Srni 26th Winter School Geometry and Physics

$$
* * * * * *
$$

Special geometries and superstring theory

I: Mathematical tools - geometry of metric connections

Ilka Agricola \& Thomas Friedrich (Humboldt University Berlin)

Outline

At border line between pure mathematics and theoretical physics

differential geometry, analysis, group theory

general relativity, unified field theories, string theory

Lecture I: Mathematical tools - geometry of metric connections
Lecture II: Physical motivation \& first applications
Lecture III: More on special geometries
Lecture IV: Geometric structures with parallel torsion and of vector type

Symmetry I

- Classical mechanics: Symmetry considerations can simplify study of geometric problems (i.e., Noether's theorem)
- Felix Klein at his inaugural lecture at Erlangen University, 1872 ("Erlanger Programm"):
"Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben; man soll die der Mannigfaltigkeit angehörigen Gebilde hinsichtlich solcher Eigenschaften untersuchen, die durch die Transformationen der Gruppe nicht geändert werden" .
"Let a manifold and in this a transformation group be given; the objects belonging to the manifold ought to be studied with respect to those properties which are not changed by the transformations of the group."
\rightarrow Isometry group of a Riemannian manifold (M, g)

Symmetry II

- Around 1940-1950: Second intrinsic Lie group associated with a Riemannian manifold (M, g) appeared, its holonomy group.
\longrightarrow strongly related to curvature and parallel objects
A priori, the holonomy group is defined for an arbitrary connection ∇ on $T M$. For reasons to become clear later, we concentrate mainly on

$$
\text { Metric connections } \nabla: X g(V, W)=g\left(\nabla_{X} V, W\right)+g\left(V, \nabla_{X} W\right)
$$

The torsion (viewed as $(2,1)$ - or $(3,0)$-tensor)
$T(X, Y):=\nabla_{X} Y-\nabla_{Y} X-[X, Y], \quad T(X, Y, Z):=g(T(X, Y), Z)$
can (for the moment. . .) be arbitrary.

Types of metric connections

$\left(M^{n}, g\right)$ oriented Riemannian mnfd, ∇ any connection:

$$
\nabla_{X} Y=\nabla_{X}^{g} Y+A(X, Y)
$$

Then: ∇ is metric $\Leftrightarrow g(A(X, Y), Z)+g(A(X, Z), Y)=0$

$$
\Leftrightarrow A \in \mathcal{A}^{g}:=\mathbb{R}^{n} \otimes \Lambda^{2}\left(\mathbb{R}^{n}\right)
$$

This is also the space \mathcal{T} of possible torsion tensors,

$$
\mathcal{A}^{g} \cong \mathcal{T} \cong \mathbb{R}^{n} \otimes \Lambda^{2}\left(\mathbb{R}^{n}\right), \quad \operatorname{dim}=\frac{n^{2}(n-1)}{2}
$$

For metric connections: difference tensor $A \Leftrightarrow$ torsion T
Decompose this space under $\mathrm{SO}(n)$ action (E. Cartan, 1925):

$$
\mathbb{R}^{n} \otimes \Lambda^{2}\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \Lambda^{3}\left(\mathbb{R}^{n}\right) \oplus \mathcal{T}
$$

- $A \in \Lambda^{3}\left(\mathbb{R}^{n}\right)$: "Connections with (totally) antisymmetric torsion":

$$
\nabla_{X} Y:=\nabla_{X}^{g} Y+\frac{1}{2} \mathrm{~T}(X, Y,-)
$$

Lemma. ∇ is metric and geodesics preserving iff its torsion T lies in $\Lambda^{3}(T M)$. In this case, $2 A=T$, and the ∇-Killing vector fields coincide with the Riemannian Killing vector fields.
\rightarrow Connections used in superstring theory (examples in Lecture II)

$$
\nabla_{X} Y:=\nabla_{X}^{g} Y-g(X, Y) \cdot V+g(Y, V) \cdot X
$$

In particular, any metric connection on a surface is of this type!

Mercator map

- conformal (angle preserving), hence maps loxodromes to straight lines
- Cartan (1923):
"On this manifold, the straight lines [of the flat connection] are the loxodromes, which intersect the meridians at a constant angle. The only straight lines realizing shortest paths are those which are normal to the torsion in every point: these are the meridians.

- Explanation \& generalisation to arbitrary manifolds?
- Existence of a Clairaut style invariant?

Thm (A-Thier, '03). (M, g) Riemannian manifold, $\sigma \in C^{\infty}(M)$ and $\tilde{g}=e^{2 \sigma} g$ the conformally changed metric. Let
$\tilde{\nabla}^{g}:$ metric connection with vectorial torsion $V=-\operatorname{grad} \sigma$ on (M, g),

$$
\tilde{\nabla}_{X}^{g} Y=\nabla_{X}^{g} Y-g(X, Y) V+g(Y, V) X
$$

$\nabla^{\tilde{g}}$: Levi-Civita connection of (M, \tilde{g}). Then
(1) Every $\tilde{\nabla}^{g}$-geodesic $\gamma(t)$ is (up to reparametrisation) a $\nabla^{\tilde{g}}$-geodesic;
(2) If X is a Killing vector field of \tilde{g}, then $e^{\sigma} g\left(\gamma^{\prime}, X\right)$ is a constant of motion for every $\tilde{\nabla}^{g}$-geodesic $\gamma(t)$.
N.B. The curvatures of $\tilde{\nabla}^{g}$ and $\nabla^{\tilde{g}}$ coincide, but the curvatures of ∇^{g} and $\nabla^{\tilde{g}}$ are unrelated.
\rightarrow Beltrami's theorem does not hold anymore ["If a portion of a surface S can be mapped LC-geodesically onto a portion of a surface S^{*} of constant Gaussian curvature, the Gaussian curvature of S must also be constant"]

Connections with vectorial torsion on surfaces

- Curve: $\quad \alpha=(r(s), h(s))$
- Surface of revolution: $(r(s) \cos \varphi, r(s) \sin \varphi, h(s))$
- Riemannian metric:

$$
g=\operatorname{diag}\left(r^{2}(s), 1\right)
$$

- Orthonormal frame:

$$
e_{1}=\frac{1}{r} \partial_{\varphi}, e_{2}=\partial_{s}
$$

Dfn: Call two tangent vectors v_{1} and v_{2} of same length parallel if their angles ν_{1} and ν_{2} with the generating curves through their origins coincide.

- Hence $\nabla e_{1}=\nabla e_{2}=0$
- Torsion: $T\left(e_{1}, e_{2}\right)=\frac{r^{\prime}(s)}{r(s)} e_{2}$
- Corresponding vector field:
$V=\frac{r^{\prime}(s)}{r(s)} e_{1}=-\operatorname{grad}(-\ln r(s))$
- geodesics are LC geodesics of the conformally equivalent metric $\tilde{g}=$ $e^{2 \sigma} g=\operatorname{diag}\left(1 / r^{2}, 1\right)$

(coincides with euclidian metric under $\left.x=\varphi, y=\int d s / r(s)\right)$
- $X=\partial_{\varphi}$ is Killing vector field for \tilde{g}, invariant of motion:
const $=e^{\sigma} g(\dot{\gamma}, X)=\frac{1}{r(s)} g\left(\dot{\gamma}, \partial_{\varphi}\right)=g\left(\dot{\gamma}, e_{2}\right)$

Holonomy of arbitrary connections

- γ from p to q, ∇ any connection
- $P_{\gamma}: T_{p} M \rightarrow T_{q} M$ is the unique map s.t. $V(q):=P_{\gamma} V(p)$ is parallel along $\gamma, \nabla V(s) / d s=\nabla_{\dot{\gamma}} V=0$.
- $C(p)$: closed loops through p $\operatorname{Hol}(p ; \nabla)=\left\{P_{\gamma} \mid \gamma \in C(p)\right\}$
- $C_{0}(p)$: null-homotopic el'ts in $C(p)$ $\operatorname{Hol}_{0}(p ; \nabla)=\left\{P_{\gamma} \mid \gamma \in C_{0}(p)\right\}$

Independent of p, so drop p in notation: $\operatorname{Hol}(M ; \nabla), \operatorname{Hol}_{0}(M ; \nabla)$.
A priori:
(1) $\operatorname{Hol}(M ; \nabla)$ is a Lie subgroup of $\operatorname{GL}(n, \mathbb{R})$,
(2) $\operatorname{Hol}_{0}(p)$ is the connected component of the identity of $\operatorname{Hol}(M ; \nabla)$.

Holonomy of metric connections

Assume: M carries a Riemannian metric g, ∇ metric
\Rightarrow parallel transport is an isometry:

$$
\frac{d}{d s} g(V(s), W(s))=g\left(\frac{\nabla V(s)}{d s}, W(s)\right)+\left(V(s), \frac{\nabla W(s)}{d s}\right)=0
$$

and $\operatorname{Hol}(M ; \nabla) \subset \mathrm{O}(n, \mathbb{R}), \operatorname{Hol}_{0}(M ; \nabla) \subset \mathrm{SO}(n, \mathbb{R})$.
Notation: $\operatorname{Hol}_{(0)}\left(M ; \nabla^{g}\right)=$ "Riemannian (restricted) holonomy group"
N.B. (1) $\operatorname{Hol}_{(0)}(M ; \nabla)$ needs not to be closed!
(2) The holonomy representation needs not to be irreducible on irreducible manifolds!
\longrightarrow Larger variety of holonomy groups, but classification difficult

Curvature \& Holonomy

Holonomy can be computed through curvature:
Thm (Ambrose-Singer, 1953). For any connection ∇ on (M, g), the Lie algebra $\mathfrak{h o l}(p ; \nabla)$ of $\operatorname{Hol}(p ; \nabla)$ in $p \in M$ is exactly the subalgebra of $\mathfrak{s o}\left(T_{p} M\right)$ generated by the elements

$$
P_{\gamma}^{-1} \circ \mathcal{R}\left(P_{\gamma} V, P_{\gamma} W\right) \circ P_{\gamma} \quad V, W \in T_{p} M, \quad \gamma \in C(p)
$$

But only of restricted use:
Thm (Bianchi I). (1) For a metric connection with vectorial torsion $V \in T M^{n}: \quad \quad \quad X, Y, Z \mathcal{R}(X, Y) Z={ }_{\sigma}^{X, Y, Z} d V(X, Y) Z$.
(2) For a metric connection with skew symmetric torsion $T \in \Lambda^{3}\left(M^{n}\right)$:
$\stackrel{X, Y, Z}{\mathcal{R}}(X, Y, Z, V)=d T(X, Y, Z, V)-\sigma^{T}(X, Y, Z, V)+\left(\nabla_{V} T\right)(X, Y, Z)$,
$\left.\left.2 \sigma^{T}:=\sum_{i=1}^{n}\left(e_{i}\right\lrcorner T\right) \wedge\left(e_{i}\right\lrcorner T\right)$ for any orthonormal frame e_{1}, \ldots, e_{n}.

Theorem (Berger, Simons, > 1955). For a non symmetric Riemannian manifold (M, g) and the Levi-Civita connection ∇^{g}, the possible holonomy groups are $\mathrm{SO}(n)$ or

$4 n$	$2 n$	$2 n$	$4 n$	7	8	16
$\mathrm{Sp}_{n} \mathrm{Sp}_{1}$	$\mathrm{U}(n)$	$\mathrm{SU}(n)$	Sp_{n}	G_{2}	$\operatorname{Spin}(7)$	$(\operatorname{Spin}(9))$
quatern.	Kähler	Calabi-	hyper- Kähler		Yau	Kähler
$\nabla J \neq 0$	$\nabla^{g} J=0$	$\nabla^{g} J=0$	$\nabla^{g} J=0$	$\nabla^{g} \omega^{3}=0$	--	--
Ric $=\lambda g$	--	Ric $=0$	Ric $=0$	Ric $=0$	Ric $=0$	--

Existence of Ricci flat compact manifolds:

- Calabi-Yau, hyper-Kähler: Yau, 1980's.
- G_{2}, $\operatorname{Spin}(7):$ D. Joyce since ~ 1995, Kovalev (2003). Both rely on heavy analysis and algebraic geometry !

No such theorem for metric connections!

General Holonomy Principle

Thm (General Holonomy Principle). (M, g) a Riemannian manifold, E a (real or complex) vector bundle over M with (any!) connection ∇. Then the following are equivalent:
(1) E has a global section α which is invariant under parallel transport, i. e. $\alpha(q)=P_{\gamma}(\alpha(p))$ for any path γ from p to q;
(2) E has a parallel global section α, i.e. $\nabla \alpha=0$;
(3) In some point $p \in M$, there exists an algebraic vector $\alpha_{0} \in E_{p}$ which is invariant under the holonomy representation on the fiber.

Corollary. The number of parallel global sections of E coincides with the number of trivial representations occuring in the holonomy representation on the fibers.

Example. Orientability from a holonomy point of view:
Lemma. The determinant ist an $\operatorname{SO}(n)$-invariant element in $\Lambda^{n}\left(\mathbb{R}^{n}\right)$ that is not $\mathrm{O}(n)$-invariant.

Corollary. $\left(M^{n}, g\right)$ is orientable iff $\operatorname{Hol}(M ; \nabla) \subset \mathrm{SO}(n)$ for any metric connection ∇, and the volume form is then ∇-parallel.
[Take $d M_{p}:=\operatorname{det}=e_{1} \wedge \ldots \wedge e_{n}$ in $p \in M$, then apply holonomy principle to $E=\Lambda^{n}(T M)$.]

An orthonormal frame that is parallel transported along the drawn curve reverses its orientation.

Geometric stabilizers

Philosophy: Invariants of geometric representations are candidates for parallel objects. Find these!

- Invariants for $G \subset \mathrm{SO}(m)$ in tensor bundles (as just seen)
- Assume that $G \subset \mathrm{SO}(m)$ can be lifted to a subgroup $G \subset \operatorname{Spin}(m)$
$\Rightarrow G$ acts on the spin representation Δ_{m} of $\operatorname{Spin}(m)$
Recall: $\bullet m=2 k$ even: $\Delta_{m}=\Delta_{m}^{+} \oplus \Delta_{m}^{-}$, both have dimension 2^{k-1}
- $m=2 k+1$ odd: Δ_{m} is irreducible, of dimension 2^{k}

Elements of Δ_{m} : "algebraic spinors" (in opposition to spinors on M that are sections of the spinor bundle)

Now decompose Δ_{m} under the action of G.
In particular: Are there invariant algebraic spinors?

$\mathrm{U}(n)$ in dimension $2 n$

- Hermitian metric $h(V, W)=g(V, W)-i g(J V, W)$
- h is invariant under $A \in \operatorname{End}\left(\mathbb{R}^{2 n}\right)$ iff A leaves invariant g and the Kähler form $\Omega(V, W):=g(J V, W) \Rightarrow$

$$
\mathrm{U}(n)=\left\{A \in \mathrm{SO}(2 n) \mid A^{*} \Omega=\Omega\right\}
$$

Lemma. Under the restricted action of $\mathrm{U}(n), \Lambda^{2 k}\left(\mathbb{R}^{2 n}\right), k=1, \ldots, n$ contains the trivial representation once, namely, $\Omega, \Omega^{2}, \ldots, \Omega^{n}$.
$\mathrm{U}(n)$ can be lifted to a subgroup of $\operatorname{Spin}(2 n)$, but it has no invariant algebraic spinors:
Ω generates the one-dimensional center of $\mathfrak{u}(n)$ (identify $\Lambda^{2}\left(\mathbb{R}^{2 n}\right) \cong$ $\mathfrak{s o}(2 n))$.

Set $S_{r}=\left\{\psi \in \Delta_{2 n}: \Omega \psi=i(n-2 r) \psi\right\}, \quad \operatorname{dim} S_{r}=\binom{n}{r}, \quad 0 \leq r \leq n$.
$S_{r} \cong(0, r)$-forms with values in S_{0} and

$$
\begin{aligned}
& \left.\Delta_{2 n}^{+}\right|_{\mathrm{U}(n)} \cong S_{n} \oplus S_{n-2} \oplus \ldots,\left.\quad \Delta_{2 n}^{-}\right|_{\mathrm{U}(n)} \cong S_{n-1} \oplus S_{n-3} \oplus \ldots \\
& \quad \Rightarrow
\end{aligned}
$$

- no trivial $\mathrm{U}(n)$-representation for n odd
- For $n=2 k$ even, Ω has eigenvalue zero on S_{k}, but this space is an irreducible representation of dimension $\binom{2 k}{k} \neq 1$
- S_{0} and S_{n} are one-dimensional, and they become trivial under $\operatorname{SU}(n)$

Lemma. $\Delta_{2 n}^{ \pm}$contain no $\mathrm{U}(n)$-invariant spinors. If one restricts further to $\mathrm{SU}(n)$, there are exactly two invariant spinors.

G_{2} in dimension 7

- Geometry of 3-forms plays an exceptional role in Riemannian geometry, as it ocurs only in dimension seven:

n	$\operatorname{dim} \operatorname{GL}(n, \mathbb{R})-\operatorname{dim} \Lambda^{3} \mathbb{R}^{n}$	$\operatorname{dim} \mathrm{SO}(n)$
3	$9-1=8$	3
4	$16-4=12$	6
5	$25-10=15$	10
6	$36-20=16$	15
7	$49-35=14$	21
8	$64-56=8$	28

\Rightarrow stabilizer $G_{\omega^{3}}^{n}:=\left\{A \in \mathrm{GL}(n, \mathbb{R}) \mid \omega^{3}=A^{*} \omega^{3}\right\}$ of a generic 3-form
ω^{3} cannot lie in $\mathrm{SO}(n)$ for $n \leq 6$ (for example: $G_{\omega^{3}}^{3}=\mathrm{SL}(3, \mathbb{R})$).

Reichel, 1907 (Ph D student of F. Engel in Greifswald):

- computed a system of invariants for a 3 -form in seven variables
- showed that there are exactly two $\mathrm{GL}(7, \mathbb{R})$-open orbits of 3 -forms
- showed that stabilizers of any representatives $\omega^{3}, \tilde{\omega}^{3}$ of these orbits are 14 -dimensional simple Lie groups of rank two, a compact and a non-compact one:

$$
G_{\omega^{3}}^{7} \cong G_{2} \subset \mathrm{SO}(7), \quad G_{\tilde{\omega}^{3}}^{7} \cong G_{2}^{*} \subset \mathrm{SO}(3,4)
$$

- realized \mathfrak{g}_{2} and \mathfrak{g}_{2}^{*} as explicit subspaces of $\mathfrak{s o}(7)$ and $\mathfrak{s o}(3,4)$

As in the case of almost hermitian geometry, one has a favourite normal form for a 3 -form with isotropy group G_{2} :

$$
\omega^{3}:=e_{127}+e_{347}-e_{567}+e_{135}-e_{245}+e_{146}+e_{236}
$$

An element of the second orbit ($\rightarrow G_{2}^{*}$) may be obtained by reversing any of the signs in ω^{3}.

Lemma. Under $G_{2}: \Lambda^{3}\left(\mathbb{R}^{7}\right) \cong \mathbb{R} \oplus \mathbb{R}^{7} \oplus S_{0}\left(\mathbb{R}^{7}\right)$, where
\mathbb{R}^{7} : 7-dimensional standard representation of $G_{2} \subset \mathrm{SO}(7)$
$S_{0}\left(\mathbb{R}^{7}\right)$: traceless symmetric endomorphisms of \mathbb{R}^{7} (has dimension 27).

- G_{2} can be lifted to a subgroup of $\operatorname{Spin}(7)$. From a purely representation theoretic point of view, this case is trivial:
$\operatorname{dim} \Delta_{7}=8$ and the only irreducible representations of G_{2} of dimension ≤ 8 are the trivial and the 7 -dimensional representation \Rightarrow

Lemma. Under $G_{2}: \Delta_{7} \cong \mathbb{R} \oplus \mathbb{R}^{7}$.
In fact, the invariant 3 -form ω^{3} and the invariant algebraic spinor ψ are equivalent data:

$$
\omega^{3}(X, Y, Z)=\langle X \cdot Y \cdot Y \cdot \psi, \psi\rangle
$$

But $\operatorname{dim} \Delta_{7}=8<\operatorname{dim} \Lambda^{3}\left(\mathbb{R}^{7}\right)=35$, so the spinorial picture is easier to treat!

Assume now that $G \subset G_{2}$ fixes a second spinor $\Rightarrow G \cong \mathrm{SU}(3)$

- this is one of the three maximal Lie subgroups of $G_{2}, \mathrm{SU}(3), \mathrm{SO}(4)$ and $\mathrm{SO}(3)$
- $\mathrm{SU}(3)$ has irreducible real representations in dimension 1,6 and 8 , so

Lemma. Under $\mathrm{SU}(3) \subset G_{2}: \Delta_{7} \cong \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}^{6}$ and $\mathbb{R}^{7}=\mathbb{R} \oplus \mathbb{R}^{6}$.
This implies:

- If ∇^{g} on $\left(M^{7}, g\right)$ has two parallel spinors, M has to be (locally) reducible, $M^{7}=M^{6} \otimes M^{1}$ and the situation reduces to the 6 -dimensional case.
- If ∇ is some other metric connection on $\left(M^{7}, g\right)$ with two parallel spinors, M^{7} will, in general, not be a product manifold. Its Riemannian holonomy will typically be $\mathrm{SO}(7)$, so ∇^{g} does not measure this effect!
\Rightarrow geometric situations not known from Riemannian holonomy will typically appear.

In a similar way, one treats the cases
$\operatorname{Spin}(7)$ in dimension 8. As just seen, $\operatorname{Spin}(7)$ has an 8 -dimensional representation, hence it can be viewed as a subgroup of $\mathrm{SO}(8) . \Delta_{8}$ has again one $\operatorname{Spin}(7)$-invariant spinor.
$\operatorname{Sp}(n)$ in dimension $4 n$. Identifying quaternions with pairs $\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$ yields $\mathrm{Sp}(n) \subset \mathrm{SU}(2 n)$, and $\mathrm{SU}(2 n)$ is then realized inside $\mathrm{SO}(4 n)$ as before. It has $n+1$ invariant spinors.

The easiest case: ∇^{g}-parallel spinors

Thm (Wang, 1989).
(M^{n}, g): complete, simply connected, irreducible Riemannian manifold
N : dimension of the space of parallel spinors w.r.t. ∇^{g}
If $\left(M^{n}, g\right)$ is non-flat and $N>0$, then one of the following holds:
(1) $n=2 m(m \geq 2)$, Riemannian holonomy repr.: $\mathrm{SU}(m)$ on \mathbb{C}^{m}, and $N=2$ ("Calabi-Yau case"),
(2) $n=4 m(m \geq 2)$, Riemannian holonomy repr.: $\operatorname{Sp}(m)$ on $\mathbb{C}^{2 m}$, and $N=m+1$ ("hyperkähler case"),
(3) $n=7$, Riemannian holonomy repr.: 7-dimensional representation of G_{2}, and $N=1$ ("parallel G_{2} case"),
(4) $n=8$, Riemannian holonomy repr.: spin representation of $\operatorname{Spin}(7)$, and $N=1$ ("parallel $\operatorname{Spin}(7)$ case").

