ {R,C,H} are the set of all orthonormal k-frames

in Fn. It can be shown that VkFn is diffeomorphic to a homogeneous space

G/H . In particular:

• In case F = R X

VkRn ∼= SO(n)/ SO(n− k)

• In case F = C

VkCn ∼= SU(n)/ SU(n− k)

• In case F = H X

VkHn ∼= Sp(n)/Sp(n− k)

In all cases the Stiefel manifolds are reductive homogeneous spaces, with

reductive decomposition g = h⊕m, where Ad(H)m ⊂ m and m ∼=
To(G/H), with respect to negative of Killing form of g.

If H is connected then Ad(H)m ⊂ m⇔ [h,m] ⊂ m.
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G-invariant metrics on G/H

A G-invariant metric g on homogeneous space G/H is the metric for which

the diffeomorphism τα : G/H → G/H , gH 7→ αgH is an isometry. It can be

shown that

Proposition 1

There exists a one-to-one correspondence between:

1 G-invariant metrics g on G/H

2 AdG/H -invariant inner products 〈·, ·〉 on m, that is

〈AdG/H(h)X, AdG/H(h)Y 〉 = 〈X, Y 〉 for all X,Y ∈ m, h ∈ H

3 (if H is compact and m = h⊥ with respect to the negative of the Killing

form B of G) AdG/H -equivariant, B-symmetric and positive definite

operators A : m→ m such that 〈X,Y 〉 = B(A(X), Y ).

We call such an inner product AdG(H)-invariant, or simply Ad(H)-invariant
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G-invariant metrics on G/H

Isotropy irreducible homogeneous space

In the case where the isotropy representation of a reductive homogeneous

space G/H

AdG/H : H −→ Aut(m)

h 7−→ (dτh)o : m→ m

is irreducible, then G/H admits a unique (up to scalar) G-invariant metric g,

which is also Einstein→ Ricg = λ · g.

I These spaces have been studied in 1968 by J. Wolf.

Some examples of such spaces are the following:

SO(n+ 1)/SO(n) ∼= Sn

Spin(7)/G2
∼= S7

G2 / SU(3) ∼= S6

SU(n)/S(U(1)×U(n)) ∼= CPn.
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G-invariant metrics on G/H

Isotropy reducible homogeneous space

In the case where the isotropy representation is a direct sum of irreducible

representations ϕi : H → Aut(mi), i = 1, 2, . . . s, that is

AdG/H ∼= ϕ1 ⊕ ϕ2 ⊕ · · · ⊕ ϕs → Aut(m1 ⊕m2 ⊕ · · · ⊕ms),

then we have the following two cases:

(A)

The representations ϕi are non equivalent.

In 2004 Böhm-Wang-Ziller conjectured the following: Let G/H be a compact

homogeneous space whose isotropy representation splits into a finite sum of

non-equivalent and irreducible, subrepresentations. Then the number of

G-invariant Einstein metrics on G/H is finite.

(B)

Some of the representations ϕi are equivalent, that is ϕi ≈ ϕj (i 6= j).
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G-invariant metrics on G/H

Isotropy reducible homogeneous space, case (A)

When the representations ϕi are non equivalent then the decomposition of m

m = m1 ⊕m2 ⊕ · · · ⊕ms

is unique and mi,mj i 6= j are perpendicular.

I In this case all Ad(H)- invariant inner products on m are described as

follows:

〈·, ·〉 = x1(−B)|m1
+x2(−B)|m2

+· · ·+xs(−B)|ms
xi ∈ R+, i = 1, 2, . . . , s

I The matrix of the operator A : m→ m with respect to (−B)-orthonormal

basis is: x1Idm1
0

. . .

0 xsIdms

 .

The G-invariant metrics that correspond to these inner products are called

diagonal.
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Ricci tensor for diagonal metrics

Now for the Ricci tensor of diagonal G-invariant metrics we have the following:

We set di := dimmi and let {eiα}
di
α=1 be a (−B)-orthonormal basis adapted

to the above decomposition of m, i.e. eiα ∈ mi i = 1, 2, . . . , s.

Consider the numbers Aγαβ = (−B)([eiα, e
j
β ], ekγ) such that

[eiα, e
j
β ] =

∑
γ

Aγαβe
k
γ

and set

Aijk :=

[
k

ij

]
=
∑

(Aγαβ)2

where the sum taken over all three indices α, β, γ with eiα ∈ mi, e
j
β ∈ mj ,

ekγ ∈ mk .

The numbers Aijk are non-negative, independent of the (−B)-orthonormal

bases chosen for mi,mj ,mk , and are symmetric in all three indices:

Aijk = Ajik = Akij .
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Ricci tensor for diagonal metrics

I The Ricci tensor Ric〈·,·〉 of a G-invariant Riemannian metric on G/H has

also a diagonal form, i.e. Ric〈·,·〉 =
∑s
k=0 rkxk(−B)|mk

. We have the

following proposition due to Park and Sakane (1997).

Proposition 2

The components r1, . . . , rq of the Ricci tensor Ric〈·,·〉 on G/H are given by

rk =
1

2xk
+

1

4dk

∑
j,i

xk
xjxi

[
k

ji

]
− 1

2dk

∑
j,i

xj
xkxi

[
j

ki

]
(k = 1, . . . , q), (1)

where the sum is taken over i, j = 1, . . . , q. In particular for each k it holds

that
s∑
i,j

[
j

ki

]
=
∑
i,j

Akij = dk := dimmk. (2)
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Isotropy reducible homogeneous space, case (B)

When some of the ϕi, ϕj in the isotropy representation of G/H are

equivalent, then

• the diagonal G-nvariant metrics is not unique, and

• the submodules mi, mj does not necessarily perpendicular.

In this case the matrix of the operator (·, ·) = 〈A·, ·〉 has some non zero non

diagonal elements.

I Also the Ricci tensor is not easy to describe

Marina Statha Marburg March 2016 Castle Rauischholzhausen 9 / 41



Introduction Ricci tensor Special class of G-invariant metrics Stiefel manifolds Quaternionic Stiefel manifolds References

Isotropy reducible homogeneous space, case (B)--Examples

• For the real Stiefel manifolds VkRn ∼= SO(n)/ SO(n− k) the isotropy

representation is given as follows:

AdSO(n)
∣∣
SO(n−k)

= · · · = ∧2λn−k︸ ︷︷ ︸
AdSO(n−k)

⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
(k2)−times

⊕λn−k ⊕ · · · ⊕ λn−k︸ ︷︷ ︸
k−times

For n = 4 and k = 2 the matrix of the operator A : m→ m has the following

form: 
x0 0 0 0 0
0 x1 0 λ 0
0 0 x1 0 λ
0 λ 0 x2 0
0 0 λ 0 x2

 λ ∈ R, xi ∈ R+i = 0, 1, 2.

• For the quaternionic Stiefel manifolds VkHn the isotropy representation is

given as follows:

AdSp(n)⊗C
∣∣
Sp(n−k)

= . . . = S2νn−k︸ ︷︷ ︸
AdSp(n−k)

⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
(2+2k−1

2 )−times

⊕ νn−k ⊕ · · · ⊕ νn−k︸ ︷︷ ︸
2k−times

.
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Some history

• Kobayashi (1963): Proved the existence of an SO(n)-invariant Einstein

metric on the unit tangent bundle T1S
n ∼= SO(n)/ SO(n− 2).

• Sagle (1970) - Jensen (1973): Proved the existence of SO(n)-invariant

Einstein metrics on the Stiefel manifolds VkRn ∼= SO(n)/ SO(n−k), for k ≥ 3

metrics of the form:↔ 〈·, ·〉 =

0 a 1
a a 1
1 1 ∗

 .

• Back - Hsiang (1987) and Kerr (1998): Proved that for n ≥ 5 the Stiefel

manifolds V2Rn ∼= SO(n)/ SO(n− 2) admit exactly one (diagonal)

SO(n)-invariant Einstein metric.

• Arvanitoyeorgos-Dzhepko-Nikonorov (2009): Showed that for s > 1 and

l > k > 3 the Stiefel manifolds VskFsk+l ∼= G(sk + l)/G(l) admit at least

four G(sk + l)-invariant Einstein metrics which are also Ad (G(k)s ×
G(l))-invariant (two of these are Jensen’s metrics) where G(`) ∈ {SO(`),
Sp(`)}.

metrics of the form:↔ 〈·, ·〉 =

α β 1
β α 1
1 1 ∗

 .
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General construction

As seen before, the G-invariant metricsMG on G/H ∼= VkFn, F ∈ {R,H}
are not only diagonal. For this reason the complete description of G-invariant

Einstein metrics is difficult, because the Ricci tensor is not easy to describe. So

we search for a subset of these metrics which are diagonal.

General construction

Let G/H a homogeneous spaces with reductive decomposition g = h⊕m.

We consider the operator

Ad(n) : g→ g

where n ∈ NG(H) = {g ∈ G : gHg−1 = H}. Then

Proposition 3

The operator Ad(n)|m : m→ g takes values in m, that is ϕ = Ad(n)|m
∈ Aut(m). Also, (Ad(n)|m)−1 = (Ad(n)|m)t.
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General construction

We define the isometric action

Φ×MG →MG, (ϕ,A) 7→ ϕ ◦A ◦ ϕ−1 ≡ Ã,

where Φ is the set {ϕ = Ad(n)|m : n ∈ NG(H)} ⊂ Aut(m).

Proposition 4

The action of Φ onMG is well defined, i.e. Ã is Ad(H)-equivariant, symmetric

and positive definite.

Remark: Metrics corresponding to the operator A are equivalent, up to automorphism

Ad(n) : m→ m, to the metrics corresponding to the operator Ã.

From the above action we consider the set of all fixed points (subset ofMG):

(MG)Φ = {A ∈MG : ϕ ◦A ◦ ϕ−1 = A far all ϕ ∈ Φ}

I Any element of (MG)Φ parametrizes all Ad(NG(H))-invariant inner

products of m and thus it defines a subset of all inner products on m.
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and positive definite.

Remark: Metrics corresponding to the operator A are equivalent, up to automorphism

Ad(n) : m→ m, to the metrics corresponding to the operator Ã.
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General construction

I Since H ⊂ NG(H) we have:

Proposition 5

Let G/H be a homogeneous space. Then there exists a one-to-one

correspondence between:

(1) G-invariant metrics on G/H ,

(2) Ad(H)-invariant inner products on m,

(3) Fixed points

(MG)ΦH = {A ∈MG : ψ ◦A ◦ ψ−1 = A, for all ψ ∈ ΦH}

of the action ΦH = {φ = Ad(h)|m : h ∈ H} ⊂ Φ onMG.

• (MG)Φ ⊂ (MG)ΦH .
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General construction

K closed subgroup of G

I We work with some closed subgroup K of G such that

H ⊂ K ⊂ NG(H) ⊂ G.

Then the fixed point set of the non trivial action of

ΦK = {ϕ = Ad(k)|m : k ∈ K} ⊂ Φ onMG is

(MG)ΦK = {A ∈MG : ϕ ◦A ◦ ϕ−1 = A for all ϕ ∈ ΦK},

and this set determines a subset of all Ad(K)-invariant inner products of m.

We have the inclusions (MG)Φ ⊂ (MG)ΦK ⊂ (MG)ΦH .
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General construction

K closed subgroup of G

By Proposition 5 the subset (MG)ΦK is in one-to-one correspondence with a

subsetMG,K of all G-invariant metrics, call it Ad(K)-invariant, as shown in

the following figure:

Proposition 6

Let K be a subgroup of G with H ⊂ K ⊂ G and such that K = L×H , for

some subgroup L of G. Then K is contained in NG(H).
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General construction

K closed subgroup of G

I We apply the previous proposition for the Stiefel manifolds

Vk1+k2Fk1+k2+k3 ∼= Gk1+k2+k3/G3,

Gk1+k2+k3 ∈ {SO(k1 + k2 + k3), Sp(k1 + k2 + k3)}, Gi ∈ {SO(ki),
Sp(ki)} (i = 1, 2, 3) and F ∈ {R,H}, where we take the following two cases

for the subgroup K = L×G3:

(A) K =
(
G1 ×G2

)
×G3, and search for

Ad(K) ≡ Ad
((
G1 ×G2

)
×G3

)
-invariant metrics.

(B) K = U(k1 + k2)× Sp(k3), and search for

Ad(K) ≡ Ad(U(k1 + k2)× Sp(k3))-invariant metrics.

The benefit for such metrics is that they are diagonal metrics on the
homogeneous space.
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General construction

We study the case (A)

K = (G1 ×G2)×G3 where Gi ∈ {SO(ki), Sp(ki)}, i = 1, 2, 3

that is

K = SO(k1)× SO(k2)× SO(k3) −→ Vk1+k2Rn

K = Sp(k1)× Sp(k2)× Sp(k3) −→ Vk1+k2Hn
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Case (A)

K =
(
G1 ×G2

)
×G3, Gi ∈ {SO(ki),Sp(ki)}

We view the Stiefel manifold Vk1+k2Fn, where n = k1 + k2 + k3 as total

space over the generalized Wallach space, i.e:

G1 ×G2 ×G3

G3
−→ Gn

G3
−→ Gn

G1 ×G2 ×G3

I The tangent space p of the generalized Wallach space has three non

equivalent Ad(K)-invariant, irreducible isotropy summands, that is

p = p12 ⊕ p13 ⊕ p23,

and the tangent space of the fiber is the Lie algebra

g1 ⊕ g2 where gi ∈ {so(ki), sp(ki)}, i = 1, 2.

I Therefore, the tangent space m of the total space can be written as a

direct sum of five non equivalent Ad(K)-invariant, irreducible components:

m = g1 ⊕ g2 ⊕ p12 ⊕ p13 ⊕ p23

=

 g1 p12 p13

−tp12 g2 p23

−tp13 −tp23 0
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Case (A)

K =
(
G1 ×G2

)
×G3, Gi ∈ {SO(ki),Sp(ki)}

From the previous decomposition any Ad(K)-invariant metric is diagonal and

is determined by Ad(K)-invariant inner products of the form:

〈·, ·〉 = x1 (−B)|g1 + x2 (−B)|g2
+x12 (−B)|p12 + x13 (−B)|p13 + x23 (−B)|p23

(3)

↔

〈·, ·〉 =

 x1 x12 x13
x12 x2 x23
x13 x23 ∗

 . Here k1 ≥ 2, k2 ≥ 2 and k3 ≥ 1.

------------------------------------------------------------------------------------------------------------------

In the case where we have k1 = 1, then for the real Stiefel manifold

V1+k2R1+k2+k3 the above inner products take the form

〈·, ·〉 = x2 (−B)|so(k2) + x12 (−B)|m12 + x13 (−B)|m13 + x23 (−B)|m23 (4)

↔

〈·, ·〉 =

 0 x12 x13
x12 x2 x23
x13 x23 ∗

 . Here k1 = 1, k2 ≥ 2 and k3 ≥ 1.
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Case (A)

K =
(
G1 ×G2

)
×G3, Gi ∈ {SO(ki),Sp(ki)}

We need to determine the Ricci components r1, r2, rij (1 ≤ i < j ≤ 3 for

the metric that correspond to the inner products (3) and (4). We first need to

identify the non zero numbers Aijk :=

[
k

ij

]
. From some Lie bracket relations

of gi and pij we have:

A111, A222, A1(12)(12), A1(13)(13), A2(12)(12), A2(23)(23), A(12)(23)(13).
From the Lemma below (due to Arvanitoyeorgos, Dzhepko and Nikonorov) we

have,

Lemma 5

For a, b, c = 1, 2, 3 and (a− b)(b− c)(c− a) 6= 0 the following relations hold:

real case quaternionic case

Aaaa = ka(ka−1)(ka−2)
2(n−2) Aaaa = ka(ka+1)(2ka+1)

n+1

A(ab)(ab)a = kakb(ka−1)
2(n−2) A(ab)(ab)a = kakb(2ka+1)

(n+1)

A(ab)(bc)(ac) = kakbkc
2(n−2) A(ab)(bc)(ac) = 2kakbkc

n+1 .
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Case (A)

K =
(
G1 ×G2

)
×G3, Gi ∈ {SO(ki),Sp(ki)}

Lemma 6

The components of the Ricci tensor for the Ad(K)-invariant metric

determined by (3) for the real case are given as follows:

r1 =
k1 − 2

4(n− 2)x1

+
1

4(n− 2)

(
k2

x1

x12
2

+ k3
x1

x13
2

)
,

r2 =
k2 − 2

4(n− 2)x2

+
1

4(n− 2)

(
k1

x2

x12
2

+ k3
x2

x23
2

)
,

r12 =
1

2x12

+
k3

4(n− 2)

(
x12

x13x23

−
x13

x12x23

−
x23

x12x13

)

−
1

4(n− 2)

(
(k1 − 1)

x1

x12
2

+ (k2 − 1)
x2

x12
2

)
,

r13 =
1

2x13

+
k2

4(n− 2)

(
x13

x12x23

−
x12

x13x23

−
x23

x12x13

)
−

1

4(n− 2)

(
(k1 − 1)

x1

x13
2

)

r23 =
1

2x23

+
k1

4(n− 2)

(
x23

x13x12

−
x13

x12x23

−
x12

x23x13

)
−

1

4(n− 2)

(
(k2 − 1)

x2

x23
2

)

where n = k1 + k2 + k3.
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Case (A)

K =
(
G1 ×G2

)
×G3, Gi ∈ {SO(ki),Sp(ki)}

Lemma 7

The components of the Ricci tensor for the Ad(K)-invariant metric

determined by (3) for the quaternionic case are given as follows:

r1 =
k1 + 1

4(n+ 1)x1

+
k2

4(n+ 1)

x1

x12
2

+
k3

4(n+ 1)

x1

x13
2
,

r2 =
k2 + 1

4(n+ 1)x2

+
k1

4(n+ 1)

x2

x12
2

+
k3

4(n+ 1)

x2

x23
2
,

r12 =
1

2x12

+
k3

4(n+ 1)

(
x12

x13x23

−
x13

x12x23

−
x23

x12x13

)

−
2k1 + 1

8(n+ 1)

x1

x12
2
−

2k2 + 1

8(n+ 1)

x2

x12
2
,

r13 =
1

2x13

+
k2

4(n+ 1)

(
x13

x12x23

−
x12

x13x23

−
x23

x12x13

)
−

2k1 + 1

8(n+ 1)

x1

x13
2

r23 =
1

2x23

+
k1

4(n+ 1)

(
x23

x13x12

−
x13

x12x23

−
x12

x23x13

)
−

2k2 + 1

8(n+ 1)

x2

x23
2
.
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Case (A)

K =
(
G1 ×G2

)
×G3, Gi ∈ {SO(ki),Sp(ki)}

Lemma 8

The components of the Ricci tensor for the Ad(K)-invariant metric

determined by (4) ( real case only), are given as follows:

r2 =
k2 − 2

4(n− 2)x2

+
1

4(n− 2)

(
x2

x12
2

+ k3
x2

x23
2

)
,

r12 =
1

2x12

+
k3

4(n− 2)

(
x12

x13x23

−
x13

x12x23

−
x23

x12x13

)
−

1

4(n− 2)

(
(k2 − 1)

x2

x12
2

)
,

r23 =
1

2x23

+
1

4(n− 2)

(
x23

x13x12

−
x13

x12x23

−
x12

x23x13

)
−

1

4(n− 2)

(
(k2 − 1)

x2

x23
2

)
,

r13 =
1

2x13

+
k2

4(n− 2)

(
x13

x12x23

−
x12

x13x23

−
x23

x12x13

)
,

where n = 1 + k2 + k3.
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Case (A)

Einstein metrics on V1+k2
Rn

I For the Stiefel manifolds V4Rn ∼= SO(n)/ SO(n− 4), where k2 = 3 and

k3 = n− 4, the

Ad(SO(3)× SO(n− 4))-invariant Einstein metrics

are the solutions of the system

r2 = r12, r12 = r13, r13 = r23,

and we set x23 = 1. Then we have

f1 = −(n− 4)x12
3
x2 + (n− 4)x12

2
x13x

2
2 + (n− 4)x12x13

2
x2

−2(n− 2)x12x13x2 + (n− 4)x12x2 + x12
2
x13 + 3x13x

2
2 = 0,

f2 = (n− 3)x12
3 − 2(n− 2)x12

2
x13 − (n− 5)x12x13

2

+2(n− 2)x12x13 + (3− n)x12 + 2x12
2
x13x2 − 2x13x2 = 0,

f3 = (n− 2)x12x13 − (n− 2)x12 + x12
2 − x12x13x2

−2x13
2

+ 2 = 0. (5)

We take a Gröbner basis for the ideal I of the polynomial ring

R = Q[z, x2, x12, x13] which is generated by

{f1, f2, f3, z x2 x12 x13 − 1}, to find non zero solutions of the above system.
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Case (A)

Einstein metrics on Real Stiefel manifolds Vk1+k2
Rn

By the aid of computer programs for symbolic computations we obtain the

following results:

Theorem 1 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifolds V4Rn = SO(n)/ SO(n− 4) (n ≥ 6) admit at least four

invariant Einstein metrics. Two of them are Jensen’s metrics and the other two

are given by the Ad(SO(3)× SO(n− 4))-invariant inner products of the

form (4).

In the same way, for the Stiefel manifolds V5R7, we consider the cases

k1 = 2, k2 = 3, k3 = 2 k1 = 1, k2 = 4, k3 = 2
Then we have:

Theorem 2 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifold V5R7 = SO(7)/SO(2) admits at least six invariant

Einstein metrics. Two of them are Jensen’s metrics, the other two are given by

Ad(SO(2)× SO(3)× SO(2))-invariant inner products of the form (3), and

the rest two are given by Ad(SO(4)× SO(2))-invariant inner products of the

form (4).
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Case (A)

Einstein metrics on quaternionic Stiefel manifolds Vk1+k2
Hn

For the quaternionic Stiefel manifolds we solve the system

r1 = r2, r2 = r12, r12 = r13, r13 = r23 and we obtain the following results:

I For the case k1 = 1, k2 = 1, k3 = 1 the

Ad(Sp(1)× Sp(1)× Sp(1))-invariant Einstein metrics on V2H3 are

(x1, x2, x12, x13, x23) ≈ (0.276281, 0.251266, 0.460887, 0.568722, 1)

≈ (1.112249, 0.417937, 1.598741, 0.595776, 1)

≈ (0.701500, 1.866891, 2.683459, 1.678482, 1)

≈ (0.441809, 0.485793, 0.810389, 1.758325, 1).

Two are Jensen’s metrics:

(x1, x2, x12, x13, x23) ≈ (0.472797, 047.2797, 0.472797, 1, 1)

≈ (1.812916, 1.812916, 1.812916, 1, 1),

and the other two are Arvanitoyeorgos-Dzhepko-Nikonorov metrics:

(x1, x2, x12, x13, x23) ≈ (0.3448897, 0.3448897, 0.800199, 1, 1)

≈ (0.483972, 0.483972, 2.585187, 1, 1).
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Case (A)

Einstein metrics on Quaternionic Stiefel manifolds Vk1+k2
Hn

• In the same way for k1 = n− 2, k2 = 1, k3 = 1 the

Ad(Sp(n− 2)× Sp(1)× Sp(1))-invariant Einstein metrics on Vn−1Hn are

1 3 < n < 8 there are 8 metrics, 2 of Jensen’s metrics and 6 are new.

2 7 < n < 30 there are 10 metrics, 2 of Jensen’s and 8 are new.

3 n > 29 there are 12 metrics, 2 Jensen’s and the rest 10 are new.

I In case where k1 = n− 3, k2 = 1, k3 = 2 the

Ad(Sp(n− 3)× Sp(1)× Sp(2))-invariant Einstein metrics on Vn−2Hn are

1 n = 4 there are 8 metrics, 2 Jensen’s, two

Nikonorov-Arvanitoyeorgos-Dzhepko and 4 are new.

2 4 < n < 10 there are 8 metrics, 2 Jensen’s and 6 new.

3 n = 10 there are 10 metrics, 2 Jensen’s and 8 new.

4 11 < n < 28 there are 8 metrics, 2 Jensen’s and 6 new.

5 27 < n < 41 there are 10 metrics, 2 Jensen’s and 8 new.

6 n > 40 there are 12 metrics, 2 Jensen’s and 10 are new.
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We now study the case (B)

K = U(k1 + k2)× Sp(k3)

for the quaternionic Stiefel manifolds Vk1+k2Hn, where n = k1 + k2 + k3.

We set p = k1 + k2, so k3 = n− p.
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Case (B)

K = U(p)× Sp(n− p)

In this case we view the Stiefel manifold VpHn, where n = k1 + k2 + k3, as a

total space over the flag manifold with two isotropy summands i.e:

U(p)× Sp(n− p)
Sp(n− p)

−→ Sp(n)

Sp(n− p)
−→ Sp(n)

U(p)× Sp(n− p)

I The tangent space m of the base space is written as a direct sum of two

non equivalent Ad(K)-invariant irreducible isotropy summands m1, m2 of

dimension d2 = dim(m1) = 4p(n− p) and d3 = dim(m2) = p(p+ 1).

Also, the tanent space of the fiber U(p) ∼= U(1)× SU(p) is the Lie algebra

h = h0 ⊕ h1 where h0 is the center of u(p) and h1 = su(p), with d0 =
dim(h0) = 1 and d1 = dim(h1) = p2 − 1.

I Therefore the tangent space p of Stiefel manifold can be written as direct

sum of four non equivalent Ad(K)-invariant irreducible submodules:

p = h0 ⊕ h1 ⊕m1 ⊕m2.
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Case (B)

K = U(p)× Sp(n− p)

The diagonal Ad(K)-invariant metrics on VpHn are determined by the

following Ad(K)-invariant inner products on p

〈·, ·〉 = u0(−B)|h0
+ u1(−B)|h1

+ x1(−B)|m1
+ x2(−B)|m2

. (6)

We know that [m1,m1] ⊂ h⊕m2, [m2,m2] ⊂ h, [m1,m2] ⊂ m1, hence the

only non zero numbers Aijk =

[
k

ij

]
are

A220, A330, A111, A122, A133, A322.

From Arvanitoyeorgos-Mori-Sakane we obtain the following:

Lemma 9

For the metric 〈·, ·〉 on Sp(n)/ Sp(n− p), the non-zero numbers Aijk are

given as follows:

A220 =
d2

d2 + 4d3
A330 =

4d3
d2 + 4d3

A111 =
2d3(2d1 + 2− d3)

d2 + 4d3

A122 =
d1d2

d2 + 4d3
A133 =

2d3(d3 − 2)

d2 + 4d3
A322 =

d2d3
d2 + 4d3
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Case (B)

K = U(p)× Sp(n− p)

Lemma 10

The components of the Ricci tensor for the Ad(K)-invariant metric

determined by (6) are given as follows:

r0 =
u0

4x2
1

d2

(d2 + 4d3)
+

u0

4x2
2

4d3

(d2 + 4d3)

r1 =
1

4d1u1

2d3(2d1 + 2− d3)

(d2 + 4d3)
+

u1

4x2
1

d2

(d2 + 4d3)
+

u1

2d1x2
2

d3(d3 − 2)

(d2 + 4d3)

r2 =
1

2x1
−

x2

2x2
1

d3

(d2 + 4d3)
−

1

2x2
1

(
u0

1

(d2 + 4d3)
+ u1

d1

(d2 + 4d3)

)

r3 =
1

x2

(
1

2
−

1

2

d2

(d2 + 4d3)

)
+

x2

4x2
1

d2

(d2 + 4d3)
−

1

x2
2

(
u0

2

(d2 + 4d3)
+ u1

d3 − 2

(d2 + 4d3)

)
where d1 = p2 − 1, d2 = 4p(n− p), d3 = p(p+ 1).

Next, we solve the Einstein equation for the Stiefel manifold V2Hn. In this

case we have d0 = 1, d1 = 3, d2 = 8(n− 2), d3 = 6.
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Case (B)

K = U(2)× Sp(n− 2)

Theorem 3 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifold V2Hn ∼= Sp(n)/ Sp(n− 2) admits four invariant Einstein

metrics. Two of them are Jensen’s metrics and the other two are given by the

Ad(U(2)× Sp(n− 2))-invariant inner products of the form (6).

Proof

We consider the system of equation

r0 = r1, r1 = r2, r2 = r3. (7)

We set x2 = 1 and then system (7) reduces to

f1 = 2nu0u1 − 2nu2
1 + 6u0u1x

2
1 − 4u0u1 − 4u2

1x
2
1 + 4u2

1 − 2x2
1 = 0

f2 = 4nu2
1 − 8nu1x1 + u0u1 + 8u2

1x
2
1 − 5u2

1 − 8u1x1 + 6u1 + 4x2
1 = 0

f3 = 8nx1 − 4n+ 4u0x
2
1 − u0 + 8u1x

2
1 − 3u1 − 24x2

1 + 8x1 + 2 = 0.
(8)
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Case (B)

K = U(2)× Sp(n− 2)

We consider a polynomial ring R = Q[z, u0, u1, x1] and an ideal I
generated by {f1, f2, f3, z u0 u1 x1 − 1} to find non zero solutions for the

system (8). We take a lexicographic order > with z > u0 > x1 > u1 for a

monomial ordering on R. Then, the Gröbner basis for the ideal I contains the

polynomial (u1 − 1)U1(u1) where U1 is a given by:

U1(u1) = (4n− 1)4u1
8 − 2(4n− 55)(4n− 1)3u1

7

+(4n− 1)2(512n3 − 48n2 − 2040n+ 2903)u1
6 − 4(4n− 1)(288n4

−3224n3 + 216n2 + 10419n− 6076)u1
5 + (14336n6 − 5120n5

−103168n4 + 78208n3 + 104608n2 − 104280n+ 30583)u1
4

−2(2048n6 − 1536n5 + 3840n4 − 11408n3 − 28320n2

+59088n− 22489)u1
3 + (2048n5 + 832n4 − 10848n3 + 17924n2

−23472n+ 13237)u1
2 − 4(n− 1)(64n4 − 96n3 + 336n2

−374n+ 205)u1 + 4(n− 1)2(4n− 1)2
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Case (B)

K = U(2)× Sp(n− 2) −−−(u1 − 1)U1(u1)−−−

Case A: u1 6= 1

We prove that the equation U1(u1) = 0 has two positive solutions. Observe

that

I For u1 = 0

U1(0) = 68112− 133344n+ 73744n2 + 47360n3 − 61696n4

+3328n5 + 10240n6
is positive for all n ≥ 3,

I For u1 = 1/5

U1(1/5) = 1098.64− 2511.49n+ 1988.33n2 − 639.029n3

+15.3295n4 + 46.1537n5 − 9.8304n6
is negative for n ≥ 3,

so we have one solution u1 = α1 between 0 < α1 < 1/5.

I For u1 = 1

U1(1) = 68112− 133344n+ 73744n2 + 47360n3 − 61696n4

+3328n5 + 10240n6
is always positive for n ≥ 3,

hence we have a second solution u1 = β1 between 1/5 < β1 < 1.
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Case (B)

K = U(2)× Sp(n− 2) −−−(u1 − 1)U1(u1)−−−

Next, we consider the ideal J generated by the polynomials

{f1, f2, f3, z u0 u1 x1 (u1 − 1)− 1}.

We take the lexigographic orders > with

1 z > u0 > x1 > u1. Then the Gröbner basis of J contains the polynomial

U1(u1) and the polynomial

a1(n)x1 +W1(u1, n)

2 z > x1 > u0 > u1. Then the Gröbner basis of J contains the polynomial

U1(u1) and the polynomial

a2(n)u0 +W2(u1, n)

where ai(n) i = 1, 2 is a polynomial of n of degree 17 for i = 1, and of

degree 16 for i = 2. For n ≥ 3 the polynomial ai(n) i = 1, 2 is positive. Thus

for positive values u1 = α1, β1 found above we obtain real values

x1 = γ1, γ2 and u0 = α0, β0 as solutions of system (8).
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Case (B)

K = U(2)× Sp(n− 2) −−−(u1 − 1)U1(u1)−−−

Now we prove that the solutions x1 = γ1, γ2 and u0 = α0, β0 are positive.
We consider the ideal J with the lexicographic order > with

1 z > u0 > u1 > x1 then the Gröbner basis of J contains the U1(u1) and

the polynomial

X1(x1) =

8∑
k=0

bk(n)xk1

2 z > x1 > u1 > u0 then the Gröbner basis of J contains the U1(u1) and

the polynomial

U0(u0) =

8∑
k=0

ck(n)uk0

for n ≥ 3 the coefficients of the polynomials bk(n), ck(n) are positive when

the k is even degree and negative for odd degree. Thus if the equations

X1(x1) = 0 and U0(u0) = 0 has real solutions, then these are all positive. So

the solutions x1 = γ1, γ2 and u0 = α0, β0 are positive.
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Case (B)

K = U(2)× Sp(n− 2) −−−(u1 − 1)U1(u1)−−−

Case B: u1 = 1
Then from the system (8) we get the solutions:

{u0 = 1, u1 = 1, x1 =
2 + 2n−

√
−2− 4n+ 4n2

6
, x2 = 1}

and

{u0 = 1, u1 = 1, x1 =
2 + 2n+

√
−2− 4n+ 4n2

6
, x2 = 1}

which are Jensen’s metrics.

------------------------------------------------------------------------------------------------

So the new Einstein metrics on V2Hn are of the form

{u0 = α0, u1 = α1, x1 = γ1, x2 = 1}

{u0 = β0, u1 = β1, x1 = γ2, x2 = 1}
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Case (B)

Comparison of the metrics on V4Rn = SO(n)/ SO(n− 4)

• Jensen’s metrics on Stiefel manifold V4Rn = SO(n)/ SO(n− 4)

〈·, ·〉 =

0 a 1
a a 1
1 1 ∗

 , Ad(SO(4)× SO(n− 4))-invariant.

• Our Einstein metrics

〈·, ·〉 =

0 β γ
β α 1
γ 1 ∗

 , Ad(SO(3)× SO(n− 4))-invariant

(α, β, γ 6= 1 are all different ).

• For the Stiefel manifolds V`Rk+k+` = SO(2k + `)/ SO(`) (` > k ≥ 3)

Einstein metrics of Arvanitoyeorgos, Dzhepko and Nikonorov

〈·, ·〉 =

α β 1
β α 1
1 1 ∗

 ( α, β are different ).
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Case (B)

New Einstein metrics on complex Stiefel manifold V3Cn+3

Theorem

On a complex Stiefel manifold V3Cn+3 ∼= SU(n+ 3)/SU(n) for n ≥ 2, there

exist new invariant Einstein metrics which are different from Jensen’s metrics.

I In this case we view the Stiefel manifold V3Cn+3 as a total space over the

generalized flag manifold

SU(1 + 2 + n)/ S(U(1)×U(2)×U(n)) n ≥ 2
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