	Special class of G -invariant metrics	Stiefel manifolds	Quate

nionic Stiefel manifolds

References

100

Invariant Einstein Metrics on Stiefel Manifolds

Marina Statha

Ph.D. Student

(Joint work with A. Arvanitoyeorgos and Y. Sakane)

Introduction	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References

Stiefel manifolds

Stiefel manifolds $V_k \mathbb{F}^n$, $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ are the set of all orthonormal k-frames in \mathbb{F}^n . It can be shown that $V_k \mathbb{F}^n$ is diffeomorphic to a homogeneous space G/H. In particular:

• In case $\mathbb{F}=\mathbb{R}$ \checkmark

$$V_k \mathbb{R}^n \cong \mathrm{SO}(n) / \mathrm{SO}(n-k)$$

ullet In case $\mathbb{F}=\mathbb{C}$

$$V_k \mathbb{C}^n \cong \mathrm{SU}(n) / \mathrm{SU}(n-k)$$

 \bullet In case $\mathbb{F}=\mathbb{H}$ \checkmark

 $V_k \mathbb{H}^n \cong \operatorname{Sp}(n) / \operatorname{Sp}(n-k)$

In all cases the Stiefel manifolds are *reductive homogeneous spaces*, with reductive decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, where $\mathrm{Ad}(H)\mathfrak{m} \subset \mathfrak{m}$ and $\mathfrak{m} \cong T_o(G/H)$, with respect to negative of Killing form of \mathfrak{g} .

If H is connected then $\operatorname{Ad}(H)\mathfrak{m} \subset \mathfrak{m} \Leftrightarrow [\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$.

Introduction	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
000	0000	0000000000	0000000000	

G-invariant metrics on G/H

A G-invariant metric g on homogeneous space G/H is the metric for which the diffeomorphism $\tau_{\alpha}: G/H \to G/H$, $gH \mapsto \alpha gH$ is an isometry. It can be shown that

Proposition 1

There exists a one-to-one correspondence between:

 $\bullet \ G \text{-invariant metrics } g \text{ on } G/H$

② $\operatorname{Ad}^{G/H}$ -invariant inner products $\langle \cdot, \cdot
angle$ on \mathfrak{m} , that is

 $\langle \mathrm{Ad}^{G/H}(h)X, \, \mathrm{Ad}^{G/H}(h)Y\rangle = \langle X, \, Y\rangle \quad \text{for all } X,Y\in \mathfrak{m}, h\in H$

(if H is compact and $\mathfrak{m} = \mathfrak{h}^{\perp}$ with respect to the negative of the Killing form B of G) $\mathrm{Ad}^{G/H}$ -equivariant, B-symmetric and positive definite operators $A : \mathfrak{m} \to \mathfrak{m}$ such that $\langle X, Y \rangle = B(A(X), Y)$.

We call such an inner product $\mathrm{Ad}^G(H)$ -invariant, or simply $\mathrm{Ad}(H)$ -invariant

Introduction		Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
000					
G-invariant metrics	s on G/H				

Isotropy irreducible homogeneous space

In the case where the isotropy representation of a reductive homogeneous space ${\cal G}/{\cal H}$

$$\operatorname{Ad}^{G/H} : H \longrightarrow \operatorname{Aut}(\mathfrak{m})$$
$$h \longmapsto (d\tau_h)_o : \mathfrak{m} \to \mathfrak{m}$$

is **irreducible**, then G/H admits a unique (up to scalar) G-invariant metric g, which is also Einstein $\rightarrow \text{Ric}_g = \lambda \cdot g$.

Introduction		Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
000					
G-invariant metrics	on G/H				

Isotropy irreducible homogeneous space

In the case where the isotropy representation of a reductive homogeneous space ${\cal G}/{\cal H}$

$$\operatorname{Ad}^{G/H} : H \longrightarrow \operatorname{Aut}(\mathfrak{m})$$
$$h \longmapsto (d\tau_h)_o : \mathfrak{m} \to \mathfrak{m}$$

is **irreducible**, then G/H admits a unique (up to scalar) G-invariant metric g, which is also Einstein $\rightarrow \text{Ric}_g = \lambda \cdot g$.

▶ These spaces have been studied in 1968 by J. Wolf.

Some examples of such spaces are the following:

- $\operatorname{SO}(n+1)/\operatorname{SO}(n) \cong S^n$
- $\operatorname{Spin}(7)/\operatorname{G}_2 \cong S^7$
- $G_2 / SU(3) \cong S^6$
- $\operatorname{SU}(n) / \operatorname{S}(\operatorname{U}(1) \times \operatorname{U}(n)) \cong \mathbb{C}P^n$.

Introduction		Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
000					
G-invariant metrics	on G/H				

Isotropy reducible homogeneous space

In the case where the isotropy representation is a direct sum of irreducible representations $\varphi_i: H \to \operatorname{Aut}(\mathfrak{m}_i), i = 1, 2, \ldots s$, that is

 $\mathrm{Ad}^{G/H} \cong \varphi_1 \oplus \varphi_2 \oplus \cdots \oplus \varphi_s \to \mathrm{Aut}(\mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \cdots \oplus \mathfrak{m}_s),$

then we have the following two cases: (A)

• The representations φ_i are **non equivalent**.

In 2004 Böhm-Wang-Ziller conjectured the following: Let G/H be a compact homogeneous space whose isotropy representation splits into a finite sum of non-equivalent and irreducible, subrepresentations. Then the number of G-invariant Einstein metrics on G/H is finite.

Introduction		Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
000					
G-invariant metrics	on G/H				

Isotropy reducible homogeneous space

In the case where the isotropy representation is a direct sum of irreducible representations $\varphi_i: H \to \operatorname{Aut}(\mathfrak{m}_i), i = 1, 2, \dots s$, that is

 $\mathrm{Ad}^{G/H} \cong \varphi_1 \oplus \varphi_2 \oplus \cdots \oplus \varphi_s \to \mathrm{Aut}(\mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \cdots \oplus \mathfrak{m}_s),$

then we have the following two cases:

(A)

• The representations φ_i are **non equivalent**.

In 2004 Böhm-Wang-Ziller conjectured the following: Let G/H be a compact homogeneous space whose isotropy representation splits into a finite sum of non-equivalent and irreducible, subrepresentations. Then the number of G-invariant Einstein metrics on G/H is finite.

(B)

• Some of the representations φ_i are **equivalent**, that is $\varphi_i \approx \varphi_j$ $(i \neq j)$.

Introduction		Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
000					
G-invariant metrics	on G/H				

Isotropy reducible homogeneous space, case (A)

When the representations φ_i are **non equivalent** then the decomposition of \mathfrak{m}

 $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \cdots \oplus \mathfrak{m}_s$

is unique and $\mathfrak{m}_i, \mathfrak{m}_j \ i \neq j$ are perpendicular.

▶ In this case all Ad(H)- invariant inner products on \mathfrak{m} are described as follows:

$$\langle \cdot, \cdot \rangle = x_1(-B)|_{\mathfrak{m}_1} + x_2(-B)|_{\mathfrak{m}_2} + \dots + x_s(-B)|_{\mathfrak{m}_s} x_i \in \mathbb{R}^+, i = 1, 2, \dots, s$$

The matrix of the operator $A: \mathfrak{m} \to \mathfrak{m}$ with respect to (-B)-orthonormal basis is:

$$\begin{pmatrix} x_1 \mathrm{Id}_{\mathfrak{m}_1} & 0 \\ & \ddots & \\ 0 & & x_s \mathrm{Id}_{\mathfrak{m}_s} \end{pmatrix}$$

Introduction		Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
000					
G-invariant metrics	on G/H				

Isotropy reducible homogeneous space, case (A)

When the representations φ_i are **non equivalent** then the decomposition of \mathfrak{m}

 $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \cdots \oplus \mathfrak{m}_s$

is unique and $\mathfrak{m}_i, \mathfrak{m}_j \ i \neq j$ are perpendicular.

▶ In this case all Ad(H)- invariant inner products on \mathfrak{m} are described as follows:

$$\langle \cdot, \cdot \rangle = x_1(-B)|_{\mathfrak{m}_1} + x_2(-B)|_{\mathfrak{m}_2} + \dots + x_s(-B)|_{\mathfrak{m}_s} x_i \in \mathbb{R}^+, i = 1, 2, \dots, s$$

The matrix of the operator $A: \mathfrak{m} \to \mathfrak{m}$ with respect to (-B)-orthonormal basis is:

$$\begin{pmatrix} x_1 \mathrm{Id}_{\mathfrak{m}_1} & 0 \\ & \ddots & \\ 0 & & x_s \mathrm{Id}_{\mathfrak{m}_s} \end{pmatrix}$$

The G-invariant metrics that correspond to these inner products are called diagonal.

Ricci tensor	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References

Ricci tensor for diagonal metrics

Now for the Ricci tensor of diagonal G-invariant metrics we have the following:

We set $d_i := \dim \mathfrak{m}_i$ and let $\{e^i_{\alpha}\}_{\alpha=1}^{d_i}$ be a (-B)-orthonormal basis adapted to the above decomposition of \mathfrak{m} , i.e. $e^i_{\alpha} \in \mathfrak{m}_i \ i = 1, 2, \ldots, s$.

Consider the numbers $A^{\gamma}_{\alpha\beta}=(-B)([e^i_{\alpha},e^j_{\beta}],e^k_{\gamma})$ such that

$$[e^i_{\alpha}, e^j_{\beta}] = \sum_{\gamma} A^{\gamma}_{\alpha\beta} e^k_{\gamma}$$

and set

$$A_{ijk} := \begin{bmatrix} k\\ ij \end{bmatrix} = \sum (A_{\alpha\beta}^{\gamma})^2$$

where the sum taken over all three indices α, β, γ with $e_{\alpha}^{i} \in \mathfrak{m}_{i}, e_{\beta}^{j} \in \mathfrak{m}_{j}, e_{\gamma}^{k} \in \mathfrak{m}_{k}$. The numbers A_{ijk} are non-negative, independent of the (-B)-orthonormal bases chosen for $\mathfrak{m}_{i}, \mathfrak{m}_{j}, \mathfrak{m}_{k}$, and are symmetric in all three indices:

$$A_{ijk} = A_{jik} = A_{kij}.$$

Ricci tensor	Stiefel manifolds	Quaternionic Stiefel manifolds	References

Ricci tensor for diagonal metrics

▶ The Ricci tensor $\operatorname{Ric}_{\langle\cdot,\cdot\rangle}$ of a *G*-invariant Riemannian metric on G/H has also a diagonal form, i.e. $\operatorname{Ric}_{\langle\cdot,\cdot\rangle} = \sum_{k=0}^{s} r_k x_k (-B)|_{\mathfrak{m}_k}$. We have the following proposition due to Park and Sakane (1997).

Proposition 2

The components r_1,\ldots,r_q of the Ricci tensor ${
m Ric}_{\langle\cdot,\cdot
angle}$ on G/H are given by

$$r_{k} = \frac{1}{2x_{k}} + \frac{1}{4d_{k}} \sum_{j,i} \frac{x_{k}}{x_{j}x_{i}} {k \brack ji} - \frac{1}{2d_{k}} \sum_{j,i} \frac{x_{j}}{x_{k}x_{i}} {j \brack ki} \quad (k = 1, \dots, q),$$
(1)

where the sum is taken over $i, j = 1, \ldots, q$. In particular for each k it holds that

$$\sum_{i,j}^{s} \begin{bmatrix} j\\ki \end{bmatrix} = \sum_{i,j} A_{kij} = d_k := \dim \mathfrak{m}_k.$$
 (2)

Isotropy reducible homogeneous space, case (B)

When some of the φ_i, φ_j in the isotropy representation of G/H are equivalent, then

- the diagonal G-nvariant metrics is not unique, and
- the submodules $\mathfrak{m}_i, \mathfrak{m}_j$ does not necessarily perpendicular.

In this case the matrix of the operator $(\cdot, \cdot) = \langle A \cdot, \cdot \rangle$ has some non zero non diagonal elements.

Also the Ricci tensor is not easy to describe

Ricci tensor	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References

Isotropy reducible homogeneous space, case (B)--Examples

• For the real Stiefel manifolds $V_k \mathbb{R}^n \cong SO(n)/SO(n-k)$ the isotropy representation is given as follows:

$$\operatorname{Ad}^{\operatorname{SO}(n)}|_{\operatorname{SO}(n-k)} = \cdots = \bigwedge_{\operatorname{Ad}^{\operatorname{SO}(n-k)}} \bigoplus \underbrace{1 \oplus \cdots \oplus 1}_{\binom{k}{2} - \operatorname{times}} \oplus \underbrace{\lambda_{n-k} \oplus \cdots \oplus \lambda_{n-k}}_{k-\operatorname{times}}$$

Ricci tensor	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References

Isotropy reducible homogeneous space, case (B)--Examples

• For the real Stiefel manifolds $V_k \mathbb{R}^n \cong SO(n)/SO(n-k)$ the isotropy representation is given as follows:

$$\begin{aligned} \operatorname{Ad}^{\operatorname{SO}(n)}|_{\operatorname{SO}(n-k)} &= \cdots = \underbrace{\wedge^2 \lambda_{n-k}}_{\operatorname{Ad}^{\operatorname{SO}(n-k)}} \oplus \underbrace{1 \oplus \cdots \oplus 1}_{\binom{k}{2} - \operatorname{times}} \oplus \underbrace{\lambda_{n-k} \oplus \cdots \oplus \lambda_{n-k}}_{k-\operatorname{times}} \end{aligned}$$
For $n = 4$ and $k = 2$ the matrix of the operator $A : \mathfrak{m} \to \mathfrak{m}$ has the following form:
$$\begin{pmatrix} x_0 & 0 & 0 & 0 & 0 \\ 0 & x_1 & 0 & \lambda & 0 \\ 0 & 0 & x_1 & 0 & \lambda \\ 0 & \lambda & 0 & x_2 & 0 \\ 0 & 0 & \lambda & 0 & x_2 \end{pmatrix} \quad \lambda \in \mathbb{R}, x_i \in \mathbb{R}^+ i = 0, 1, 2.$$

 \bullet For the quaternionic Stiefel manifolds $V_k\mathbb{H}^n$ the isotropy representation is given as follows:

$$\operatorname{Ad}^{Sp(n)} \otimes \mathbb{C}\big|_{\operatorname{Sp}(n-k)} = \dots = \underbrace{S^2 \nu_{n-k}}_{\operatorname{Ad}^{\operatorname{Sp}(n-k)}} \oplus \underbrace{1 \oplus \dots \oplus 1}_{\binom{2+2k-1}{2} - \operatorname{times}} \oplus \underbrace{\nu_{n-k} \oplus \dots \oplus \nu_{n-k}}_{2k - \operatorname{times}}.$$

Ricci tensor	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References

Some history

• Kobayashi (1963): Proved the existence of an SO(n)-invariant Einstein metric on the unit tangent bundle $T_1S^n \cong SO(n)/SO(n-2)$.

• Sagle (1970) - Jensen (1973): Proved the existence of SO(n)-invariant Einstein metrics on the Stiefel manifolds $V_k \mathbb{R}^n \cong SO(n)/SO(n-k)$, for $k \ge 3$

metrics of the form:
$$\leftrightarrow \langle \cdot, \cdot
angle = egin{pmatrix} 0 & a & 1 \\ a & a & 1 \\ 1 & 1 & * \end{pmatrix}$$

• Back - Hsiang (1987) and Kerr (1998): Proved that for $n \ge 5$ the Stiefel manifolds $V_2 \mathbb{R}^n \cong SO(n)/SO(n-2)$ admit exactly one (diagonal) SO(n)-invariant Einstein metric.

• Arvanitoyeorgos-Dzhepko-Nikonorov (2009): Showed that for s > 1 and l > k > 3 the Stiefel manifolds $V_{sk}\mathbb{F}^{sk+l} \cong G(sk+l)/G(l)$ admit at least four G(sk+l)-invariant Einstein metrics which are also $\operatorname{Ad} (G(k)^s \times G(l))$ -invariant (two of these are Jensen's metrics) where $G(\ell) \in \{\operatorname{SO}(\ell), \operatorname{Sp}(\ell)\}$.

metrics of the form:
$$\leftrightarrow \langle \cdot, \cdot \rangle = \begin{pmatrix} \alpha & \beta & 1 \\ \beta & \alpha & 1 \\ 1 & 1 & \cdot \end{pmatrix}$$
.

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
000	0000	000000000	0000000000	

As seen before, the G-invariant metrics \mathcal{M}^G on $G/H \cong V_k \mathbb{F}^n$, $\mathbb{F} \in \{\mathbb{R}, \mathbb{H}\}$ are not only diagonal. For this reason the complete description of G-invariant Einstein metrics is difficult, because the Ricci tensor is not easy to describe. So we search for a subset of these metrics which are diagonal.

General construction

Let G/H a homogeneous spaces with reductive decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$. We consider the operator

$$\operatorname{Ad}(n):\mathfrak{g}\to\mathfrak{g}$$

where $n\in N_G(H)=\{g\in G:gHg^{-1}=H\}.$ Then

Proposition 3

The operator $\operatorname{Ad}(n)|_{\mathfrak{m}} : \mathfrak{m} \to \mathfrak{g}$ takes values in \mathfrak{m} , that is $\varphi = \operatorname{Ad}(n)|_{\mathfrak{m}} \in \operatorname{Aut}(\mathfrak{m})$. Also, $(\operatorname{Ad}(n)|_{\mathfrak{m}})^{-1} = (\operatorname{Ad}(n)|_{\mathfrak{m}})^t$.

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
000	0000	0000000000	0000000000	

We define the isometric action

$$\Phi\times\mathcal{M}^G\to\mathcal{M}^G,\quad (\varphi,A)\mapsto\varphi\circ A\circ\varphi^{-1}\equiv\tilde{A},$$

where Φ is the set $\{\varphi = \operatorname{Ad}(n)|_{\mathfrak{m}} : n \in N_G(H)\} \subset \operatorname{Aut}(\mathfrak{m}).$

Proposition 4

The action of Φ on \mathcal{M}^G is well defined, i.e. \tilde{A} is $\mathrm{Ad}(H)$ -equivariant, symmetric and positive definite.

Remark: Metrics corresponding to the operator A are equivalent, up to automorphism $\operatorname{Ad}(n) : \mathfrak{m} \to \mathfrak{m}$, to the metrics corresponding to the operator \tilde{A} .

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
000	0000	000000000	0000000000	

We define the isometric action

$$\Phi\times\mathcal{M}^G\to\mathcal{M}^G,\quad (\varphi,A)\mapsto\varphi\circ A\circ\varphi^{-1}\equiv\tilde{A},$$

where Φ is the set $\{\varphi = \operatorname{Ad}(n)|_{\mathfrak{m}} : n \in N_G(H)\} \subset \operatorname{Aut}(\mathfrak{m})$.

Proposition 4

The action of Φ on \mathcal{M}^G is well defined, i.e. \tilde{A} is Ad(H)-equivariant, symmetric and positive definite.

Remark: Metrics corresponding to the operator A are equivalent, up to automorphism $Ad(n) : \mathfrak{m} \to \mathfrak{m}$, to the metrics corresponding to the operator \tilde{A} .

From the above action we consider the set of all fixed points (subset of \mathcal{M}^G): $(\mathcal{M}^G)^{\Phi} = \{A \in \mathcal{M}^G : \varphi \circ A \circ \varphi^{-1} = A \text{ far all } \varphi \in \Phi\}$

Any element of $(\mathcal{M}^G)^{\Phi}$ parametrizes all $\mathrm{Ad}(N_G(H))$ -invariant inner products of \mathfrak{m} and thus it defines a subset of all inner products on \mathfrak{m} .

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
000	0000	0000000000	0000000000	

Since $H \subset N_G(H)$ we have:

Proposition 5

Let G/H be a homogeneous space. Then there exists a one-to-one correspondence between:

- (1) G-invariant metrics on G/H,
- (2) Ad(H)-invariant inner products on \mathfrak{m} ,
- (3) Fixed points

$$(\mathcal{M}^G)^{\Phi_H} = \{ A \in \mathcal{M}^G \, : \, \psi \circ A \circ \psi^{-1} = A, \text{ for all } \psi \in \Phi_H \}$$

of the action $\Phi_H = \{ \phi = \operatorname{Ad}(h) |_{\mathfrak{m}} : h \in H \} \subset \Phi$ on \mathcal{M}^G .

•
$$(\mathcal{M}^G)^{\Phi} \subset (\mathcal{M}^G)^{\Phi_H}.$$

Introduction 000 General construct	Ricci tensor	Special class of G-invariant metrics ●000	Stiefel manifolds	Quaternionic Stiefel manifolds	References
$K \operatorname{clo}$	sed sub	ogroup of G			

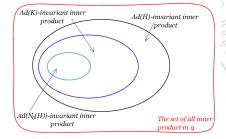
► We work with some closed subgroup K of G such that $H \subset K \subset N_G(H) \subset G.$

Then the fixed point set of the non trivial action of

$$\Phi_K = \{ arphi = \operatorname{Ad}(k) |_{\mathfrak{m}} : k \in K \} \subset \Phi \text{ on } \mathcal{M}^G$$
 is

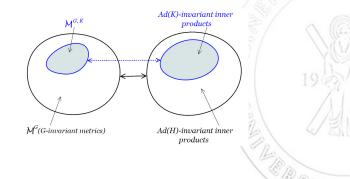
 $(\mathcal{M}^G)^{\Phi_K} = \{ A \in \mathcal{M}^G \, : \, \varphi \circ A \circ \varphi^{-1} = A \text{ for all } \varphi \in \Phi_K \},$

and this set determines a subset of all $\mathrm{Ad}(K)$ -invariant inner products of \mathfrak{m} . We have the inclusions $(\mathcal{M}^G)^{\Phi} \subset (\mathcal{M}^G)^{\Phi_K} \subset (\mathcal{M}^G)^{\Phi_H}$.



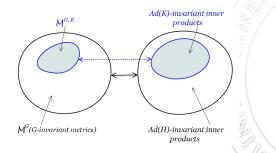
Introduction 000 General construc	Ricci tensor	Special class of G -invariant metrics $0 \bullet 0 0$	Stiefel manifolds 0000000000	Quaternionic Stiefel manifolds 00000000000	References
$K \mathrm{clc}$	osed sub	paroup of G			

By Proposition 5 the subset $(\mathcal{M}^G)^{\Phi_K}$ is in one-to-one correspondence with a subset $\mathcal{M}^{G,K}$ of all *G*-invariant metrics, call it $\mathrm{Ad}(K)$ -invariant, as shown in the following figure:



Introduction 000 General construct	Ricci tensor	Special class of G-invariant metrics ○●○○	Stiefel manifolds	Quaternionic Stiefel manifolds	References
K clo	sed sub	paroup of G			

By Proposition 5 the subset $(\mathcal{M}^G)^{\Phi_K}$ is in one-to-one correspondence with a subset $\mathcal{M}^{G,K}$ of all *G*-invariant metrics, call it $\mathrm{Ad}(K)$ -invariant, as shown in the following figure:



Proposition 6

Let K be a subgroup of G with $H \subset K \subset G$ and such that $K = L \times H$, for some subgroup L of G. Then K is contained in $N_G(H)$.

Introduction 000		Special class of G -invariant metrics $OO \bullet O$	Stiefel manifolds	Quaternionic Stiefel manifolds	References
General constru	ction				
$K \mathrm{clc}$	osed sub	paroup of G			

We apply the previous proposition for the Stiefel manifolds

$$V_{k_1+k_2}\mathbb{F}^{k_1+k_2+k_3} \cong G_{k_1+k_2+k_3}/G_3,$$

 $G_{k_1+k_2+k_3} \in \{ \mathrm{SO}(k_1+k_2+k_3), \mathrm{Sp}(k_1+k_2+k_3) \}, G_i \in \{ \mathrm{SO}(k_i), \mathrm{Sp}(k_i) \}$ (i = 1, 2, 3) and $\mathbb{F} \in \{ \mathbb{R}, \mathbb{H} \}$, where we take the following two cases for the subgroup $K = L \times G_3$:

(A) $K = \left(G_1 imes G_2
ight) imes G_3$, and search for

 $\operatorname{Ad}(K) \equiv \operatorname{Ad}\left(\left(G_1 \times G_2\right) \times G_3\right)$ -invariant metrics.

Introduction 000		Special class of G -invariant metrics $OO \bullet O$	Stiefel manifolds	Quaternionic Stiefel manifolds	References
General constru	ction				
$K \mathrm{clc}$	sed sub	paroup of G			

We apply the previous proposition for the Stiefel manifolds

$$V_{k_1+k_2}\mathbb{F}^{k_1+k_2+k_3} \cong G_{k_1+k_2+k_3}/G_3,$$

 $G_{k_1+k_2+k_3} \in \{ SO(k_1+k_2+k_3), Sp(k_1+k_2+k_3) \}, G_i \in \{ SO(k_i), Sp(k_i) \}$ (i = 1, 2, 3) and $\mathbb{F} \in \{ \mathbb{R}, \mathbb{H} \}$, where we take the following two cases for the subgroup $K = L \times G_3$:

(A) $K = \left(G_1 imes G_2
ight) imes G_3$, and search for

 $\operatorname{Ad}(K) \equiv \operatorname{Ad}\left(\left(G_1 \times G_2\right) \times G_3\right)$ -invariant metrics.

(B) $K = \mathrm{U}(k_1+k_2) imes \mathrm{Sp}(k_3)$, and search for

 $\operatorname{Ad}(K) \equiv \operatorname{Ad}(\operatorname{U}(k_1 + k_2) \times \operatorname{Sp}(k_3))$ -invariant metrics.

The benefit for such metrics is that they are diagonal metrics on the homogeneous space.

Marina Statha

		Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
		0000			
General construction	on				

We study the case (A)

 $K = (G_1 imes G_2) imes G_3$ where $G_i \in \{\mathrm{SO}(k_i), \mathrm{Sp}(k_i)\}, \, i=1,2,3$

that is

$$K = \mathrm{SO}(k_1) imes \mathrm{SO}(k_2) imes \mathrm{SO}(k_3) \longrightarrow V_{k_1 + k_2} \mathbb{R}^n$$

$$K = \mathrm{Sp}(k_1) imes \mathrm{Sp}(k_2) imes \mathrm{Sp}(k_3) \longrightarrow V_{k_1+k_2} \mathbb{H}^n$$

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
		000000000		
Case (A)				

$K = (G_1 \times G_2) \times G_3, \quad G_i \in \{\mathrm{SO}(k_i), \mathrm{Sp}(k_i)\}$

We view the Stiefel manifold $V_{k_1+k_2}\mathbb{F}^n$, where $n = k_1 + k_2 + k_3$ as total space over the generalized Wallach space, i.e.

$$\frac{G_1 \times G_2 \times G_3}{G_3} \longrightarrow \frac{G_n}{G_3} \longrightarrow \frac{G_n}{G_1 \times G_2 \times G_3}$$

 \blacktriangleright The tangent space $\mathfrak p$ of the generalized Wallach space has three non equivalent ${\rm Ad}(K)$ -invariant, irreducible isotropy summands, that is

$$\mathfrak{p}=\mathfrak{p}_{12}\oplus\mathfrak{p}_{13}\oplus\mathfrak{p}_{23},$$

and the tangent space of the fiber is the Lie algebra

$$\mathfrak{g}_1 \oplus \mathfrak{g}_2$$
 where $\mathfrak{g}_i \in \{\mathfrak{so}(k_i), \mathfrak{sp}(k_i)\}, i = 1, 2$

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
		•000000000		
Case (A)				

$K = (G_1 \times G_2) \times G_3, \quad G_i \in \{\mathrm{SO}(k_i), \mathrm{Sp}(k_i)\}$

We view the Stiefel manifold $V_{k_1+k_2}\mathbb{F}^n$, where $n = k_1 + k_2 + k_3$ as total space over the generalized Wallach space, i.e.

$$\frac{G_1 \times G_2 \times G_3}{G_3} \longrightarrow \frac{G_n}{G_3} \longrightarrow \frac{G_n}{G_1 \times G_2 \times G_3}$$

 \blacktriangleright The tangent space $\mathfrak p$ of the generalized Wallach space has three non equivalent ${\rm Ad}(K)$ -invariant, irreducible isotropy summands, that is

$$\mathfrak{p}=\mathfrak{p}_{12}\oplus\mathfrak{p}_{13}\oplus\mathfrak{p}_{23},$$

and the tangent space of the fiber is the Lie algebra

$$\mathfrak{g}_1 \oplus \mathfrak{g}_2$$
 where $\mathfrak{g}_i \in {\mathfrak{so}(k_i), \mathfrak{sp}(k_i)}, i = 1, 2.$

► Therefore, the tangent space \mathfrak{m} of the total space can be written as a direct sum of five **non equivalent** $\mathrm{Ad}(K)$ -invariant, irreducible components:

$$\mathfrak{m} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \mathfrak{p}_{12} \oplus \mathfrak{p}_{13} \oplus \mathfrak{p}_{23}$$
$$= \begin{pmatrix} \mathfrak{g}_1 & \mathfrak{p}_{12} & \mathfrak{p}_{13} \\ -^t \mathfrak{p}_{12} & \mathfrak{g}_2 & \mathfrak{p}_{23} \\ -^t \mathfrak{p}_{13} & -^t \mathfrak{p}_{23} & 0 \end{pmatrix}$$

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
		000000000		
Case (A)				

$\overline{K = (G_1 \times G_2) \times G_3}, \ G_i \in \{\mathrm{SO}(k_i), \mathrm{Sp}(k_i)\}$

From the previous decomposition any Ad(K)-invariant metric is diagonal and is determined by Ad(K)-invariant inner products of the form:

$$\langle \cdot, \cdot \rangle = x_1 (-B)|_{\mathfrak{g}_1} + x_2 (-B)|_{\mathfrak{g}_2} \\ + x_{12} (-B)|_{\mathfrak{p}_{12}} + x_{13} (-B)|_{\mathfrak{p}_{13}} + x_{23} (-B)|_{\mathfrak{p}_{23}}$$

$$\leftrightarrow$$

$$\langle \cdot, \cdot \rangle = \begin{pmatrix} x_1 & x_{12} & x_{13} \\ x_{12} & x_2 & x_{23} \\ x_{13} & x_{23} & * \end{pmatrix}.$$
Here $k_1 \ge 2, k_2 \ge 2$ and $k_3 \ge 1.$

$$(3)$$

In the case where we have $k_1=1$, then for the real Stiefel manifold $V_{1+k_2}\mathbb{R}^{1+k_2+k_3}$ the above inner products take the form

$$\langle \cdot, \cdot \rangle = x_2 (-B)|_{\mathfrak{so}(k_2)} + x_{12} (-B)|_{\mathfrak{m}_{12}} + x_{13} (-B)|_{\mathfrak{m}_{13}} + x_{23} (-B)|_{\mathfrak{m}_{23}} \quad (4)$$

$$\leftrightarrow$$

$$\cdot \rangle = \begin{pmatrix} 0 & x_{12} & x_{13} \\ x_{12} & x_2 & x_{23} \\ x_{13} & x_{23} & * \end{pmatrix}. \quad \text{Here } k_1 = 1, k_2 \ge 2 \text{ and } k_3$$

(•,

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
		000000000		
Case (A)				

$\overline{K = (G_1 \times G_2) \times G_3}, \ G_i \in \{\mathrm{SO}(k_i), \mathrm{Sp}(k_i)\}$

We need to determine the Ricci components r_1, r_2, r_{ij} $(1 \le i < j \le 3$ for the metric that correspond to the inner products (3) and (4). We first need to identify the non zero numbers $A_{ijk} := \begin{bmatrix} k \\ ij \end{bmatrix}$. From some Lie bracket relations of \mathfrak{g}_i and \mathfrak{p}_{ij} we have: $A_{111}, A_{222}, A_{1(12)(12)}, A_{1(13)(13)}, A_{2(12)(12)}, A_{2(23)(23)}, A_{(12)(23)(13)}$. From the Lemma below (due to Arvanitoyeorgos, Dzhepko and Nikonorov) we have.

Lemma 5

For $a, b, c = 1, 2, 3$ and $(a - b)(b - c)(c - a) \neq 0$ the following relations hold:				
real case	quaternionic case			
$A_{aaa} = \frac{k_a(k_a-1)(k_a-2)}{2(n-2)}$	$A_{aaa} = \frac{k_a(k_a+1)(2k_a+1)}{n+1}$			
$A_{(ab)(ab)a} = \frac{k_a k_b (k_a - 1)}{2(n - 2)}$	$A_{(ab)(ab)a} = \frac{k_a k_b (2k_a + 1)}{(n+1)}$			
$A_{(ab)(bc)(ac)} = \frac{k_a k_b k_c}{2(n-2)}$	$A_{(ab)(bc)(ac)} = \frac{2k_a k_b k_c}{n+1}.$			

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
		000000000		
Case (A)				

$K = (G_1 \times G_2) \times G_3, G_i \in {\mathrm{SO}(k_i), \mathrm{Sp}(k_i)}$

Lemma 6

The components of the Ricci tensor for the ${\rm Ad}(K)\text{-invariant}$ metric determined by (3) for the **real case** are given as follows:

$$\begin{aligned} r_1 &= \frac{k_1 - 2}{4(n-2)x_1} + \frac{1}{4(n-2)} \left(k_2 \frac{x_1}{x_{12}^2} + k_3 \frac{x_1}{x_{13}^2} \right), \\ r_2 &= \frac{k_2 - 2}{4(n-2)x_2} + \frac{1}{4(n-2)} \left(k_1 \frac{x_2}{x_{12}^2} + k_3 \frac{x_2}{x_{23}^2} \right), \\ r_{12} &= \frac{1}{2x_{12}} + \frac{k_3}{4(n-2)} \left(\frac{x_{12}}{x_{13}x_{23}} - \frac{x_{13}}{x_{12}x_{23}} - \frac{x_{23}}{x_{12}x_{13}} \right) \\ &- \frac{1}{4(n-2)} \left((k_1 - 1) \frac{x_1}{x_{12}^2} + (k_2 - 1) \frac{x_2}{x_{12}^2} \right), \\ r_{13} &= \frac{1}{2x_{13}} + \frac{k_2}{4(n-2)} \left(\frac{x_{13}}{x_{12}x_{23}} - \frac{x_{13}}{x_{13}x_{23}} - \frac{x_{23}}{x_{12}x_{13}} \right) - \frac{1}{4(n-2)} \left((k_1 - 1) \frac{x_1}{x_{13}^2} \right) \\ r_{23} &= \frac{1}{2x_{23}} + \frac{k_1}{4(n-2)} \left(\frac{x_{23}}{x_{13}x_{12}} - \frac{x_{13}}{x_{12}x_{23}} - \frac{x_{12}}{x_{23}x_{13}} \right) - \frac{1}{4(n-2)} \left((k_2 - 1) \frac{x_2}{x_{23}^2} \right) \end{aligned}$$

where $n=k$	$_1 + k_2 + k_3$	3.	
Marina Statha	Mart	oura March 2016	

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
		0000000000		
Case (A)				

$K = (G_1 \times G_2) \times G_3, G_i \in {\mathrm{SO}(k_i), \mathrm{Sp}(k_i)}$

Lemma 7

The components of the Ricci tensor for the Ad(K)-invariant metric determined by (3) for the **quaternionic case** are given as follows:

$$\begin{aligned} r_1 &= \frac{k_1 + 1}{4(n+1)x_1} + \frac{k_2}{4(n+1)} \frac{x_1}{x_{12}^2} + \frac{k_3}{4(n+1)} \frac{x_1}{x_{13}^2}, \\ r_2 &= \frac{k_2 + 1}{4(n+1)x_2} + \frac{k_1}{4(n+1)} \frac{x_2}{x_{12}^2} + \frac{k_3}{4(n+1)} \frac{x_2}{x_{23}^2}, \\ r_{12} &= \frac{1}{2x_{12}} + \frac{k_3}{4(n+1)} \left(\frac{x_{12}}{x_{13}x_{23}} - \frac{x_{13}}{x_{12}x_{23}} - \frac{x_{23}}{x_{12}x_{13}} \right) \\ &- \frac{2k_1 + 1}{8(n+1)} \frac{x_1}{x_{12}^2} - \frac{2k_2 + 1}{8(n+1)} \frac{x_2}{x_{12}^2}, \\ r_{13} &= \frac{1}{2x_{13}} + \frac{k_2}{4(n+1)} \left(\frac{x_{13}}{x_{12}x_{23}} - \frac{x_{13}}{x_{13}x_{23}} - \frac{x_{23}}{x_{12}x_{13}} \right) - \frac{2k_1 + 1}{8(n+1)} \frac{x_1}{x_{13}^2} \\ r_{23} &= \frac{1}{2x_{23}} + \frac{k_1}{4(n+1)} \left(\frac{x_{23}}{x_{13}x_{12}} - \frac{x_{13}}{x_{12}x_{23}} - \frac{x_{12}}{x_{23}x_{13}} \right) - \frac{2k_2 + 1}{8(n+1)} \frac{x_2}{x_{23}^2}. \end{aligned}$$

Introduction 000	Special class of G -invariant metrics 0000	Stiefel manifolds 00000€0000	Quaternionic Stiefel manifolds	References
Case (A)				

$K = (G_1 \times G_2) \times G_3, \ G_i \in {\mathrm{SO}(k_i), \mathrm{Sp}(k_i)}$

Lemma 8

The components of the Ricci tensor for the ${\rm Ad}(K)$ -invariant metric determined by (4) (real case only), are given as follows:

$$\begin{split} r_2 &= \frac{k_2 - 2}{4(n-2)x_2} + \frac{1}{4(n-2)} \left(\frac{x_2}{x_{12}^2} + k_3 \frac{x_2}{x_{23}^2} \right), \\ r_{12} &= \frac{1}{2x_{12}} + \frac{k_3}{4(n-2)} \left(\frac{x_{12}}{x_{13}x_{23}} - \frac{x_{13}}{x_{12}x_{23}} - \frac{x_{23}}{x_{12}x_{13}} \right) - \frac{1}{4(n-2)} \left((k_2 - 1) \frac{x_2}{x_{12}^2} \right), \\ r_{23} &= \frac{1}{2x_{23}} + \frac{1}{4(n-2)} \left(\frac{x_{23}}{x_{13}x_{12}} - \frac{x_{13}}{x_{12}x_{23}} - \frac{x_{12}}{x_{23}x_{13}} \right) - \frac{1}{4(n-2)} \left((k_2 - 1) \frac{x_2}{x_{23}^2} \right), \\ r_{13} &= \frac{1}{2x_{13}} + \frac{k_2}{4(n-2)} \left(\frac{x_{13}}{x_{12}x_{23}} - \frac{x_{12}}{x_{13}x_{23}} - \frac{x_{23}}{x_{12}x_{13}} \right), \end{split}$$
 where $n = 1 + k_2 + k_3$.

SIM SIM

Introduction 000 Case (A)	Ricci tensor	Special class of G -invariant metrics 0000	Stiefel manifolds 000000€000	Quaternionic Stiefel manifolds	References
Einste	in metri	cs on $V_{1+k_2}\mathbb{R}^n$			

▶ For the Stiefel manifolds $V_4 \mathbb{R}^n \cong \mathrm{SO}(n)/\mathrm{SO}(n-4)$, where $k_2 = 3$ and $k_3 = n-4$, the

 $\mathrm{Ad}(\mathrm{SO}(3) imes \mathrm{SO}(n-4))$ -invariant Einstein metrics

are the solutions of the system

$$r_2 = r_{12}, \quad r_{12} = r_{13}, \quad r_{13} = r_{23},$$

and we set $x_{23} = 1$. Then we have

$$\begin{split} f_1 &= -(n-4)x_{12}{}^3x_2 + (n-4)x_{12}{}^2x_{13}x_2^2 + (n-4)x_{12}x_{13}{}^2x_2 \\ &-2(n-2)x_{12}x_{13}x_2 + (n-4)x_{12}x_2 + x_{12}{}^2x_{13} + 3x_{13}x_2^2 = 0, \\ f_2 &= (n-3)x_{12}{}^3 - 2(n-2)x_{12}{}^2x_{13} - (n-5)x_{12}x_{13}{}^2 \\ &+2(n-2)x_{12}x_{13} + (3-n)x_{12} + 2x_{12}{}^2x_{13}x_2 - 2x_{13}x_2 = 0, \\ f_3 &= (n-2)x_{12}x_{13} - (n-2)x_{12} + x_{12}{}^2 - x_{12}x_{13}x_2 \\ &-2x_{13}{}^2 + 2 = 0. \end{split}$$

We take a Gröbner basis for the ideal I of the polynomial ring $R = \mathbb{Q}[z, x_2, x_{12}, x_{13}]$ which is generated by $\{f_1, f_2, f_3, z x_2 x_{12} x_{13} - 1\}$, to find non zero solutions of the above system.

(5)

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
		0000000000		
Case (A)				

Einstein metrics on Real Stiefel manifolds $V_{k_1+k_2}\mathbb{R}^n$

By the aid of computer programs for symbolic computations we obtain the following results:

Theorem 1 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifolds $V_4\mathbb{R}^n = \mathrm{SO}(n)/\mathrm{SO}(n-4)$ $(n \ge 6)$ admit at least four invariant Einstein metrics. Two of them are Jensen's metrics and the other two are given by the $\mathrm{Ad}(\mathrm{SO}(3) \times \mathrm{SO}(n-4))$ -invariant inner products of the form (4).

In the same way, for the Stiefel manifolds $V_5\mathbb{R}^7$, we consider the cases $k_1 = 2, k_2 = 3, k_3 = 2$ $k_1 = 1, k_2 = 4, k_3 = 2$

Then we have:

Theorem 2 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifold $V_5\mathbb{R}^7 = SO(7)/SO(2)$ admits at least six invariant Einstein metrics. Two of them are Jensen's metrics, the other two are given by $Ad(SO(2) \times SO(3) \times SO(2))$ -invariant inner products of the form (3), and the rest two are given by $Ad(SO(4) \times SO(2))$ -invariant inner products of the

form (4)

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
		0000000000		
Case (A)				

Einstein metrics on quaternionic Stiefel manifolds $V_{k_1+k_2}\mathbb{H}^n$

For the quaternionic Stiefel manifolds we solve the system

 $r_1 = r_2, r_2 = r_{12}, r_{12} = r_{13}, r_{13} = r_{23}$ and we obtain the following results: For the case $k_1 = 1, k_2 = 1, k_3 = 1$ the $Ad(Sp(1) \times Sp(1) \times Sp(1))$ -invariant Einstein metrics on $V_2 \mathbb{H}^3$ are

 $(x_1, x_2, x_{12}, x_{13}, x_{23}) \approx (0.276281, 0.251266, 0.460887, 0.568722, 1)$

 \approx (1.112249, 0.417937, 1.598741, 0.595776, 1)

- \approx (0.701500, 1.866891, 2.683459, 1.678482, 1)
- \approx (0.441809, 0.485793, 0.810389, 1.758325, 1).

Two are Jensen's metrics:

 $(x_1, x_2, x_{12}, x_{13}, x_{23}) \approx (0.472797, 047.2797, 0.472797, 1, 1)$ $\approx (1.812916, 1.812916, 1.812916, 1, 1),$

and the other two are Arvanitoyeorgos-Dzhepko-Nikonorov metrics:

 $(x_1, x_2, x_{12}, x_{13}, x_{23}) \approx (0.3448897, 0.3448897, 0.800199, 1, 1)$ $\approx (0.483972, 0.483972, 2.585187, 1, 1).$

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
		000000000		
Case (A)				

Einstein metrics on Quaternionic Stiefel manifolds $V_{k_1+k_2}\mathbb{H}^n$

- In the same way for $k_1 = n 2$, $k_2 = 1$, $k_3 = 1$ the $Ad(Sp(n-2) \times Sp(1) \times Sp(1))$ -invariant Einstein metrics on $V_{n-1}\mathbb{H}^n$ are
 - $0 \ 3 < n < 8$ there are 8 metrics, 2 of Jensen's metrics and 6 are new.
 - 2 7 < n < 30 there are 10 metrics, 2 of Jensen's and 8 are new.
 - \circ n > 29 there are 12 metrics, 2 Jensen's and the rest 10 are new.

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
		000000000		
Case (A)				

Einstein metrics on Quaternionic Stiefel manifolds $V_{k_1+k_2}\mathbb{H}^n$

- In the same way for $k_1 = n 2$, $k_2 = 1$, $k_3 = 1$ the $Ad(Sp(n-2) \times Sp(1) \times Sp(1))$ -invariant Einstein metrics on $V_{n-1}\mathbb{H}^n$ are
 - $0 \ 3 < n < 8$ there are 8 metrics, 2 of Jensen's metrics and 6 are new.
 - 2 7 < n < 30 there are 10 metrics, 2 of Jensen's and 8 are new.
 - \bullet n > 29 there are 12 metrics, 2 Jensen's and the rest 10 are new.
- ▶ In case where $k_1 = n 3$, $k_2 = 1$, $k_3 = 2$ the Ad(Sp(n - 3) × Sp(1) × Sp(2))-invariant Einstein metrics on $V_{n-2}\mathbb{H}^n$ are
 - n = 4 there are 8 metrics, 2 Jensen's, two Nikonorov-Arvanitoyeorgos-Dzhepko and 4 are new.
 - 2 4 < n < 10 there are 8 metrics, 2 Jensen's and 6 new.
 - \bullet n = 10 there are 10 metrics, 2 Jensen's and 8 new.
 - 4 11 < n < 28 there are 8 metrics, 2 Jensen's and 6 new.
 - \bigcirc 27 < n < 41 there are 10 metrics, 2 Jensen's and 8 new.
 - \bullet n > 40 there are 12 metrics, 2 Jensen's and 10 are new.

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References

We now study the case (B)

 $K = \mathrm{U}(k_1 + k_2) \times \mathrm{Sp}(k_3)$

for the quaternionic Stiefel manifolds $V_{k_1+k_2}\mathbb{H}^n$, where $n=k_1+k_2+k_3$.

We set $p = k_1 + k_2$, so $k_3 = n - p$.

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
			●0000000000	
Case (B)				

$K = \mathrm{U}(p) \times \mathrm{Sp}(n-p)$

In this case we view the Stiefel manifold $V_p \mathbb{H}^n$, where $n = k_1 + k_2 + k_3$, as a total space over the flag manifold with two isotropy summands i.e.

$$\frac{\mathrm{U}(p) \times \mathrm{Sp}(n-p)}{\mathrm{Sp}(n-p)} \longrightarrow \frac{\mathrm{Sp}(n)}{\mathrm{Sp}(n-p)} \longrightarrow \frac{\mathrm{Sp}(n)}{\mathrm{U}(p) \times \mathrm{Sp}(n-p)}$$

▶ The tangent space \mathfrak{m} of the base space is written as a direct sum of two non equivalent $\operatorname{Ad}(K)$ -invariant irreducible isotropy summands \mathfrak{m}_1 , \mathfrak{m}_2 of dimension $d_2 = \dim(\mathfrak{m}_1) = 4p(n-p)$ and $d_3 = \dim(\mathfrak{m}_2) = p(p+1)$.)

Also, the tanent space of the fiber $U(p) \cong U(1) \times SU(p)$ is the Lie algebra $\mathfrak{h} = \mathfrak{h}_0 \oplus \mathfrak{h}_1$ where \mathfrak{h}_0 is the center of $\mathfrak{u}(p)$ and $\mathfrak{h}_1 = \mathfrak{su}(p)$, with $d_0 = \dim(\mathfrak{h}_0) = 1$ and $d_1 = \dim(\mathfrak{h}_1) = p^2 - 1$.

► Therefore the tangent space \mathfrak{p} of Stiefel manifold can be written as direct sum of four non equivalent $\mathrm{Ad}(K)$ -invariant irreducible submodules:

$$\mathfrak{p} = \mathfrak{h}_0 \oplus \mathfrak{h}_1 \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2.$$

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
			0000000000	
Case (B)				

$K = U(p) \times Sp(n-p)$

The diagonal Ad(K)-invariant metrics on $V_p \mathbb{H}^n$ are determined by the following Ad(K)-invariant inner products on \mathfrak{p}

$$\langle \cdot, \cdot \rangle = u_0(-B)|_{\mathfrak{h}_0} + u_1(-B)|_{\mathfrak{h}_1} + x_1(-B)|_{\mathfrak{m}_1} + x_2(-B)|_{\mathfrak{m}_2}.$$
 (6)

We know that $[\mathfrak{m}_1, \mathfrak{m}_1] \subset \mathfrak{h} \oplus \mathfrak{m}_2, [\mathfrak{m}_2, \mathfrak{m}_2] \subset \mathfrak{h}, [\mathfrak{m}_1, \mathfrak{m}_2] \subset \mathfrak{m}_1$, hence the only non zero numbers $A_{ijk} = \begin{bmatrix} k \\ ij \end{bmatrix}$ are $A_{220}, A_{330}, A_{111}, A_{122}, A_{133}, A_{322}.$

From Arvanitoyeorgos-Mori-Sakane we obtain the following:

Lemma 9

For the metric $\langle\cdot,\cdot\rangle$ on ${\rm Sp}(n)/\,{\rm Sp}(n-p)$, the non-zero numbers A_{ijk} are given as follows:

$$\begin{aligned} A_{220} &= \frac{d_2}{d_2 + 4d_3} & A_{330} = \frac{4d_3}{d_2 + 4d_3} & A_{111} = \frac{2d_3(2d_1 + 2 - d_3)}{d_2 + 4d_3} \\ A_{122} &= \frac{d_1d_2}{d_2 + 4d_3} & A_{133} = \frac{2d_3(d_3 - 2)}{d_2 + 4d_3} & A_{322} = \frac{d_2d_3}{d_2 + 4d_3} \end{aligned}$$

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
			0000000000	
Case (B)				

$K = U(p) \times \operatorname{Sp}(n-p)$

Lemma 10

The components of the Ricci tensor for the ${\rm Ad}(K)$ -invariant metric determined by (6) are given as follows:

$$\begin{split} r_0 &= \frac{u_0}{4x_1^2} \frac{d_2}{(d_2 + 4d_3)} + \frac{u_0}{4x_2^2} \frac{4d_3}{(d_2 + 4d_3)} \\ r_1 &= \frac{1}{4d_1u_1} \frac{2d_3(2d_1 + 2 - d_3)}{(d_2 + 4d_3)} + \frac{u_1}{4x_1^2} \frac{d_2}{(d_2 + 4d_3)} + \frac{u_1}{2d_1x_2^2} \frac{d_3(d_3 - 2)}{(d_2 + 4d_3)} \\ r_2 &= \frac{1}{2x_1} - \frac{x_2}{2x_1^2} \frac{d_3}{(d_2 + 4d_3)} - \frac{1}{2x_1^2} \left(u_0 \frac{1}{(d_2 + 4d_3)} + u_1 \frac{d_1}{(d_2 + 4d_3)} \right) \\ r_3 &= \frac{1}{x_2} \left(\frac{1}{2} - \frac{1}{2} \frac{d_2}{(d_2 + 4d_3)} \right) + \frac{x_2}{4x_1^2} \frac{d_2}{(d_2 + 4d_3)} - \frac{1}{x_2^2} \left(u_0 \frac{2}{(d_2 + 4d_3)} + u_1 \frac{d_3 - 2}{(d_2 + 4d_3)} \right) \\ \end{split}$$
 where $d_1 = p^2 - 1, \, d_2 = 4p(n - p), \, d_3 = p(p + 1). \end{split}$

Next, we solve the Einstein equation for the Stiefel manifold $V_2 \mathbb{H}^n$. In this case we have $d_0 = 1$, $d_1 = 3$, $d_2 = 8(n-2)$, $d_3 = 6$.

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
			0000000000	
Case (B)				

$K = U(2) \times Sp(n-2)$

Theorem 3 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifold $V_2 \mathbb{H}^n \cong \operatorname{Sp}(n) / \operatorname{Sp}(n-2)$ admits four invariant Einstein metrics. Two of them are Jensen's metrics and the other two are given by the $\operatorname{Ad}(\operatorname{U}(2) \times \operatorname{Sp}(n-2))$ -invariant inner products of the form (6).

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
			0000000000	
Case (B)				

$K = \mathrm{U}(2) \times \mathrm{Sp}(n-2)$

Theorem 3 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifold $V_2 \mathbb{H}^n \cong \operatorname{Sp}(n) / \operatorname{Sp}(n-2)$ admits four invariant Einstein metrics. Two of them are Jensen's metrics and the other two are given by the $\operatorname{Ad}(\operatorname{U}(2) \times \operatorname{Sp}(n-2))$ -invariant inner products of the form (6).

<u>Proof</u>

We consider the system of equation

$$r_0 = r_1, \quad r_1 = r_2, \quad r_2 = r_3.$$

We set $x_2 = 1$ and then system (7) reduces to

$$\begin{array}{rcl} f_1 &=& 2nu_0u_1 - 2nu_1^2 + 6u_0u_1x_1^2 - 4u_0u_1 - 4u_1^2x_1^2 + 4u_1^2 - 2x_1^2 = 0 \\ f_2 &=& 4nu_1^2 - 8nu_1x_1 + u_0u_1 + 8u_1^2x_1^2 - 5u_1^2 - 8u_1x_1 + 6u_1 + 4x_1^2 = 0 \\ f_3 &=& 8nx_1 - 4n + 4u_0x_1^2 - u_0 + 8u_1x_1^2 - 3u_1 - 24x_1^2 + 8x_1 + 2 = 0. \end{array}$$

(7

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
			0000000000	
Case (B)				

$K = \mathrm{U}(2) \times \mathrm{Sp}(n-2)$

We consider a polynomial ring $R = \mathbb{Q}[z, u_0, u_1, x_1]$ and an ideal I generated by $\{f_1, f_2, f_3, z u_0 u_1 x_1 - 1\}$ to find non zero solutions for the system (8). We take a lexicographic order > with $z > u_0 > x_1 > u_1$ for a monomial ordering on R. Then, the Gröbner basis for the ideal I contains the polynomial $(u_1 - 1)U_1(u_1)$ where U_1 is a given by:

$$\begin{split} &U_1(u_1) = (4n-1)^4 u_1^{\ 8} - 2(4n-55)(4n-1)^3 u_1^{\ 7} \\ &+ (4n-1)^2 (512n^3 - 48n^2 - 2040n + 2903) u_1^{\ 6} - 4(4n-1)(288n^4 \\ &- 3224n^3 + 216n^2 + 10419n - 6076) u_1^{\ 5} + (14336n^6 - 5120n^5 \\ &- 103168n^4 + 78208n^3 + 104608n^2 - 104280n + 30583) u_1^{\ 4} \\ &- 2(2048n^6 - 1536n^5 + 3840n^4 - 11408n^3 - 28320n^2 \\ &+ 59088n - 22489) u_1^{\ 3} + (2048n^5 + 832n^4 - 10848n^3 + 17924n^2 \\ &- 23472n + 13237) u_1^2 - 4(n-1)(64n^4 - 96n^3 + 336n^2 \\ &- 374n + 205) u_1 + 4(n-1)^2(4n-1)^2 \end{split}$$

Introduction 000 Case (B)		Special class of G -invariant metrics	Stiefel manifolds 00000000000	Quaternionic Stiefel manifolds 00000€00000	References
$K = \mathrm{U}($	$(2) \times \operatorname{Sp}(n)$. – 2) – – –	$(u_1 - 1)U_1(u_1)$	1) — — —	

Case A: $u_1 \neq 1$

We prove that the equation $U_1(u_1) = 0$ has two positive solutions. Observe that

Introduction 000	Special class of G -invariant metrics 0000	Stiefel manifolds	Quaternionic Stiefel manifolds	References
Case (B)				

 $(u_1 - 1)U_1(u_1)$

Case A: $u_1 \neq 1$

 $K = U(2) \times Sp(n-2)$

We prove that the equation $U_1(u_1) = 0$ has two positive solutions. Observe that

► For $u_1 = 0$ $U_1(0) = 68112 - 133344n + 73744n^2 + 47360n^3 - 61696n^4$ $+3328n^5 + 10240n^6$ is positive for all $n \ge 3$, ► For $u_1 = 1/5$ $U_1(1/5) = 1098.64 - 2511.49n + 1988.33n^2 - 639.029n^3$ $+15.3295n^4 + 46.1537n^5 - 9.8304n^6$ is negative for $n \ge 3$, so we have one solution $u_1 = \alpha_1$ between $0 < \alpha_1 < 1/5$.

Introduction 000 Case (B)		Special class of G -invariant metrics 0000	Stiefel manifolds 00000000000	Quaternionic Stiefel manifolds 00000€00000	References
$K = \mathrm{U}(2$	$(2) \times \operatorname{Sp}(n)$	-2)	$(u_1 - 1)U_1(u_1)$) — — —	

Case A: $u_1 \neq 1$

0

We prove that the equation $U_1(u_1) = 0$ has two positive solutions. Observe that

► For
$$u_1 = 0$$

 $U_1(0) = 68112 - 133344n + 73744n^2 + 47360n^3 - 61696n^4$
 $+3328n^5 + 10240n^6$ is positive for all $n \ge 3$,
► For $u_1 = 1/5$
 $U_1(1/5) = 1098.64 - 2511.49n + 1988.33n^2 - 639.029n^3$
 $+15.3295n^4 + 46.1537n^5 - 9.8304n^6$ is negative for $n \ge 3$,
So we have one solution $u_1 = \alpha_1$ between $0 < \alpha_1 < 1/5$.
► For $u_1 = 1$
 $U_1(1) = 68112 - 133344n + 73744n^2 + 47360n^3 - 61696n^4$
 $+3328n^5 + 10240n^6$ is always positive for $n \ge 3$,

hence we have a second solution $u_1 = \beta_1$ between $1/5 < \beta_1 < 1$.

Introduction 000 Case (B)	Special class of G -invariant metrics	Stiefel manifolds 0000000000	Quaternionic Stiefel manifolds 000000€0000	References
77 TT/		(1) 77 ()	

 $1)U_{1}(u_{1})$

Next, we consider the ideal J generated by the polynomials

$${f_1, f_2, f_3, z u_0 u_1 x_1 (u_1 - 1) - 1}$$

We take the lexigographic orders > with

 $U(Z) \times \operatorname{Sp}(n-Z)$

• $z > u_0 > x_1 > u_1$. Then the Gröbner basis of J contains the polynomial $U_1(u_1)$ and the polynomial

$$a_1(n) x_1 + W_1(u_1, n)$$

2 $z > x_1 > u_0 > u_1$. Then the Gröbner basis of J contains the polynomial $U_1(u_1)$ and the polynomial

$$a_2(n) u_0 + W_2(u_1, n)$$

where $a_i(n)$ i = 1, 2 is a polynomial of n of degree 17 for i = 1, and of degree 16 for i = 2. For $n \ge 3$ the polynomial $a_i(n)$ i = 1, 2 is positive. Thus for positive values $u_1 = \alpha_1, \beta_1$ found above we obtain real values $x_1 = \gamma_1, \gamma_2$ and $u_0 = \alpha_0, \beta_0$ as solutions of system (8).

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
			00000000000	
Case (B)				

$$K = U(2) \times Sp(n-2)$$

$$-(u_1-1)U_1(u_1) - -$$

Now we prove that the solutions $x_1 = \gamma_1, \gamma_2$ and $u_0 = \alpha_0, \beta_0$ are positive. We consider the ideal J with the lexicographic order > with

 $\bigcirc z > u_0 > u_1 > x_1$ then the Gröbner basis of J contains the $U_1(u_1)$ and the polynomial

$$X_1(x_1) = \sum_{k=0}^{8} b_k(n) x_1^k$$

2 $z > x_1 > u_1 > u_0$ then the Gröbner basis of J contains the $U_1(u_1)$ and the polynomial

$$U_0(u_0) = \sum_{k=0}^{8} c_k(n) u_0^k$$

for $n \geq 3$ the coefficients of the polynomials $b_k(n)$, $c_k(n)$ are positive when the k is even degree and negative for odd degree. Thus if the equations $X_1(x_1) = 0$ and $U_0(u_0) = 0$ has real solutions, then these are all positive. So the solutions $x_1 = \gamma_1, \gamma_2$ and $u_0 = \alpha_0, \beta_0$ are positive.

Introduction 000 Case (B)		Special class of G -invariant metrics 0000	Stiefel manifolds 00000000000	Quaternionic Stiefel manifolds	References
$K = \mathrm{U}($	$(2) \times \operatorname{Sp}(n)$		$(u_1 - 1)U_1(u_1)$	L) — — —	

Case B: $u_1 = 1$

Then from the system (8) we get the solutions:

$$\{u_0 = 1, u_1 = 1, x_1 = \frac{2 + 2n - \sqrt{-2 - 4n + 4n^2}}{6}, x_2 = 1\}$$
 and
$$\{u_0 = 1, u_1 = 1, x_1 = \frac{2 + 2n + \sqrt{-2 - 4n + 4n^2}}{6}, x_2 = 1\}$$
 which are Jensen's metrics.
 So the new Einstein metrics on $V_2 \mathbb{H}^n$ are of the form
$$\{u_0 = \alpha_0, u_1 = \alpha_1, x_1 = \gamma_1, x_2 = 1\}$$

$$\{u_0 = \beta_0, u_1 = \beta_1, x_1 = \gamma_2, x_2 = 1\}$$

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
			00000000000	
Case (B)				

Comparison of the metrics on $V_4\mathbb{R}^n = \operatorname{SO}(n)/\operatorname{SO}(n-4)$

• Jensen's metrics on Stiefel manifold $V_4\mathbb{R}^n=\operatorname{SO}(n)/\operatorname{SO}(n-4)$

$$\langle \cdot, \cdot \rangle = \begin{pmatrix} 0 & a & 1 \\ a & a & 1 \\ 1 & 1 & * \end{pmatrix}$$
, $\operatorname{Ad}(\operatorname{SO}(4) \times \operatorname{SO}(n-4))$ -invariant.

Our Einstein metrics

$$\langle \cdot, \cdot \rangle = \begin{pmatrix} 0 & \beta & \gamma \\ \beta & \alpha & 1 \\ \gamma & 1 & * \end{pmatrix}, \text{ Ad}(\mathrm{SO}(3) \times \mathrm{SO}(n-4))\text{-invariant}$$

($\alpha, \beta, \gamma \neq 1$ are all different).

• For the Stiefel manifolds $V_{\ell}\mathbb{R}^{k+k+\ell} = SO(2k+\ell)/SO(\ell)$ ($\ell > k \ge 3$) Einstein metrics of Arvanitoyeorgos, Dzhepko and Nikonorov

$$\langle \cdot, \cdot \rangle = \begin{pmatrix} \alpha & \beta & 1 \\ \beta & \alpha & 1 \\ 1 & 1 & * \end{pmatrix}$$

 $(\alpha, \beta \text{ are different }).$

		Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References
				0000000000	
Case (B)					
	_		-		~ 12

New Einstein metrics on complex Stiefel manifold $V_3\mathbb{C}^{n+3}$

Theorem

On a complex Stiefel manifold $V_3\mathbb{C}^{n+3} \cong \mathrm{SU}(n+3)/\mathrm{SU}(n)$ for $n \ge 2$, there exist new invariant Einstein metrics which are different from Jensen's metrics.

 \blacktriangleright In this case we view the Stiefel manifold $V_3\mathbb{C}^{n+3}$ as a total space over the generalized flag manifold

 $\mathrm{SU}(1+2+n)/\operatorname{S}(\mathrm{U}(1)\times \mathrm{U}(2)\times \mathrm{U}(n)) \quad n\geq 2$

	Special class of G -invariant metrics	Stiefel manifolds	Quaternionic Stiefel manifolds	References

References

- A. Arvanitoyeorgos, V.V. Dzhepko and Yu. G. Nikonorov: Invariant Einstein metrics on some homogeneous spaces of classical Lie groups, Canad. J. Math. 61 (6) (2009) 1201-1213.
- A. Arvanitoyeorgos, Y. Sakane and M. Statha: New homogeneous Einstein metrics on Stiefel manifolds, Differential Geom. Appl. 35(S1) (2014) 2-18.
- G. Jensen: Einstein metrics on principal fiber bundles, J. Differential Geom. 8 (1973) 599-614.
- J-S. Park and Y. Sakane: Invariant Einstein metrics on certain homogeneous spaces, Tokyo J. Math. 20(1) (1997) 51-61.
- M. Statha: Invariant metrics on homogeneous spaces with equivalent isotropy summands, to appear in Toyama Math. J. Vol. 38 (2016).