Srni 26th Winter School Geometry and Physics

$$
* * * * * *
$$

Special geometries and superstring theory

II: Physical motivation \& first applications

Ilka Agricola \& Thomas Friedrich (Humboldt University Berlin)

Classical general relativity and electromagnetism

Modern unified models

string particle
moves along a surface

physical quantities: associate with every tangent plane a number $=$ "higher order potential" \tilde{A}
higher order field $\underset{\sim}{\mu}$ how the potential \tilde{A} changes \Leftrightarrow geometric concept
strength $F=d \tilde{A} \Leftrightarrow \quad$ in all directions $\Leftrightarrow \quad$ of torsion

Mathematical scheme for unified theories

No more described as Yang-Mills theories (electrodynamics, standard model of elementary particles), but rather:

- Particles are "oscillatory states" on some high dimensional configuration space

$$
Y^{10,11}=V^{3-5} \otimes M^{5-8}
$$

V : configuration space visible to the outside, i.e. Minkowski space or some solution from General Relativity (adS is popular here).

M: configuration space of internal symmetries $=$ Riemannian manifold with special geometric structure, quantized internal symmetries are described by spinor fields.

Example: Supersymmetry transformation, transform bosons into fermions and vice versa by tensoring with a (special) spin $1 / 2$ field.
[> 1980 Nieuwenhuizen, Strominger, Witten, Seiberg. . .]

Common sector of Type II string equations

- A. Strominger, 1986: $\left(M^{n}, g\right)$ Riemannian Spin mfd with a 3 -Form T, a spinor field Ψ, and a function Φ.

```
(field strength) (supersymmetry) (dilaton)
```

- Bosonic eq.: $R_{i j}^{g}-\frac{1}{4} T_{i m n} T_{j m n}+2 \nabla_{i}^{g} \partial_{j} \Phi=0, \delta\left(e^{-2 \Phi} T\right)=0$.
- Fermionic eq.: $\left.\left(\nabla_{X}^{g}+\frac{1}{4} X\right\lrcorner T\right) \cdot \Psi=0, \quad T \cdot \Psi=2 d \Phi \cdot \Psi$.

As in general relativity, it is impossible to fix the manifold and look for solutions on it. Rather, finding the manifold is part of the solution process!
\rightarrow Geometric meaning of the 3-form T ?

Idea: The first fermionic eq. means that the spinor field Ψ is parallel w.r.t. a new connection,

$$
\nabla_{X} Y:=\nabla_{X}^{g} Y+\frac{1}{2} T(X, Y,-)
$$

The 3 -form T is then the torsion of the new metric connection ∇ and the eqs. are equivalent to:

- Bosonic eq.: $\operatorname{Ric}^{\nabla}+\frac{1}{2} \delta(T)+2 \nabla^{g} d \Phi=0, \quad \delta\left(e^{-2 \Phi} T\right)=0$.
- Fermionic eq.: $\nabla \Psi=0, \quad T \cdot \Psi=2 d \Phi \cdot \Psi$.

Remarks:

- Bosonic eq. generalizes Einstein's eq. of general relativity
- Calabi-Yau and Joyce mfds are exact solution with $T=0$ and $\Phi=$ const \rightarrow Bergers' list + algebraic geometry
- For $T \neq 0$, the relation between curvature and parallel spinor is subtler, and there exists no holonomy theory for them

Intermezzo: Lifting metric connections into the spinor bundle
At first sight, the formulas on vectors and spinors look quite different!
Write $\nabla_{X} Y:=\nabla_{X}^{g} Y+A_{X} Y$,
where A_{X} defines an endomorphism $T M \rightarrow T M$ for every X.
∇ metric $\Leftrightarrow g\left(A_{X} Y, Z\right)+g\left(Y, A_{X} Z\right)=0$

$$
\Leftrightarrow A_{X} \text { preserves } g \Leftrightarrow A_{X} \in \mathfrak{s o}(n) \cong \Lambda^{2}\left(\mathbb{R}^{n}\right)
$$

So $A_{X}=\sum_{i<j} \alpha_{i j} e_{i} \wedge e_{j}$.
Since the lift into $\mathfrak{s p i n}(n)$ of $e_{i} \wedge e_{j}$ is $E_{i} \cdot E_{j} / 2, A_{X}$ defines an element in $\mathfrak{s p i n}(n)$ ($=$ an endomorphism on the spinor bundle).

Observe: If A_{X} is written as a 2 -form,

- its action on a vector Y as an element of $\mathfrak{s o}(n)$ is just $\left.A_{X} Y=Y\right\lrcorner A_{X}$, so

$$
\left.\nabla_{X} Y=\nabla_{X}^{g} Y+Y\right\lrcorner A_{X}
$$

- the action of A_{X} on a spinor ψ as an element of $\mathfrak{s p i n}(n)$ is just $A_{X} \psi=(1 / 2) A_{X} \cdot \psi$ (Clifford product of a k-form by a spinor), hence the lift of the connection ∇ to the spinor bundle $S M$ is

$$
\nabla_{X} \psi=\nabla_{X}^{g} \psi+\frac{1}{2} A_{X} \cdot \psi
$$

- Connection with vectorial torsion: $A_{X}=2 X \wedge V, V$ a vector field
- Connection with skew symmetric torsion: $\left.A_{X}=X\right\lrcorner T, T \in \Lambda^{3}(M)$.

Overview of general results

Non existence theorems

Thm. A full solution of Strominger's model with $\Phi=$ const satisfies necessarily $T=0$ or $\Psi=0$.
[M compact: IA, 2002; general case: IA, Friedrich, Nagy, Puhle, 2004]
\Rightarrow physical meaning ?

- Investigation of the homogeneous case, in particular of the relation with Kostant's cubic Dirac operator and a generalized Casimir operator
- Investigation of the holonomy theory of metric connections with torsion, Weitzenböck formulas for their Dirac operators

Thm ('03). On a Calabi-Yau or Joyce mnfd, a metric connection with torsion T s.t. $d T=0$ can have parallel spinors only for $T=0$.
\Rightarrow "rigidity" of CYJ's under deformation of the connection

- Non compact solvmanifolds for which the rigidity theorem does not hold

Existence results

Thm ('03). On every 7-dimensional 3-Sasaki mnfd, there exists a family of metric connections with torsion admitting parallel spinors.

- Construction of partial solutions with particular properties, in particular, with parallel spinors
- Investigation of the case $\nabla T=0$
- Solution of spinorial field eqs. with additional 4-flux-forms F,

$$
\left.\left.\left.\nabla_{X} \psi=\nabla_{X}^{g} \psi+\frac{1}{4}(X\lrcorner T\right) \cdot \psi+\frac{1}{144}(X\lrcorner F\right)-X \wedge F\right) \cdot \psi=0
$$

Observe: These connections exist only in the spinor bundle, not in the tangent bundle!

The characteristic connection of a geometric structure
Fix $G \subset \operatorname{SO}(n), \Lambda^{2}\left(\mathbb{R}^{n}\right) \cong \mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{m}, \mathcal{F}\left(M^{n}\right)$: frame bundle of (M^{n}, g).

Dfn. A geometric G-structure on M^{n} is a G-PFB \mathcal{R} which is subbundle of $\mathcal{F}\left(M^{n}\right): \mathcal{R} \subset \mathcal{F}\left(M^{n}\right)$.

Choose a G-adapted local ONF e_{1}, \ldots, e_{n} in \mathcal{R} and define connection 1-forms of ∇^{g} :

$$
\omega_{i j}(X):=g\left(\nabla_{X}^{g} e_{i}, e_{j}\right), \quad g\left(e_{i}, e_{j}\right)=\delta_{i j} \Rightarrow \omega_{i j}+\omega_{j i}=0
$$

Define a skew symmetric matrix Ω with values in $\Lambda^{1}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}^{n}$ by $\Omega(X):=\left(\omega_{i j}(X)\right) \in \mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{m}$ und set

$$
\Gamma:=\operatorname{pr}_{\mathfrak{m}}(\Omega)
$$

- Γ is a 1-Form on M^{n} with values in $\mathfrak{m}, \Gamma_{x} \in \mathbb{R}^{n} \otimes \mathfrak{m}\left(x \in M^{n}\right)$

```
["intrinsic torsion", Swann/Salamon]
```

Fact: $\Gamma=0 \Leftrightarrow \nabla^{g}$ is G-invariant $\Leftrightarrow \operatorname{Hol}\left(\nabla^{g}\right) \subset G$
Via Γ, geometric G-structures $\mathcal{R} \subset \mathcal{F}\left(M^{n}\right)$ correspond to irreducible components of the G-representation $\mathbb{R}^{n} \otimes \mathfrak{m}$.

- For the rest of this talk, consider only connections with antisymmetric torsion.

Thm ('02). A geometric G-structure $\mathcal{R} \subset \mathcal{F}\left(M^{n}\right)$ admits a G-invariant metric connection with antisymmetric torsion iff Γ lies in the image of Θ,

$$
\left.\Theta: \Lambda^{3}\left(M^{n}\right) \rightarrow T^{*}\left(M^{n}\right) \otimes \mathfrak{m}, \quad \Theta(T):=\sum_{i=1}^{n} e_{i} \otimes \operatorname{pr}_{\mathfrak{m}}\left(e_{i}\right\lrcorner T\right)
$$

If such a connection exists, it is called the characteristic connection ∇ and it is unique; its torsion is essentially Γ and $\operatorname{Hol}(\nabla) \subset G$.

If existent, we can thus replace the (unadapted) LC connection by some new unique G-invariant connection!

Examples.

- The canonical connection of a naturally reductive space (see below);
- The Bismut connection of an almost hermitian mnfd;
- The Gray connection of a nearly Kähler mnfd. . .

Example: G_{2} structures in dimension 7

Fix $G_{2} \subset \mathrm{SO}(7), \mathfrak{s o}(7)=\mathfrak{g}_{2} \oplus \mathfrak{m}^{7} \cong \mathfrak{g}_{2} \oplus \mathbb{R}^{7}$. Intrinsic torsion Γ lies in $\mathbb{R}^{7} \otimes \mathfrak{m}^{7} \cong \mathbb{R}^{1} \oplus \mathfrak{g}_{2} \oplus \mathrm{~S}_{0}\left(\mathbb{R}^{7}\right) \oplus \mathbb{R}^{7}=: \bigoplus_{i=1}^{4} W_{i}$
\Rightarrow four classes of geometric G_{2} structures $\quad[F e r n a n d e z-G r a y, ~ ' 82] ~$

- Decomposition of 3-forms: $\Lambda^{3}\left(\mathbb{R}^{7}\right)=\mathbb{R}^{1} \oplus \mathrm{~S}_{0}\left(\mathbb{R}^{7}\right) \oplus \mathbb{R}^{7}$.
G_{2} is the isotropy group of a generic element of $\omega \in \Lambda^{3}\left(\mathbb{R}^{7}\right)$:

$$
G_{2}=\{A \in \mathrm{SO}(7) \mid A \cdot \omega=\omega\}
$$

Thm. A 7-dimensional Riemannian mfd $\left(M^{7}, g, \omega\right)$ with a fixed G_{2} structure $\omega \in \Lambda^{3}\left(M^{7}\right)$ has a G_{2}-invariant characteristic connection ∇
\Leftrightarrow the \mathfrak{g}_{2} component of Γ vanishes
\Leftrightarrow There exists a VF β with $\delta \omega=-\beta\lrcorner \omega$
The torsion of ∇ is then $T=-* d \omega-\frac{1}{6}(d \omega, * \omega) \omega+*(\beta \wedge \omega)$, and ∇ admits (at least) one parallel spinor.

Examples: Explicit constructions of G_{2} structures:

[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki. . .]
M^{7} : 3-Sasaki mnfd, corresponds to $\mathrm{SU}(2) \subset G_{2} \subset \mathrm{SO}(7)$.

- Has 3 compatible contact structures $\eta_{i} \in T^{*} M^{7}$ and 3 Killing spinors $\psi_{i} \Rightarrow$ Ansatz:
$T=\sum_{i, j=1}^{3} \alpha_{i j} \eta_{i} \wedge \eta_{j}+\gamma \eta_{1} \wedge \eta_{2} \wedge \eta_{3}$,
$\psi=\sum_{i=1}^{3} \mu_{i} \psi_{i}$.

Thm ('03). Every 7 -dimensional 3 -Sasaki mnfd admits a \mathbb{P}^{2}-family of metric connections with antisymmetric torsion and parallel spinors. Its holonomy is G_{2}.
\Rightarrow First constructive global existence thm for supersymmetries!

Example: $\mathrm{U}(n)$ structures in dimension $2 n$

Thm. An almost hermitian manifold $\left(M^{2 n}, g, J\right)$ admits a $\mathrm{U}(n)$-invariant characteristic connection if and only if the Nijenhuis tensor

$$
N(X, Y, Z):=g(N(X, Y), Z)
$$

is skew-symmetric. Its torsion is then

$$
T(X, Y, Z)=-d \Omega(J X, J Y, J Z)+N(X, Y, Z)
$$

In particular for $\underline{n=3}$:
$\bullet \mathfrak{s o}(6)=\mathfrak{u}(3) \oplus \mathfrak{m}^{6},\left.\Gamma \in \mathbb{R}^{6} \otimes \mathfrak{m}^{6}\right|_{\mathrm{U}(3)} \cong W_{1}^{2} \oplus W_{2}^{16} \oplus W_{3}^{12} \oplus W_{4}^{6}$

- N is skew-symmetric $\Leftrightarrow \Gamma$ has no W_{2}-part
- $\Gamma \in W_{1}$: nearly Kähler manifolds $\left(S^{6}, S^{3} \times S^{3}, F(1,2), \mathbb{C P}^{3}\right)$
- $\Gamma \in W_{3} \oplus W_{4}$: hermitian manifolds $(N=0)$

Example: Naturally reductive spaces

- Homogeneous non symmetric spaces provide a rich source for manifolds with characteristic connection.

Consider $M=G / H$ with isotropy repr. Ad $: H \rightarrow \mathrm{SO}(\mathfrak{m})$.
Lie algebra: $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m},\langle$,$\rangle a p.d. scalar product on \mathfrak{m}$.
The PFB $G \rightarrow G / H$ induces a distinguished connection on G / H, the so-called canonical connection ∇^{1}. Its torsion is

$$
T^{1}(X, Y, Z)=-\left\langle[X, Y]_{\mathfrak{m}}, Z\right\rangle
$$

Dfn. The metric \langle,$\rangle is called naturally reductive if T^{1}$ defines a 3 -form,

$$
\left\langle[X, Y]_{\mathfrak{m}}, Z\right\rangle+\left\langle Y,[X, Z]_{\mathfrak{m}}\right\rangle=0 \text { for all } X, Y, Z \in \mathfrak{m}
$$

They generalize symmetric spaces: $\nabla^{1} T^{1}=0, \nabla^{1} \mathcal{R}^{1}=0$.

A oneparametric family of connections

Dfn. $\quad \nabla_{X}^{t} Y:=\nabla_{X}^{g} Y-\frac{t}{2}[X, Y]_{\mathfrak{m}}$ for $X, Y \in \mathfrak{m}$.
Torsion: $T^{t}(X, Y)=-t[X, Y]_{\mathfrak{m}}$.
Special t values: $\bullet \underline{t=0}$: LC connection

- $\underline{t=1}$: canonical connection
- $t=1 / 3$: "Kostant-Slebarski connection"
M spin manifold \Rightarrow lift ∇^{t} into Spinor bundle, associated Dirac operator:

$$
\not D^{t} \psi=\sum_{i=1}^{n} Z_{i}(\psi)+\frac{1-t}{2} H \cdot \psi \quad\left(Z_{1}, \ldots, Z_{n}: \text { ONB of } \mathfrak{m}\right)
$$

H : the element in the Clifford algebra induced by torsion:

$$
H:=\frac{3}{2} \sum_{i<j<k}\left\langle\left[Z_{i}, Z_{j}\right]_{\mathfrak{m}}, Z_{k}\right\rangle Z_{i} \cdot Z_{j} \cdot Z_{k}
$$

The symmetric case

Want: Weitzenböck formula for $\left(D^{t}\right)^{2}$.
For M symmetric $([\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h})$, one would have:
Thm (Parthasarathy, 1972). $\quad(D)^{2}=\Omega_{\mathfrak{g}}+\frac{1}{8}$ Scal,
with $\Omega_{\mathfrak{g}}$: Casimir operator of \mathfrak{g}.

Consequences:

- Computation of spectrum of $D D$
- Realisation of discrete series representations in the (twisted) kernel of $\not D$ for G non compact
- Character formulas (interpret character as an index)

In the homogeneous non symmetric case, this formula does no longer hold!

The general Kostant-Parthasarathy formula

Thm [Kostant, '99 / IA, '01]. For $n \geq 5$ and arbitrary t :

$$
\begin{aligned}
& \left(\not D^{t}\right)^{2} \psi=\Omega_{G}(\psi)+\frac{1}{4}(3 t-1) \sum_{i, j, k}\left\langle\left[Z_{i}, Z_{j}\right]_{\mathfrak{m}}, Z_{k}\right\rangle Z_{i} \cdot Z_{j} \cdot Z_{k}(\psi) \\
& -\frac{1}{2} \sum_{i<j<k<l}\left\langle Z_{i}, \mathcal{J}_{\mathfrak{h}}\left(Z_{j}, Z_{k}, Z_{l}\right)+\frac{9(1-t)^{2}}{4} \mathcal{J}_{\mathfrak{m}}\left(Z_{j}, Z_{k}, Z_{l}\right)\right\rangle Z_{i} \cdot Z_{j} \cdot Z_{k} \cdot Z_{l} \cdot \psi \\
& +\frac{1}{8}\left(\sum_{i, j}\left\|\left[Z_{i}, Z_{j}\right]\right\|_{\mathfrak{h}}+\frac{3(1-t)^{2}}{4} \sum_{i, j}\left\|\left[Z_{i}, Z_{j}\right]\right\|_{\mathfrak{m}}\right) \psi
\end{aligned}
$$

Notation:

- $\mathcal{J}_{\mathfrak{m}}(X, Y, Z):=\left[X,[Y, Z]_{\mathfrak{m}}\right]_{\mathfrak{m}}+$ cyclic
- $\mathcal{J}_{\mathfrak{h}}(X, Y, Z):=\left[X,[Y, Z]_{\mathfrak{h}}\right]+$ cyclic
- Q : the unique $\operatorname{Ad} G$-invariant continuation of \langle,$\rangle to \mathfrak{g}$. It satisfies:

$$
\mathfrak{h} \perp \mathfrak{m},\left.\quad Q\right|_{\mathfrak{m}}=\langle,\rangle,\left.Q\right|_{\mathfrak{h}} \text { not degenerate }
$$

The Kostant-Parthasarathy formula for $t=1 / 3$

Thm [Kostant, '99 / IA, '01]. For $n \geq 5$ and $t=1 / 3$:

$$
\left(\not D^{1 / 3}\right)^{2} \psi=\Omega_{G}(\psi)+\frac{1}{8}(*) \psi
$$

where $(*)$ denotes the scalar

$$
(*)=\sum_{i, j}\left\|\left[Z_{i}, Z_{j}\right]\right\|_{\mathfrak{h}}+\frac{1}{3} \sum_{i, j}\left\|\left[Z_{i}, Z_{j}\right]\right\|_{\mathfrak{m}} .
$$

It can be rewritten as

$$
(*)=Q\left(\varrho_{G}, \varrho_{G}\right)-Q_{\mathfrak{h}}\left(\varrho_{H}, \varrho_{H}\right)
$$

and is thus always strictly positive.

First applications

Corollary ('01). If ψ satisfies $\nabla^{t} \psi=0$ and $T^{t} \cdot \psi=0$ on $M=G / H$, then $t=0$ and ∇^{t} is the LC connection.
. . . purely mathematical applications:
Corollary ('01). On $M=G / H$, there exists a G-invariant differential operator of first order which has no symmetric counterpart:

$$
\mathcal{D}(\psi):=\sum_{i, j, k}\left\langle\left[Z_{i}, Z_{j}\right]_{\mathfrak{m}}, Z_{k}\right\rangle Z_{i} \cdot Z_{j} \cdot Z_{k}(\psi)
$$

Corollary ('01). If the Casimir operator is non negative, the first eigenvalue $\lambda^{1 / 3}$ satisfies $\left(\lambda^{1 / 3}\right)^{2} \geq(*) / 8$. In particular, $\not D^{1 / 3}$ has then no kernel.
N.B. Character formulas generalize, too \rightarrow splitting of H-representations into families with similar properties

- Realisation of infinite dimensional representations for G non compact inside kernels of twisted Dirac operators [> 2003, Zierau-Mehdi ...]
- Computation of the spectrum of $\left(\not D^{1 / 3}\right)^{2}$
N.B. Consider lift of isotropy representation, $\widetilde{A} d: H \rightarrow \operatorname{Spin}(\mathfrak{m})$:

Assume that it contains the trivial representation. Any such spinor induces a section of the spinor bundle $S=G \times_{\kappa(\widetilde{A d})} \Delta_{n}$ if viewed as a constant map $G \rightarrow \Delta_{n}$.

These are exactly the parallel spinors of the canonical connection!

Another application: Construction of Lie algebras

Kostant's work was based on the following extension idea for Lie algebras. We formulate his work geometrically:

Let M^{n} be an Ambrose-Singer manifold, i. e.. a Riemannian manifold with a connection ∇ with antisymmetric torsion T s.t.

$$
\nabla T=0, \quad \nabla \mathcal{R}=0
$$

Assumption: Universal cover of G_{T} is compact.
$\Rightarrow M^{n}$ is regular and locally isometric to a homogeneous space G / G_{T}. The Lie algebra of G is $\mathfrak{g}:=\mathfrak{g}_{T} \oplus \mathbb{R}^{n}$ with the commutator
[Cleyton/Swann, 2002]

$$
[A+X, B+Y]:=([A, B]-\mathcal{R}(X, Y))+(A Y-B X-T(X, Y))
$$

Bianchil $\Rightarrow \mathcal{R}$ is unique:

Lemma. The curvature of ∇ is proportional to the orthogonal projection onto \mathfrak{g}_{T},

$$
\mathcal{R}: \Lambda^{2}\left(\mathbb{R}^{n}\right)=\mathfrak{s o}(n) \longrightarrow \mathfrak{g}_{T}, \quad \mathcal{R}(X, Y)=4 \operatorname{pr}_{\mathfrak{g}_{T}}(X \wedge Y)
$$

Choose an ONF of 2-forms ω_{i} for \mathfrak{g}_{T}.
Lemma. The commutator defines an extension of \mathfrak{g}_{T} iff

$$
T^{2}+4 \sum \omega_{i}^{2}
$$

is a scalar in the Clifford algebra of \mathbb{R}^{n}.
[a priori: parts of degree $4+$ scalar]

- this identity can be understood as a Kostant-Parthasarathy type formula for the symbol of the operator $D^{1 / 3}$.

Construction of naturally reductive spaces

General construction:

Consider $M=G / H$ with restriction of the Killing form to \mathfrak{m} :

$$
\beta(X, Y):=-\operatorname{tr}\left(X^{t} Y\right),\langle X, Y\rangle=\beta(X, Y) \text { for } X, Y \in \mathfrak{m} .
$$

Suppose that \mathfrak{m} is an orthogonal sum $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ such that

$$
\left[\mathfrak{h}, \mathfrak{m}_{2}\right]=0,\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right] \subset \mathfrak{m}_{2} .
$$

Then the new metric, depending on a parameter $s>0$

$$
\langle X, Y\rangle_{s}= \begin{cases}0 & \text { for } X \in \mathfrak{m}_{1}, Y \in \mathfrak{m}_{2} \\ \langle X, Y\rangle & \text { for } X, Y \in \mathfrak{m}_{1} \\ s \cdot\langle X, Y\rangle & \text { for } X, Y \in \mathfrak{m}_{2}\end{cases}
$$

is naturally reductive for $s \neq 1 \mathrm{w} . \mathrm{r} . \mathrm{t}$. the realisation as

$$
M=\left(G \times M_{2}\right) /\left(H \times M_{2}\right)=: \bar{G} / \bar{H}
$$

Jensen metrics

$M^{5}=G / H$ with $G=S O(4), H=\mathrm{SO}(2)$ and embed H in G as $\left[\begin{array}{c|c}1 & 0 \\ \hline 0 & \mathrm{SO}(2)\end{array}\right]$. Then $\mathfrak{s o}(4)=\mathfrak{s o}(2)+\mathfrak{m}$ with $\left(a \in \mathbb{R}, \quad X \in \mathcal{M}_{2,2}(\mathbb{R})\right)$

$$
\mathfrak{m}=\left\{\left[\begin{array}{rr|r}
0 & -a & -X^{t} \\
a & 0 & -X^{2} \\
\hline X & 0 & 0 \\
\hline X & 0 & 0
\end{array}\right]=:(a, X)\right\}
$$

Set $\mathfrak{m}_{1}:=\{(0, X)\}$ and $\mathfrak{m}_{2}:=\{(a, 0)\} \Rightarrow$ new metric

$$
\langle(a, X),(b, Y)\rangle_{s}=\frac{1}{2} \beta(X, Y)+\frac{s}{2} a \cdot b .
$$

Properties: - Two ∇^{0}-parallel spinors for $s=1$, none for other values of t and s;

- $\operatorname{Ric}^{0}=(2-s) \operatorname{diag}(0,1,1,1,1)$, Ricci-flat only for $s=2$ und $t=0$.

