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Outline

At border line between pure mathematics and theoretical physics

formation of
mathematical

concepts
⇔

building of
physical
models

differential geometry,
analysis,

group theory

general relativity,
unified field theories,

string theory

Lecture I: Mathematical tools – geometry of metric connections

Lecture II: Physical motivation & first applications

Lecture III: More on special geometries

Lecture IV: Geometric structures with parallel torsion and of vector type
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Symmetry I

• Classical mechanics: Symmetry considerations can simplify study of
geometric problems (i.e., Noether’s theorem)

• Felix Klein at his inaugural lecture at Erlangen University, 1872
(”Erlanger Programm”):

“Es ist eine Mannigfaltigkeit und in derselben eine
Transformationsgruppe gegeben; man soll die der Mannigfaltigkeit
angehörigen Gebilde hinsichtlich solcher Eigenschaften untersuchen,
die durch die Transformationen der Gruppe nicht geändert werden”.

“Let a manifold and in this a transformation group be given; the
objects belonging to the manifold ought to be studied with respect
to those properties which are not changed by the transformations
of the group.”

Isometry group of a Riemannian manifold (M, g)
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Symmetry II

• Around 1940-1950: Second intrinsic Lie group associated with a
Riemannian manifold (M, g) appeared, its holonomy group.

strongly related to curvature and parallel objects

A priori, the holonomy group is defined for an arbitrary connection ∇ on
TM . For reasons to become clear later, we concentrate mainly on

Metric connections ∇ : Xg(V,W ) = g(∇XV,W ) + g(V,∇XW ).

The torsion (viewed as (2, 1)- or (3, 0)-tensor)

T (X,Y ) := ∇XY −∇YX − [X,Y ], T (X,Y,Z) := g(T (X,Y ), Z)

can (for the moment. . . ) be arbitrary.
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Types of metric connections

(Mn, g) oriented Riemannian mnfd, ∇ any connection:

∇XY = ∇g
XY + A(X,Y ) .

Then: ∇ is metric ⇔ g(A(X,Y ), Z) + g(A(X,Z), Y ) = 0

⇔ A ∈ Ag := Rn ⊗ Λ2(Rn)

This is also the space T of possible torsion tensors,

Ag ∼= T ∼= R
n ⊗ Λ2(Rn), dim =

n2(n− 1)

2
.

For metric connections: difference tensor A ⇔ torsion T

Decompose this space under SO(n) action (E. Cartan, 1925):

R
n ⊗ Λ2(Rn) = R

n ⊕ Λ3(Rn) ⊕ T .
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• A ∈ Λ3(Rn): “Connections with (totally) antisymmetric torsion”:

∇XY := ∇g
XY +

1

2
T(X,Y,−) .

Lemma. ∇ is metric and geodesics preserving iff its torsion T lies in
Λ3(TM). In this case, 2A = T , and the ∇-Killing vector fields coincide
with the Riemannian Killing vector fields.

Connections used in superstring theory (examples in Lecture II)

• A ∈ Rn: “Connections with vectorial torsion”, V a vector field:

∇XY := ∇g
XY − g(X,Y ) · V + g(Y, V ) ·X .

In particular, any metric connection on a surface is of this type!
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Mercator map

• conformal (angle preserving),
hence maps loxodromes to
straight lines
• Cartan (1923):
“On this manifold, the straight
lines [of the flat connection] are
the loxodromes, which intersect
the meridians at a constant angle.
The only straight lines realizing
shortest paths are those which
are normal to the torsion in every
point: these are the meridians. S2 − {N,S} → I × R (1569)

• Explanation & generalisation to arbitrary manifolds?

• Existence of a Clairaut style invariant?
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Thm (A-Thier, ’03). (M,g) Riemannian manifold, σ ∈ C∞(M) and
g̃ = e2σg the conformally changed metric. Let

∇̃g: metric connection with vectorial torsion V = −gradσ on (M,g),

∇̃g
XY = ∇g

XY − g(X,Y )V + g(Y, V )X

∇g̃: Levi-Civita connection of (M, g̃). Then

(1) Every ∇̃g-geodesic γ(t) is (up to reparametrisation) a ∇g̃-geodesic;

(2) If X is a Killing vector field of g̃, then eσg(γ′, X) is a constant of
motion for every ∇̃g-geodesic γ(t).

N.B. The curvatures of ∇̃g and ∇g̃ coincide, but the curvatures of ∇g

and ∇g̃ are unrelated.

Beltrami’s theorem does not hold anymore [“If a portion of a surface

S can be mapped LC-geodesically onto a portion of a surface S∗ of constant Gaussian

curvature, the Gaussian curvature of S must also be constant”]
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Connections with vectorial torsion on surfaces

• Curve: α =
(

r(s), h(s)
)

• Surface of revolution:
(

r(s) cosϕ, r(s) sinϕ, h(s)
)

• Riemannian metric:
g = diag

(

r2(s), 1
)

• Orthonormal frame:
e1 = 1

r
∂ϕ, e2 = ∂s

x

y

z

h(s)

r(s)

ϕ

ν1 ν2

Dfn: Call two tangent vectors v1 and v2 of same length parallel if their
angles ν1 and ν2 with the generating curves through their origins coincide.



10

• Hence ∇e1 = ∇e2 = 0

• Torsion: T (e1, e2) = r′(s)
r(s) e2

• Corresponding vector field:

V = r′(s)
r(s) e1 = −grad

(

− ln r(s)
)

• geodesics are LC geodesics of the
conformally equivalent metric g̃ =
e2σg = diag(1/r2, 1)

(coincides with euclidian metric
under x = ϕ, y =

∫

ds/r(s))

• X = ∂ϕ is Killing vector field for g̃, invariant of motion:

const = eσg(γ̇,X) = 1
r(s)g(γ̇, ∂ϕ) = g(γ̇, e2)
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Holonomy of arbitrary connections

• γ from p to q, ∇ any connection

• Pγ : TpM → TqM is the unique
map s. t. V (q) := PγV (p) is parallel
along γ, ∇V (s)/ds = ∇γ̇V = 0.

• C(p): closed loops through p
Hol(p;∇) = {Pγ | γ ∈ C(p)}

• C0(p): null-homotopic el’ts in C(p)
Hol0(p;∇) = {Pγ | γ ∈ C0(p)}

p

TpMPγ

γ
M

Independent of p, so drop p in notation: Hol(M ;∇), Hol0(M ;∇).

A priori:

(1) Hol(M ;∇) is a Lie subgroup of GL(n,R),

(2) Hol0(p) is the connected component of the identity of Hol(M ;∇).
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Holonomy of metric connections

Assume: M carries a Riemannian metric g, ∇ metric

⇒ parallel transport is an isometry:

d

ds
g
(

V (s),W (s)
)

= g
(∇V (s)

ds
,W (s)

)

+
(

V (s),
∇W (s)

ds

)

= 0.

and Hol(M ;∇) ⊂ O(n,R), Hol0(M ;∇) ⊂ SO(n,R).

Notation: Hol(0)(M ;∇g) = “Riemannian (restricted) holonomy group”

N.B. (1) Hol(0)(M ;∇) needs not to be closed!

(2) The holonomy representation needs not to be irreducible on

irreducible manifolds!

Larger variety of holonomy groups, but classification difficult
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Curvature & Holonomy

Holonomy can be computed through curvature:

Thm (Ambrose-Singer, 1953). For any connection ∇ on (M, g), the
Lie algebra hol(p;∇) of Hol(p;∇) in p ∈M is exactly the subalgebra of
so(TpM) generated by the elements

P−1
γ ◦ R(PγV, PγW ) ◦ Pγ V,W ∈ TpM, γ ∈ C(p).

But only of restricted use:

Thm (Bianchi I). (1) For a metric connection with vectorial torsion

V ∈ TMn:
X,Y,Z
σ R(X,Y )Z =

X,Y,Z
σ dV (X,Y )Z.

(2) For a metric connection with skew symmetric torsion T ∈ Λ3(Mn):

X,Y,Z
σ R(X,Y,Z, V ) = dT (X,Y,Z, V )−σT (X,Y,Z, V )+(∇V T )(X,Y,Z),

2σT :=
n
∑

i=1

(ei T ) ∧ (ei T ) for any orthonormal frame e1, . . . , en.
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Theorem (Berger, Simons, > 1955). For a non symmetric Riemannian
manifold (M, g) and the Levi-Civita connection ∇g, the possible
holonomy groups are SO(n) or

4n 2n 2n 4n 7 8 16

SpnSp1 U(n) SU(n) Spn G2 Spin(7) (Spin(9))

quatern. Kähler Calabi- hyper- par. par. par.
Kähler Yau Kähler

∇J 6= 0 ∇gJ = 0 ∇gJ = 0 ∇gJ = 0 ∇gω3 = 0 −− −−

Ric = λg −− Ric = 0 Ric = 0 Ric = 0 Ric = 0 −−

Existence of Ricci flat compact manifolds:

• Calabi-Yau, hyper-Kähler: Yau, 1980’s.

• G2, Spin(7): D. Joyce since ∼ 1995, Kovalev (2003). Both rely on
heavy analysis and algebraic geometry !

No such theorem for metric connections!
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General Holonomy Principle

Thm (General Holonomy Principle). (M, g) a Riemannian manifold,
E a (real or complex) vector bundle over M with (any!) connection ∇.
Then the following are equivalent:

(1) E has a global section α which is invariant under parallel transport,
i. e. α(q) = Pγ(α(p)) for any path γ from p to q;

(2) E has a parallel global section α, i. e. ∇α = 0;

(3) In some point p ∈M , there exists an algebraic vector α0 ∈ Ep which
is invariant under the holonomy representation on the fiber.

Corollary. The number of parallel global sections of E coincides with the
number of trivial representations occuring in the holonomy representation
on the fibers.
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Example. Orientability from a holonomy point of view:

Lemma. The determinant ist an SO(n)-invariant element in Λn(Rn)
that is not O(n)-invariant.

Corollary. (Mn, g) is orientable iff Hol(M ;∇) ⊂ SO(n) for any metric

connection ∇, and the volume form is then ∇-parallel.

[Take dMp := det = e1 ∧ . . . ∧ en in p ∈ M , then apply holonomy principle to

E = Λn(TM).]

An orthonormal frame that is parallel transported along the drawn curve reverses its

orientation.
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Geometric stabilizers

Philosophy: Invariants of geometric representations are candidates
for parallel objects. Find these!

• Invariants for G ⊂ SO(m) in tensor bundles (as just seen)

• Assume that G ⊂ SO(m) can be lifted to a subgroup G ⊂ Spin(m)

⇒ G acts on the spin representation ∆m of Spin(m)

Recall: • m = 2k even: ∆m = ∆+
m ⊕ ∆−

m, both have dimension 2k−1

• m = 2k + 1 odd: ∆m is irreducible, of dimension 2k

Elements of ∆m: “algebraic spinors” (in opposition to spinors on M that

are sections of the spinor bundle)

Now decompose ∆m under the action of G.

In particular: Are there invariant algebraic spinors?



18

U(n) in dimension 2n

• Hermitian metric h(V,W ) = g(V,W ) − ig(JV,W )

• h is invariant under A ∈ End(R2n) iff A leaves invariant g and the
Kähler form Ω(V,W ) := g(JV,W ) ⇒

U(n) = {A ∈ SO(2n) | A∗Ω = Ω}.

Lemma. Under the restricted action of U(n), Λ2k(R2n), k = 1, . . . , n
contains the trivial representation once, namely, Ω,Ω2, . . . ,Ωn.

U(n) can be lifted to a subgroup of Spin(2n), but it has no invariant
algebraic spinors:

Ω generates the one-dimensional center of u(n) (identify Λ2(R2n) ∼=
so(2n)).

Set Sr = {ψ ∈ ∆2n : Ωψ = i(n−2r)ψ}, dimSr =
(

n
r

)

, 0 ≤ r ≤ n.
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Sr
∼= (0, r)-forms with values in S0 and

∆+
2n

∣

∣

U(n)
∼= Sn ⊕ Sn−2 ⊕ . . . , ∆−

2n

∣

∣

U(n)
∼= Sn−1 ⊕ Sn−3 ⊕ . . .

⇒

• no trivial U(n)-representation for n odd

• For n = 2k even, Ω has eigenvalue zero on Sk, but this space is an
irreducible representation of dimension

(

2k
k

)

6= 1

• S0 and Sn are one-dimensional, and they become trivial under SU(n)

Lemma. ∆±

2n contain no U(n)-invariant spinors. If one restricts further
to SU(n), there are exactly two invariant spinors.
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G2 in dimension 7

• Geometry of 3-forms plays an exceptional role in Riemannian geometry,
as it ocurs only in dimension seven:

n dimGL(n,R) − dimΛ3Rn dimSO(n)

3 9 − 1 = 8 3

4 16 − 4 = 12 6

5 25 − 10 = 15 10

6 36 − 20 = 16 15

7 49 − 35 = 14 21

8 64 − 56 = 8 28

⇒ stabilizer Gn
ω3 := {A ∈ GL(n,R) | ω3 = A∗ω3} of a generic 3-form

ω3 cannot lie in SO(n) for n ≤ 6 (for example: G3
ω3 = SL(3,R)).
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Reichel, 1907 (Ph D student of F. Engel in Greifswald):

• computed a system of invariants for a 3-form in seven variables

• showed that there are exactly two GL(7,R)-open orbits of 3-forms

• showed that stabilizers of any representatives ω3, ω̃3 of these orbits
are 14-dimensional simple Lie groups of rank two, a compact and a
non-compact one:

G7
ω3

∼= G2 ⊂ SO(7), G7
ω̃3

∼= G∗
2 ⊂ SO(3, 4)

• realized g2 and g∗2 as explicit subspaces of so(7) and so(3, 4)

As in the case of almost hermitian geometry, one has a favourite normal
form for a 3-form with isotropy group G2:

ω3 := e127 + e347 − e567 + e135 − e245 + e146 + e236.

An element of the second orbit (→ G∗
2) may be obtained by reversing

any of the signs in ω3.
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Lemma. Under G2: Λ3(R7) ∼= R ⊕ R
7 ⊕ S0(R

7), where

R
7: 7-dimensional standard representation of G2 ⊂ SO(7)

S0(R
7): traceless symmetric endomorphisms of R7 (has dimension 27).

• G2 can be lifted to a subgroup of Spin(7). From a purely representation
theoretic point of view, this case is trivial:

dim∆7 = 8 and the only irreducible representations of G2 of dimension
≤ 8 are the trivial and the 7-dimensional representation ⇒

Lemma. Under G2: ∆7
∼= R ⊕ R

7.

In fact, the invariant 3-form ω3 and the invariant algebraic spinor ψ are
equivalent data:

ω3(X,Y,Z) = 〈X · Y · Y · ψ, ψ〉.

But dim∆7 = 8 < dimΛ3(R7) = 35, so the spinorial picture is easier to
treat!
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Assume now that G ⊂ G2 fixes a second spinor ⇒ G ∼= SU(3)

• this is one of the three maximal Lie subgroups of G2, SU(3), SO(4)
and SO(3)

• SU(3) has irreducible real representations in dimension 1, 6 and 8, so

Lemma. Under SU(3) ⊂ G2: ∆7
∼= R ⊕ R ⊕ R6 and R7 = R ⊕ R6.

This implies:

• If ∇g on (M7, g) has two parallel spinors, M has to be (locally)
reducible, M7 = M6⊗M1 and the situation reduces to the 6-dimensional
case.

• If ∇ is some other metric connection on (M7, g) with two parallel
spinors, M7 will, in general, not be a product manifold. Its Riemannian
holonomy will typically be SO(7), so ∇g does not measure this effect!

⇒ geometric situations not known from Riemannian holonomy will
typically appear.
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In a similar way, one treats the cases

Spin(7) in dimension 8. As just seen, Spin(7) has an 8-dimensional
representation, hence it can be viewed as a subgroup of SO(8). ∆8 has
again one Spin(7)-invariant spinor.

Sp(n) in dimension 4n. Identifying quaternions with pairs (z1, z2) ∈ C
2

yields Sp(n) ⊂ SU(2n), and SU(2n) is then realized inside SO(4n) as
before. It has n+ 1 invariant spinors.
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The easiest case: ∇g-parallel spinors

Thm (Wang, 1989).

(Mn, g): complete, simply connected, irreducible Riemannian manifold

N : dimension of the space of parallel spinors w. r. t. ∇g

If (Mn, g) is non-flat and N > 0, then one of the following holds:

(1) n = 2m (m ≥ 2), Riemannian holonomy repr.: SU(m) on Cm, and
N = 2 (“Calabi-Yau case”),

(2) n = 4m (m ≥ 2), Riemannian holonomy repr.: Sp(m) on C2m, and
N = m+ 1 (“hyperkähler case”),

(3) n = 7, Riemannian holonomy repr.: 7-dimensional representation of
G2, and N = 1 (“parallel G2 case”),

(4) n = 8, Riemannian holonomy repr.: spin representation of Spin(7),
and N = 1 (“parallel Spin(7) case”).


