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Classical general relativity and electromagnetism

point particle
moves along

a curve

physical quantities: associate
with every tangent vector a number

= “potential” A

field strength
F = dA

⇔
how the potential A changes

in all directions
⇔

geometric concept
of curvature

curvature measures deviation from vacuum !
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Modern unified models

��

string particle
moves along

a surface

physical quantities: associate
with every tangent plane a number

= “higher order potential” Ã

higher order field

strength F = dÃ
⇔

how the potential Ã changes
in all directions

⇔
geometric concept

of torsion

torsion measures deviation from vacuum (“integrable case”) !
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Relativistic
electromagnetism

1900-1940

describes point particles with electromagnetic charge,
relates it with abelian gauge transformations

gauge group = rotations in a plane

EinsteinLorentzMaxwell Weyl Dirac

Standard model of
elementary particles

1950-1980

describes point particles with additional gauge
properties, like charge, isospin, colour. . .

internal symmetries are described by some Lie group

Yang    Mills          Salam   Weinberg

Unified theories
(super-)strings, supergravity

> 1980

Quantized internal symmetries are spinor fields
on some space with special geometric structure,
replacing the Lie group of the standard model

Nieuwenhuizen    Strominger   Seiberg   Witten ...
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Mathematical scheme for unified theories

No more described as Yang-Mills theories (electrodynamics, standard
model of elementary particles), but rather:

• Particles are “oscillatory states” on some high dimensional configuration
space

Y 10,11 = V 3-5 ⊗M5-8

V : configuration space visible to the outside, i. e. Minkowski space or
some solution from General Relativity (adS is popular here).

M : configuration space of internal symmetries = Riemannian manifold
with special geometric structure, quantized internal symmetries are
described by spinor fields.

Example: Supersymmetry transformation, transform bosons into fermions
and vice versa by tensoring with a (special) spin 1/2 field.

[ > 1980 Nieuwenhuizen, Strominger, Witten, Seiberg. . . ]
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Common sector of Type II string equations

• A. Strominger, 1986: (Mn, g) Riemannian Spin mfd with

a 3-Form T, a spinor field Ψ, and a function Φ .

(field strength) (supersymmetry) (dilaton)

• Bosonic eq.: Rgij −
1
4TimnTjmn + 2∇g

i∂jΦ = 0, δ(e−2ΦT ) = 0 .

• Fermionic eq.:
(
∇g
X + 1

4X T
)
· Ψ = 0, T · Ψ = 2 dΦ · Ψ .

As in general relativity, it is impossible to fix the manifold and look
for solutions on it. Rather, finding the manifold is part of the solution
process!

→ Geometric meaning of the 3-form T ?
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Idea: The first fermionic eq. means that the spinor field Ψ is parallel
w.r.t. a new connection,

∇XY := ∇g
XY +

1

2
T (X,Y,−) .

The 3-form T is then the torsion of the new metric connection ∇ and
the eqs. are equivalent to:

• Bosonic eq.: Ric∇ + 1
2δ(T ) + 2∇gdΦ = 0, δ(e−2ΦT ) = 0 .

• Fermionic eq.: ∇Ψ = 0, T · Ψ = 2 dΦ · Ψ .

Remarks:

• Bosonic eq. generalizes Einstein’s eq. of general relativity

• Calabi-Yau and Joyce mfds are exact solution with T = 0 and Φ =
const → Bergers’ list + algebraic geometry

• For T 6= 0, the relation between curvature and parallel spinor is subtler,
and there exists no holonomy theory for them



8

Intermezzo: Lifting metric connections into the spinor bundle

At first sight, the formulas on vectors and spinors look quite different!

Write ∇XY := ∇g
XY +AXY ,

where AX defines an endomorphism TM → TM for every X .

∇ metric ⇔ g(AXY,Z) + g(Y,AXZ) = 0

⇔ AX preserves g ⇔ AX ∈ so(n) ∼= Λ2(Rn)

So AX =
∑
i<j αijei ∧ ej.

Since the lift into spin(n) of ei ∧ ej is Ei ·Ej/2, AX defines an element
in spin(n) (= an endomorphism on the spinor bundle).
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Observe: If AX is written as a 2-form,

• its action on a vector Y as an element of so(n) is just AXY = Y AX,
so

∇XY = ∇g
XY + Y AX,

• the action of AX on a spinor ψ as an element of spin(n) is just
AXψ = (1/2)AX · ψ (Clifford product of a k-form by a spinor), hence
the lift of the connection ∇ to the spinor bundle SM is

∇Xψ = ∇g
Xψ +

1

2
AX · ψ.

• Connection with vectorial torsion: AX = 2X ∧ V , V a vector field

• Connection with skew symmetric torsion: AX = X T , T ∈ Λ3(M).
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Overview of general results

Non existence theorems

Thm. A full solution of Strominger’s model with Φ = const satisfies
necessarily T = 0 or Ψ = 0.

[M compact: IA, 2002; general case: IA, Friedrich, Nagy, Puhle, 2004]

⇒ physical meaning ?

• Investigation of the homogeneous case, in particular of the relation
with Kostant’s cubic Dirac operator and a generalized Casimir operator

• Investigation of the holonomy theory of metric connections with torsion,
Weitzenböck formulas for their Dirac operators

Thm (’03). On a Calabi-Yau or Joyce mnfd, a metric connection with
torsion T s.t. dT = 0 can have parallel spinors only for T = 0.

⇒ “rigidity” of CYJ’s under deformation of the connection
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• Non compact solvmanifolds for which the rigidity theorem does not

hold

Existence results

Thm (’03). On every 7-dimensional 3-Sasaki mnfd, there exists a
family of metric connections with torsion admitting parallel spinors.

• Construction of partial solutions with particular properties, in particular,
with parallel spinors

• Investigation of the case ∇T = 0

• Solution of spinorial field eqs. with additional 4-flux-forms F ,

∇Xψ = ∇g
Xψ +

1

4
(X T ) · ψ +

1

144
(X F ) −X ∧ F ) · ψ = 0.

Observe: These connections exist only in the spinor bundle, not in the tangent bundle!
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The characteristic connection of a geometric structure

Fix G ⊂ SO(n), Λ2(Rn) ∼= so(n) = g ⊕ m, F(Mn): frame bundle of
(Mn, g).

Dfn. A geometric G-structure on Mn is a G-PFB R which is subbundle
of F(Mn): R ⊂ F(Mn).

Choose a G-adapted local ONF e1, . . . , en in R and define connection

1-forms of ∇g:

ωij(X) := g(∇g
Xei, ej), g(ei, ej) = δij ⇒ ωij + ωji = 0.

Define a skew symmetric matrix Ω with values in Λ1(Rn) ∼= R
n by

Ω(X) :=
(
ωij(X)

)
∈ so(n) = g ⊕ m und set

Γ := prm(Ω).
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• Γ is a 1-Form on Mn with values in m, Γx ∈ Rn ⊗ m (x ∈Mn)

[“intrinsic torsion”, Swann/Salamon]

Fact: Γ = 0 ⇔ ∇g is G-invariant ⇔ Hol(∇g) ⊂ G

Via Γ, geometric G-structures R ⊂ F(Mn) correspond to irreducible
components of the G-representation R

n ⊗ m.

• For the rest of this talk, consider only connections with
antisymmetric torsion.

Thm (’02). A geometric G-structure R ⊂ F(Mn) admits a G-invariant
metric connection with antisymmetric torsion iff Γ lies in the image of
Θ,

Θ : Λ3(Mn) → T ∗(Mn) ⊗ m, Θ(T ) :=
n∑

i=1

ei ⊗ prm(ei T ) .
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If such a connection exists, it is called the characteristic connection ∇
and it is unique; its torsion is essentially Γ and Hol(∇) ⊂ G.

If existent, we can thus replace the (unadapted) LC connection by some
new unique G-invariant connection!

Examples.

• The canonical connection of a naturally reductive space (see below);

• The Bismut connection of an almost hermitian mnfd;

• The Gray connection of a nearly Kähler mnfd. . .
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Example: G2 structures in dimension 7

Fix G2 ⊂ SO(7), so(7) = g2 ⊕ m7 ∼= g2 ⊕ R
7.

Intrinsic torsion Γ lies in R7 ⊗m7 ∼= R1 ⊕ g2 ⊕ S0(R
7)⊕R7 =:

⊕4
i=1Wi

⇒ four classes of geometric G2 structures [Fernandez-Gray, ’82]

• Decomposition of 3-forms: Λ3(R7) = R
1 ⊕ S0(R

7) ⊕ R
7.

G2 is the isotropy group of a generic element of ω ∈ Λ3(R7):

G2 = {A ∈ SO(7) | A · ω = ω}.

Thm. A 7-dimensional Riemannian mfd (M7, g, ω) with a fixed G2

structure ω ∈ Λ3(M7) has a G2-invariant characteristic connection ∇

⇔ the g2 component of Γ vanishes

⇔ There exists a VF β with δω = −β ω

The torsion of ∇ is then T = − ∗ dω − 1
6(dω, ∗ω)ω + ∗(β ∧ ω) , and ∇

admits (at least) one parallel spinor.
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Examples: Explicit constructions of G2 structures:

[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki. . . ]

M7: 3-Sasaki mnfd, corresponds
to SU(2) ⊂ G2 ⊂ SO(7).
• Has 3 compatible contact
structures ηi ∈ T ∗M7 and 3
Killing spinors ψi ⇒ Ansatz:

T =
3∑

i,j=1

αijηi∧ηj+γη1∧η2∧η3,

ψ =
3∑
i=1

µiψi.

η#
i

Ji = −∇gη#
i

Thm (’03). Every 7-dimensional 3-Sasaki mnfd admits a P
2-family of

metric connections with antisymmetric torsion and parallel spinors. Its
holonomy is G2.

⇒ First constructive global existence thm for supersymmetries!
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Example: U(n) structures in dimension 2n

Thm. An almost hermitian manifold (M2n, g, J) admits a U(n)-invariant
characteristic connection if and only if the Nijenhuis tensor

N(X,Y,Z) := g
(
N(X,Y ), Z

)

is skew-symmetric. Its torsion is then

T (X,Y,Z) = −dΩ(JX, JY, JZ) +N(X,Y,Z).

In particular for n = 3: [Gray-Hervella]

• so(6) = u(3) ⊕ m6, Γ ∈ R6 ⊗ m6
∣∣
U(3)

∼= W 2
1 ⊕W 16

2 ⊕W 12
3 ⊕W 6

4

• N is skew-symmetric ⇔ Γ has no W2-part

• Γ ∈W1: nearly Kähler manifolds (S6, S3 × S3, F (1, 2),CP
3)

• Γ ∈W3 ⊕W4: hermitian manifolds (N = 0)
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Example: Naturally reductive spaces

• Homogeneous non symmetric spaces provide a rich source for manifolds
with characteristic connection.

Consider M = G/H with isotropy repr. Ad : H → SO(m).

Lie algebra: g = h ⊕ m, 〈 , 〉 a p. d. scalar product on m.

The PFB G → G/H induces a distinguished connection on G/H, the
so-called canonical connection ∇1.Its torsion is

T 1(X,Y,Z) = −〈[X,Y ]m, Z〉 .

Dfn. The metric 〈 , 〉 is called naturally reductive if T 1 defines a 3-form,

〈[X,Y ]m, Z〉 + 〈Y, [X,Z]m〉 = 0 for all X,Y, Z ∈ m .

They generalize symmetric spaces: ∇1T 1 = 0,∇1R1 = 0.
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A oneparametric family of connections

Dfn. ∇t
XY := ∇g

XY − t
2 [X,Y ]m for X,Y ∈ m.

Torsion: T t(X,Y ) = −t[X,Y ]m.

Special t values: • t = 0: LC connection

• t = 1: canonical connection

• t = 1/3: “Kostant-Slebarski connection”

M spin manifold ⇒ lift ∇t into Spinor bundle, associated Dirac operator:

/Dtψ =
n∑

i=1

Zi(ψ) +
1 − t

2
H · ψ (Z1, . . . , Zn : ONB of m),

H: the element in the Clifford algebra induced by torsion:

H :=
3

2

∑

i<j<k

〈[Zi, Zj]m, Zk〉Zi · Zj · Zk
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The symmetric case

Want: Weitzenböck formula for (/Dt)2.

For M symmetric ([m,m] ⊂ h), one would have:

Thm (Parthasarathy, 1972). (/D)2 = Ωg + 1
8Scal,

with Ωg: Casimir operator of g.

Consequences:

• Computation of spectrum of /D

• Realisation of discrete series representations in the (twisted) kernel of
/D for G non compact

• Character formulas (interpret character as an index)

In the homogeneous non symmetric case, this formula does no longer
hold!
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The general Kostant-Parthasarathy formula

Thm [Kostant, ’99 / IA, ’01]. For n ≥ 5 and arbitrary t:

(/Dt)2ψ = ΩG(ψ) + 1
4(3t− 1)

P
i,j,k

〈[Zi, Zj]m, Zk〉Zi · Zj · Zk(ψ)

−1
2

P
i<j<k<l

D
Zi,Jh(Zj, Zk, Zl) + 9(1−t)2

4 Jm(Zj, Zk, Zl)
E
Zi · Zj · Zk · Zl · ψ

+1
8

` P
i,j

||[Zi, Zj]||h + 3(1−t)2

4

P
i,j

||[Zi, Zj]||m
´
ψ

Notation:

• Jm(X, Y, Z) := [X, [Y, Z]m]m+ cyclic

• Jh(X, Y, Z) := [X, [Y,Z]h]+ cyclic

• Q : the unique AdG-invariant continuation of 〈 , 〉 to g. It satisfies:

h ⊥ m, Q
˛̨
m

= 〈 , 〉 , Q
˛̨
h

not degenerate
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The Kostant-Parthasarathy formula for t = 1/3

Thm [Kostant, ’99 / IA, ’01]. For n ≥ 5 and t = 1/3:

(/D1/3)2ψ = ΩG(ψ) +
1

8
(∗)ψ ,

where (∗) denotes the scalar

(∗) =
∑

i,j

||[Zi, Zj]||h +
1

3

∑

i,j

||[Zi, Zj]||m.

It can be rewritten as

(∗) = Q(̺G, ̺G) −Qh(̺H, ̺H)

and is thus always strictly positive.
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First applications

Corollary (’01). If ψ satisfies ∇tψ = 0 and T t · ψ = 0 on M = G/H,
then t = 0 and ∇t is the LC connection.

. . . purely mathematical applications:

Corollary (’01). On M = G/H, there exists a G-invariant differential
operator of first order which has no symmetric counterpart:

D(ψ) :=
∑

i,j,k

〈[Zi, Zj]m, Zk〉Zi · Zj · Zk(ψ) .

Corollary (’01). If the Casimir operator is non negative, the first

eigenvalue λ1/3 satisfies (λ1/3)2 ≥ (∗)/8. In particular, /D1/3 has then no
kernel.

N.B. Character formulas generalize, too → splitting of H-representations
into families with similar properties

[> 1999: Kostant, Sternberg, Ramond, Brink. . . ]
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• Realisation of infinite dimensional representations for G non compact
inside kernels of twisted Dirac operators [> 2003, Zierau-Mehdi . . . ]

• Computation of the spectrum of (/D1/3)2

N.B. Consider lift of isotropy representation, Ãd : H → Spin(m):

Spin(m)

�
�

�
�

�
�

�
�

�

Ãd

�

H
Ad

- SO(m)

λ

?

Assume that it contains the trivial representation. Any such spinor
induces a section of the spinor bundle S = G ×κ( eAd ) ∆n if viewed as a
constant map G→ ∆n.

These are exactly the parallel spinors of the canonical connection!
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Another application: Construction of Lie algebras

Kostant’s work was based on the following extension idea for Lie algebras.
We formulate his work geometrically:

Let Mn be an Ambrose-Singer manifold, i. e.. a Riemannian manifold
with a connection ∇ with antisymmetric torsion T s. t.

∇T = 0 , ∇R = 0 .

Assumption: Universal cover of GT is compact.

⇒ Mn is regular and locally isometric to a homogeneous space G/GT .
The Lie algebra of G is g := gT ⊕ Rn with the commutator

[Cleyton/Swann, 2002]

[
A+X,B + Y

]
:=

(
[A,B] −R(X,Y )

)
+

(
AY −BX − T (X,Y )

)
.

Bianchi I ⇒ R is unique:
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Lemma. The curvature of ∇ is proportional to the orthogonal projection
onto gT ,

R : Λ2(Rn) = so(n) −→ gT , R(X,Y ) = 4prgT
(X ∧ Y ).

Choose an ONF of 2-forms ωi for gT .

Lemma. The commutator defines an extension of gT iff

T 2 + 4
∑

ω2
i

is a scalar in the Clifford algebra of Rn.

[a priori: parts of degree 4 + scalar]

– this identity can be understood as a Kostant-Parthasarathy type formula
for the symbol of the operator /D1/3.
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Construction of naturally reductive spaces

General construction:
Consider M = G/H with restriction of the Killing form to m:

β(X,Y ) := −tr(XtY ), 〈X,Y 〉 = β(X,Y ) for X,Y ∈ m.

Suppose that m is an orthogonal sum m = m1 ⊕ m2 such that

[h,m2] = 0, [m2,m2] ⊂ m2 .

Then the new metric, depending on a parameter s > 0

〈X,Y 〉s =





0 for X ∈ m1, Y ∈ m2

〈X,Y 〉 for X,Y ∈ m1

s · 〈X,Y 〉 for X,Y ∈ m2

is naturally reductive for s 6= 1 w. r. t. the realisation as

M = (G×M2)/(H ×M2) =: G/H .

[Chavel, 1969; Ziller / D’Atri, 1979]
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Jensen metrics

M5 = G/H with G = SO(4), H = SO(2) and embed H in G as[
1 0
0 SO(2)

]
. Then so(4) = so(2) + m with (a ∈ R, X ∈ M2,2(R))

m =








0 −a
a 0

−Xt

X
0 0
0 0


 =: (a,X)




.

Set m1 := {(0, X)} and m2 := {(a, 0)} ⇒ new metric

〈(a,X), (b, Y )〉s =
1

2
β(X,Y ) +

s

2
a · b .

Properties: • Two ∇0-parallel spinors for s = 1, none for other values

of t and s;

• Ric0 = (2 − s)diag(0, 1, 1, 1, 1), Ricci-flat only for s = 2 und t = 0.


