Srni 26th Winter School Geometry and Physics

* * * * * *

Special geometries and superstring theory

I: Mathematical tools – geometry of metric connections

Ilka Agricola & Thomas Friedrich (Humboldt University Berlin)

Outline

At border line between pure mathematics and theoretical physics

group theory

unified field theories, string theory

Lecture I: Mathematical tools – geometry of metric connections

Lecture II: Physical motivation & first applications

Lecture III: More on special geometries

Lecture IV: Geometric structures with parallel torsion and of vector type ₂

Symmetry I

• Classical mechanics: Symmetry considerations can simplify study of geometric problems (i.e., Noether's theorem)

• Felix Klein at his inaugural lecture at Erlangen University, 1872 ("Erlanger Programm"):

"Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben; man soll die der Mannigfaltigkeit angehörigen Gebilde hinsichtlich solcher Eigenschaften untersuchen, die durch die Transformationen der Gruppe nicht geändert werden".

"Let a manifold and in this a transformation group be given; the objects belonging to the manifold ought to be studied with respect to those properties which are not changed by the transformations of the group."

 \longrightarrow *Isometry group* of a Riemannian manifold (M,g)

Symmetry II

• Around 1940-1950: Second intrinsic Lie group associated with a Riemannian manifold (M,g) appeared, its *holonomy group*.

strongly related to curvature and parallel objects

A priori, the holonomy group is defined for an arbitrary connection ∇ on TM. For reasons to become clear later, we concentrate mainly on

Metric connections ∇ : $Xg(V,W) = g(\nabla_X V,W) + g(V,\nabla_X W)$.

The torsion (viewed as (2,1)- or (3,0)-tensor)

 $T(X,Y) := \nabla_X Y - \nabla_Y X - [X,Y], \quad T(X,Y,Z) := g(T(X,Y),Z)$

can (for the moment. . .) be arbitrary.

Types of metric connections

 (M^n, g) oriented Riemannian mnfd, ∇ any connection:

$$\nabla_X Y = \nabla_X^g Y + A(X, Y).$$

Then:
$$\nabla$$
 is metric $\Leftrightarrow g(A(X,Y),Z) + g(A(X,Z),Y) = 0$
 $\Leftrightarrow A \in \mathcal{A}^g := \mathbb{R}^n \otimes \Lambda^2(\mathbb{R}^n)$

This is also the space \mathcal{T} of possible torsion tensors,

$$\mathcal{A}^g \cong \mathcal{T} \cong \mathbb{R}^n \otimes \Lambda^2(\mathbb{R}^n), \quad \dim = \frac{n^2(n-1)}{2}$$

For metric connections: difference tensor $A \Leftrightarrow \text{torsion } T$ Decompose this space under SO(n) action (E. Cartan, 1925):

$$\mathbb{R}^n\otimes\Lambda^2(\mathbb{R}^n)\ =\ \mathbb{R}^n\ \oplus\ \Lambda^3(\mathbb{R}^n)\ \oplus\ \mathcal{T}$$
 .

• $A \in \Lambda^3(\mathbb{R}^n)$: "Connections with (totally) antisymmetric torsion":

$$\nabla_X Y := \nabla_X^g Y + \frac{1}{2} \operatorname{T}(X, Y, -).$$

Lemma. ∇ is metric and geodesics preserving iff its torsion T lies in $\Lambda^3(TM)$. In this case, 2A = T, and the ∇ -Killing vector fields coincide with the Riemannian Killing vector fields.

Connections used in superstring theory (examples in Lecture II)

• $\underline{A \in \mathbb{R}^n}$: "Connections with vectorial torsion", V a vector field:

$$\nabla_X Y := \nabla_X^g Y - g(X, Y) \cdot V + g(Y, V) \cdot X.$$

In particular, *any metric connection* on a surface is of this type!

Mercator map

 conformal (angle preserving), hence maps loxodromes to straight lines

• Cartan (1923):

"On this manifold, the straight lines [of the flat connection] are the *loxodromes*, which intersect the meridians at a constant angle. The only straight lines realizing shortest paths are those which are normal to the torsion in every point: *these are the meridians*.

- Explanation & generalisation to arbitrary manifolds?
- Existence of a Clairaut style invariant?

Thm (A-Thier, '03). (M,g) Riemannian manifold, $\sigma \in C^{\infty}(M)$ and $\tilde{g} = e^{2\sigma}g$ the conformally changed metric. Let

 $\tilde{\nabla}^{g}$: metric connection with vectorial torsion $V = -\operatorname{grad} \sigma$ on (M, g),

$$\tilde{\nabla}^g_X Y = \nabla^g_X Y - g(X, Y)V + g(Y, V)X$$

 $\nabla^{\tilde{g}}$: Levi-Civita connection of (M, \tilde{g}) . Then

(1) Every $\tilde{\nabla}^{g}$ -geodesic $\gamma(t)$ is (up to reparametrisation) a $\nabla^{\tilde{g}}$ -geodesic;

(2) If X is a Killing vector field of \tilde{g} , then $e^{\sigma}g(\gamma', X)$ is a constant of motion for every $\tilde{\nabla}^{g}$ -geodesic $\gamma(t)$.

N.B. The curvatures of $\tilde{\nabla}^g$ and $\nabla^{\tilde{g}}$ coincide, but the curvatures of ∇^g and $\nabla^{\tilde{g}}$ are unrelated.

Beltrami's theorem does not hold anymore ["If a portion of a surface S can be mapped LC-geodesically onto a portion of a surface S^* of constant Gaussian curvature, the Gaussian curvature of S must also be constant"]

Connections with vectorial torsion on surfaces

- Curve: $\alpha = (r(s), h(s))$
- Surface of revolution: $(r(s) \cos \varphi, r(s) \sin \varphi, h(s))$
- Riemannian metric: $g = \operatorname{diag}(r^2(s), 1)$
- Orthonormal frame: $e_1 = \frac{1}{r} \partial_{\varphi}, \ e_2 = \partial_s$

<u>**Dfn:**</u> Call two tangent vectors v_1 and v_2 of same length parallel if their angles ν_1 and ν_2 with the generating curves through their origins coincide.

• Hence
$$\nabla e_1 = \nabla e_2 = 0$$

• Torsion:
$$T(e_1, e_2) = \frac{r'(s)}{r(s)} e_2$$

- Corresponding vector field: $V = \frac{r'(s)}{r(s)} e_1 = -\operatorname{grad}(-\ln r(s))$
- geodesics are LC geodesics of the conformally equivalent metric $\tilde{g}=e^{2\sigma}g={\rm diag}(1/r^2,1)$

(coincides with euclidian metric under $x = \varphi$, $y = \int ds/r(s)$)

• $X = \partial_{\varphi}$ is Killing vector field for \tilde{g} , invariant of motion:

const =
$$e^{\sigma}g(\dot{\gamma}, X) = \frac{1}{r(s)}g(\dot{\gamma}, \partial_{\varphi}) = g(\dot{\gamma}, e_2)$$

Holonomy of arbitrary connections

- γ from p to q, ∇ any connection
- $P_{\gamma} : T_p M \to T_q M$ is the unique map s.t. $V(q) := P_{\gamma} V(p)$ is parallel along γ , $\nabla V(s)/ds = \nabla_{\dot{\gamma}} V = 0$.
- C(p): closed loops through p $\operatorname{Hol}(p; \nabla) = \{P_{\gamma} \mid \gamma \in C(p)\}$
- $C_0(p)$: null-homotopic el'ts in C(p) $\operatorname{Hol}_0(p; \nabla) = \{P_\gamma \mid \gamma \in C_0(p)\}$

Independent of p, so drop p in notation: $\operatorname{Hol}(M; \nabla)$, $\operatorname{Hol}_0(M; \nabla)$.

A priori:

- (1) $\operatorname{Hol}(M; \nabla)$ is a Lie subgroup of $\operatorname{GL}(n, \mathbb{R})$,
- (2) $\operatorname{Hol}_0(p)$ is the connected component of the identity of $\operatorname{Hol}(M; \nabla)$.

Holonomy of metric connections

<u>Assume</u>: M carries a Riemannian metric g, ∇ metric \Rightarrow parallel transport is an isometry:

$$\frac{d}{ds}g\big(V(s), W(s)\big) = g\big(\frac{\nabla V(s)}{ds}, W(s)\big) + \big(V(s), \frac{\nabla W(s)}{ds}\big) = 0.$$

and $\operatorname{Hol}(M; \nabla) \subset \operatorname{O}(n, \mathbb{R}), \operatorname{Hol}_0(M; \nabla) \subset \operatorname{SO}(n, \mathbb{R}).$

Notation: $Hol_{(0)}(M; \nabla^g) =$ "Riemannian (restricted) holonomy group"

N.B. (1) $\operatorname{Hol}_{(0)}(M; \nabla)$ needs not to be closed!

(2) The holonomy representation needs not to be irreducible on irreducible manifolds!

---- Larger variety of holonomy groups, but classification difficult

Curvature & Holonomy

Holonomy can be computed through curvature:

Thm (Ambrose-Singer, 1953). For any connection ∇ on (M, g), the Lie algebra $\mathfrak{hol}(p; \nabla)$ of $\operatorname{Hol}(p; \nabla)$ in $p \in M$ is exactly the subalgebra of $\mathfrak{so}(T_pM)$ generated by the elements

$$P_{\gamma}^{-1} \circ \mathcal{R}(P_{\gamma}V, P_{\gamma}W) \circ P_{\gamma} \quad V, W \in T_pM, \quad \gamma \in C(p).$$

But only of restricted use:

Thm (Bianchi I). (1) For a metric connection with vectorial torsion $V \in TM^n$: $TM^n : \qquad \sigma \mathcal{R}(X,Y)Z = \sigma^{X,Y,Z} \frac{dV(X,Y)Z}{\sigma}.$

(2) For a metric connection with skew symmetric torsion $T \in \Lambda^3(M^n)$: $\sigma^T \mathcal{R}(X, Y, Z, V) = dT(X, Y, Z, V) - \sigma^T(X, Y, Z, V) + (\nabla_V T)(X, Y, Z),$

 $2\sigma^T := \sum_{i=1}^n (e_i \,\lrcorner\, T) \land (e_i \,\lrcorner\, T) \text{ for any orthonormal frame } e_1, \dots, e_n.$

Theorem (Berger, Simons, > 1955). For a non symmetric Riemannian manifold (M,g) and the Levi-Civita connection ∇^g , the possible holonomy groups are SO(n) or

7 8 2n2n164n4n $\operatorname{Sp}_n \operatorname{Sp}_1 \qquad \operatorname{U}(n) \qquad \operatorname{SU}(n) \qquad \operatorname{Sp}_n$ $\operatorname{Spin}(7)$ G_2 $(\operatorname{Spin}(9))$ quatern. Kähler Calabi- hyperpar. par. par. Kähler Yau Kähler $\nabla J \neq 0 \quad \nabla^g J = 0 \quad \nabla^g J = 0 \quad \nabla^g J = 0 \quad \nabla^g \omega^3 = 0 \quad - \operatorname{Ric} = \lambda q$ — Ric = 0 $\operatorname{Ric} = 0$ $\operatorname{Ric} = 0$ $\operatorname{Ric} = 0$

Existence of Ricci flat compact manifolds:

- Calabi-Yau, hyper-Kähler: Yau, 1980's.
- G_2 , Spin(7): D. Joyce since \sim 1995, Kovalev (2003). Both rely on heavy analysis and algebraic geometry !

No such theorem for metric connections!

General Holonomy Principle

Thm (General Holonomy Principle). (M,g) a Riemannian manifold, E a (real or complex) vector bundle over M with (any!) connection ∇ . Then the following are equivalent:

(1) E has a global section α which is invariant under parallel transport, i. e. $\alpha(q) = P_{\gamma}(\alpha(p))$ for any path γ from p to q;

(2) E has a parallel global section α , i.e. $\nabla \alpha = 0$;

(3) In some point $p \in M$, there exists an algebraic vector $\alpha_0 \in E_p$ which is invariant under the holonomy representation on the fiber.

Corollary. The number of parallel global sections of E coincides with the number of trivial representations occuring in the holonomy representation on the fibers.

Example. Orientability from a holonomy point of view:

Lemma. The determinant ist an SO(n)-invariant element in $\Lambda^n(\mathbb{R}^n)$ that is not O(n)-invariant.

Corollary. (M^n, g) is orientable iff $Hol(M; \nabla) \subset SO(n)$ for *any metric* connection ∇ , and the volume form is then ∇ -parallel.

[Take $dM_p := \det = e_1 \land \ldots \land e_n$ in $p \in M$, then apply holonomy principle to $E = \Lambda^n(TM)$.]

An orthonormal frame that is parallel transported along the drawn curve reverses its orientation.

Geometric stabilizers

Philosophy: Invariants of geometric representations are candidates for parallel objects. Find these!

- Invariants for $G \subset SO(m)$ in tensor bundles (as just seen)
- Assume that G ⊂ SO(m) can be lifted to a subgroup G ⊂ Spin(m)
 ⇒ G acts on the spin representation Δ_m of Spin(m)

Recall: • m = 2k even: $\Delta_m = \Delta_m^+ \oplus \Delta_m^-$, both have dimension 2^{k-1}

• m = 2k + 1 odd: Δ_m is irreducible, of dimension 2^k

Elements of Δ_m : "algebraic spinors" (in opposition to spinors on M that are sections of the spinor bundle)

Now decompose Δ_m under the action of G.

In particular: Are there invariant algebraic spinors?

U(n) in dimension 2n

• Hermitian metric h(V, W) = g(V, W) - ig(JV, W)

• *h* is invariant under $A \in \text{End}(\mathbb{R}^{2n})$ iff *A* leaves invariant *g* and the Kähler form $\Omega(V, W) := g(JV, W) \Rightarrow$

$$U(n) = \{A \in SO(2n) \mid A^*\Omega = \Omega\}.$$

Lemma. Under the restricted action of U(n), $\Lambda^{2k}(\mathbb{R}^{2n}), k = 1, \ldots, n$ contains the trivial representation once, namely, $\Omega, \Omega^2, \ldots, \Omega^n$.

U(n) can be lifted to a subgroup of Spin(2n), but it has no invariant algebraic spinors:

 Ω generates the one-dimensional center of $\mathfrak{u}(n)$ (identify $\Lambda^2(\mathbb{R}^{2n}) \cong \mathfrak{so}(2n)$).

Set
$$S_r = \{\psi \in \Delta_{2n} : \Omega \psi = i(n-2r)\psi\}, \quad \dim S_r = \binom{n}{r}, \quad 0 \le r \le n.$$

 $S_r \cong (0, r)$ -forms with values in S_0 and

$$\Delta_{2n}^+|_{\mathrm{U}(n)} \cong S_n \oplus S_{n-2} \oplus \dots, \quad \Delta_{2n}^-|_{\mathrm{U}(n)} \cong S_{n-1} \oplus S_{n-3} \oplus \dots$$

• no trivial U(n)-representation for n odd

 \Rightarrow

• For n = 2k even, Ω has eigenvalue zero on S_k , but this space is an irreducible representation of dimension $\binom{2k}{k} \neq 1$

• S_0 and S_n are one-dimensional, and they become trivial under SU(n)

Lemma. Δ_{2n}^{\pm} contain no U(n)-invariant spinors. If one restricts further to SU(n), there are exactly two invariant spinors.

G_2 in dimension 7

• Geometry of 3-forms plays an exceptional role in Riemannian geometry, as it ocurs only in dimension seven:

n	$\dim \operatorname{GL}(n,\mathbb{R}) - \dim \Lambda^3 \mathbb{R}^n$	$\dim \mathrm{SO}(n)$
3	9 - 1 = 8	3
4	16 - 4 = 12	6
5	25 - 10 = 15	10
6	36 - 20 = 16	15
7	49 - 35 = 14	21
8	64 - 56 = 8	28

⇒ stabilizer $G_{\omega^3}^n := \{A \in \operatorname{GL}(n, \mathbb{R}) \mid \omega^3 = A^* \omega^3\}$ of a generic 3-form ω^3 cannot lie in $\operatorname{SO}(n)$ for $n \leq 6$ (for example: $G_{\omega^3}^3 = \operatorname{SL}(3, \mathbb{R})$).

Reichel, 1907 (Ph D student of F. Engel in Greifswald):

- computed a system of invariants for a 3-form in seven variables
- showed that there are exactly two $GL(7,\mathbb{R})$ -open orbits of 3-forms

• showed that stabilizers of any representatives ω^3 , $\tilde{\omega}^3$ of these orbits are 14-dimensional simple Lie groups of rank two, a compact and a non-compact one:

$$G_{\omega^3}^7 \cong G_2 \subset \operatorname{SO}(7), \quad G_{\tilde{\omega}^3}^7 \cong G_2^* \subset \operatorname{SO}(3,4)$$

• realized \mathfrak{g}_2 and \mathfrak{g}_2^* as explicit subspaces of $\mathfrak{so}(7)$ and $\mathfrak{so}(3,4)$

As in the case of almost hermitian geometry, one has a favourite normal form for a 3-form with isotropy group G_2 :

$$\omega^3 := e_{127} + e_{347} - e_{567} + e_{135} - e_{245} + e_{146} + e_{236}.$$

An element of the second orbit $(\rightarrow G_2^*)$ may be obtained by reversing any of the signs in ω^3 .

Lemma. Under G_2 : $\Lambda^3(\mathbb{R}^7) \cong \mathbb{R} \oplus \mathbb{R}^7 \oplus S_0(\mathbb{R}^7)$, where

 \mathbb{R}^7 : 7-dimensional standard representation of $G_2 \subset SO(7)$

 $S_0(\mathbb{R}^7)$: traceless symmetric endomorphisms of \mathbb{R}^7 (has dimension 27).

• G_2 can be lifted to a subgroup of Spin(7). From a purely representation theoretic point of view, this case is trivial:

dim $\Delta_7 = 8$ and the only irreducible representations of G_2 of dimension ≤ 8 are the trivial and the 7-dimensional representation \Rightarrow

Lemma. Under G_2 : $\Delta_7 \cong \mathbb{R} \oplus \mathbb{R}^7$.

In fact, the invariant 3-form ω^3 and the invariant algebraic spinor ψ are equivalent data:

$$\omega^{3}(X,Y,Z) = \langle X \cdot Y \cdot Y \cdot \psi, \psi \rangle.$$

But $\dim \Delta_7 = 8 < \dim \Lambda^3(\mathbb{R}^7) = 35$, so the spinorial picture is easier to treat!

Assume now that $G \subset G_2$ fixes a second spinor $\Rightarrow G \cong SU(3)$

• this is one of the three maximal Lie subgroups of G_2 , $\mathrm{SU}(3)$, $\mathrm{SO}(4)$ and $\mathrm{SO}(3)$

SU(3) has irreducible real representations in dimension 1, 6 and 8, so
Lemma. Under SU(3) ⊂ G₂: Δ₇ ≃ ℝ ⊕ ℝ ⊕ ℝ⁶ and ℝ⁷ = ℝ ⊕ ℝ⁶.
This implies:

• If ∇^g on (M^7, g) has two parallel spinors, M has to be (locally) reducible, $M^7 = M^6 \otimes M^1$ and the situation reduces to the 6-dimensional case.

• If ∇ is some other metric connection on (M^7, g) with two parallel spinors, M^7 will, in general, not be a product manifold. Its Riemannian holonomy will typically be SO(7), so ∇^g does not measure this effect!

 \Rightarrow geometric situations not known from Riemannian holonomy will typically appear.

In a similar way, one treats the cases

Spin(7) in dimension 8. As just seen, Spin(7) has an 8-dimensional representation, hence it can be viewed as a subgroup of SO(8). Δ_8 has again one Spin(7)-invariant spinor.

Sp(n) in dimension 4n. Identifying quaternions with pairs $(z_1, z_2) \in \mathbb{C}^2$ yields $Sp(n) \subset SU(2n)$, and SU(2n) is then realized inside SO(4n) as before. It has n + 1 invariant spinors.

The easiest case: ∇^{g} -parallel spinors

Thm (Wang, 1989).

 (M^n,g) : complete, simply connected, irreducible Riemannian manifold

N: dimension of the space of parallel spinors w.r.t. ∇^g

If (M^n, g) is non-flat and N > 0, then one of the following holds:

(1) n = 2m $(m \ge 2)$, Riemannian holonomy repr.: SU(m) on \mathbb{C}^m , and N = 2 ("Calabi-Yau case"),

(2) n = 4m $(m \ge 2)$, Riemannian holonomy repr.: Sp(m) on \mathbb{C}^{2m} , and N = m + 1 ("hyperkähler case"),

(3) n = 7, Riemannian holonomy repr.: 7-dimensional representation of G_2 , and N = 1 ("parallel G_2 case"),

(4) n = 8, Riemannian holonomy repr.: spin representation of Spin(7), and N = 1 ("parallel Spin(7) case").