Srni 26th Winter School Geometry and Physics

* * * * * *

Special geometries and superstring theory

II: Physical motivation & first applications

Ilka Agricola & Thomas Friedrich (Humboldt University Berlin)

Classical general relativity and electromagnetism

Modern unified models

torsion measures deviation from vacuum ("integrable case") !

Mathematical scheme for unified theories

No more described as Yang-Mills theories (electrodynamics, standard model of elementary particles), but rather:

• Particles are "oscillatory states" on some high dimensional configuration space

$$Y^{10,11} = V^{3-5} \otimes M^{5-8}$$

V: configuration space visible to the outside, i.e. Minkowski space or some solution from General Relativity (adS is popular here).

M: configuration space of *internal symmetries* = Riemannian manifold with special geometric structure, quantized internal symmetries are described by spinor fields.

Example: Supersymmetry transformation, transform bosons into fermions and vice versa by tensoring with a (special) spin 1/2 field.

[> 1980 Nieuwenhuizen, Strominger, Witten, Seiberg. . .] 5

Common sector of Type II string equations

A. Strominger, 1986: (Mⁿ, g) Riemannian Spin mfd with a 3-Form T, a spinor field Ψ, and a function Φ. (field strength) (supersymmetry) (dilaton)
Bosonic eq.: R^g_{ij} - ¹/₄T_{imn}T_{jmn} + 2∇^g_i∂_jΦ = 0, δ(e^{-2Φ}T) = 0.
Fermionic eq.: (∇^g_X + ¹/₄X ⊥ T) · Ψ = 0, T · Ψ = 2 dΦ · Ψ.

As in general relativity, it is impossible to fix the manifold and look for solutions on it. Rather, finding the manifold is part of the solution process!

 \rightarrow Geometric meaning of the 3-form T ?

<u>Idea</u>: The first fermionic eq. means that the spinor field Ψ is parallel w.r.t. a new connection,

$$\nabla_X Y := \nabla_X^g Y + \frac{1}{2}T(X, Y, -).$$

The 3-form T is then the torsion of the new metric connection ∇ and the eqs. are equivalent to:

- Bosonic eq.: $\operatorname{Ric}^{\nabla} + \frac{1}{2}\delta(T) + 2\nabla^{g}d\Phi = 0, \quad \delta(e^{-2\Phi}T) = 0.$
- Fermionic eq.: $\nabla \Psi = 0$, $T \cdot \Psi = 2 d\Phi \cdot \Psi$.

Remarks:

- Bosonic eq. generalizes Einstein's eq. of general relativity
- Calabi-Yau and Joyce mfds are exact solution with T=0 and $\Phi=$ const \rightarrow Bergers' list + algebraic geometry

• For $T \neq 0$, the relation between curvature and parallel spinor is subtler, and there exists no holonomy theory for them

Intermezzo: Lifting metric connections into the spinor bundle

At first sight, the formulas on vectors and spinors look quite different! Write $\nabla_X Y := \nabla_X^g Y + A_X Y$,

where A_X defines an endomorphism $TM \to TM$ for every X.

 ∇ metric $\Leftrightarrow g(A_XY, Z) + g(Y, A_XZ) = 0$

$$\Leftrightarrow A_X \text{ preserves } g \Leftrightarrow A_X \in \mathfrak{so}(n) \cong \Lambda^2(\mathbb{R}^n)$$

So
$$A_X = \sum_{i < j} \alpha_{ij} e_i \wedge e_j$$
.

Since the lift into $\mathfrak{spin}(n)$ of $e_i \wedge e_j$ is $E_i \cdot E_j/2$, A_X defines an element in $\mathfrak{spin}(n)$ (= an endomorphism on the spinor bundle).

Observe: If A_X is written as a 2-form,

• its action on a vector Y as an element of $\mathfrak{so}(n)$ is just $A_XY=Y\,\lrcorner\, A_X$, so

$$\nabla_X Y = \nabla_X^g Y + Y \, \lrcorner \, A_X,$$

• the action of A_X on a spinor ψ as an element of $\mathfrak{spin}(n)$ is just $A_X\psi = (1/2) A_X \cdot \psi$ (Clifford product of a k-form by a spinor), hence the lift of the connection ∇ to the spinor bundle SM is

$$\nabla_X \psi = \nabla_X^g \psi + \frac{1}{2} A_X \cdot \psi.$$

- Connection with vectorial torsion: $A_X = 2 X \wedge V$, V a vector field
- Connection with skew symmetric torsion: $A_X = X \sqcup T$, $T \in \Lambda^3(M)$.

Overview of general results

Non existence theorems

Thm. A full solution of Strominger's model with $\Phi = \text{const satisfies}$ necessarily T = 0 or $\Psi = 0$.

[*M* compact: IA, 2002; general case: IA, Friedrich, Nagy, Puhle, 2004]

 \Rightarrow physical meaning ?

• Investigation of the homogeneous case, in particular of the relation with *Kostant's cubic Dirac operator* and a generalized *Casimir operator*

• Investigation of the holonomy theory of metric connections with torsion, Weitzenböck formulas for their Dirac operators

Thm ('03). On a Calabi-Yau or Joyce mnfd, a metric connection with torsion T s.t. dT = 0 can have parallel spinors only for T = 0.

 \Rightarrow "rigidity" of CYJ's under deformation of the connection

Non compact solvmanifolds for which the rigidity theorem does *not* hold

Existence results

Thm ('03). On every 7-dimensional 3-Sasaki mnfd, there exists a family of metric connections with torsion admitting parallel spinors.

- Construction of partial solutions with particular properties, in particular, with parallel spinors
- Investigation of the case $\nabla T = 0$
- Solution of spinorial field eqs. with additional 4-flux-forms F,

$$\nabla_X \psi = \nabla_X^g \psi + \frac{1}{4} (X \sqcup T) \cdot \psi + \frac{1}{144} (X \sqcup F) - X \wedge F) \cdot \psi = 0.$$

Observe: These connections exist only in the spinor bundle, not in the tangent bundle!

The characteristic connection of a geometric structure

Fix $G \subset SO(n)$, $\Lambda^2(\mathbb{R}^n) \cong \mathfrak{so}(n) = \mathfrak{g} \oplus \mathfrak{m}$, $\mathcal{F}(M^n)$: frame bundle of (M^n, g) .

Dfn. A geometric *G*-structure on M^n is a *G*-PFB \mathcal{R} which is subbundle of $\mathcal{F}(M^n)$: $\mathcal{R} \subset \mathcal{F}(M^n)$.

Choose a *G*-adapted local ONF e_1, \ldots, e_n in \mathcal{R} and define *connection* 1-forms of ∇^g :

$$\omega_{ij}(X) := g(\nabla_X^g e_i, e_j), \quad g(e_i, e_j) = \delta_{ij} \Rightarrow \omega_{ij} + \omega_{ji} = 0.$$

Define a skew symmetric matrix Ω with values in $\Lambda^1(\mathbb{R}^n) \cong \mathbb{R}^n$ by $\Omega(X) := (\omega_{ij}(X)) \in \mathfrak{so}(n) = \mathfrak{g} \oplus \mathfrak{m}$ und set

 $\Gamma := \operatorname{pr}_{\mathfrak{m}}(\Omega).$

• Γ is a 1-Form on M^n with values in \mathfrak{m} , $\Gamma_x \in \mathbb{R}^n \otimes \mathfrak{m}$ $(x \in M^n)$

["intrinsic torsion", Swann/Salamon]

Fact: $\Gamma = 0 \Leftrightarrow \nabla^g$ is *G*-invariant $\Leftrightarrow \operatorname{Hol}(\nabla^g) \subset G$

Via Γ , geometric *G*-structures $\mathcal{R} \subset \mathcal{F}(M^n)$ correspond to irreducible components of the *G*-representation $\mathbb{R}^n \otimes \mathfrak{m}$.

• For the rest of this talk, consider only connections with antisymmetric torsion.

Thm ('02). A geometric G-structure $\mathcal{R} \subset \mathcal{F}(M^n)$ admits a G-invariant metric connection with antisymmetric torsion iff Γ lies in the image of Θ ,

$$\Theta: \Lambda^3(M^n) \to T^*(M^n) \otimes \mathfrak{m}, \quad \Theta(T) := \sum_{i=1}^n e_i \otimes \operatorname{pr}_{\mathfrak{m}}(e_i \, \lrcorner \, T).$$

If such a connection exists, it is called the *characteristic connection* ∇ and it is unique; its torsion is essentially Γ and $\operatorname{Hol}(\nabla) \subset G$.

If existent, we can thus replace the (unadapted) LC connection by some new unique G-invariant connection!

Examples.

- The *canonical connection* of a naturally reductive space (see below);
- The *Bismut connection* of an almost hermitian mnfd;
- The Gray connection of a nearly Kähler mnfd. . .

Example: G_2 structures in dimension 7

Fix $G_2 \subset SO(7)$, $\mathfrak{so}(7) = \mathfrak{g}_2 \oplus \mathfrak{m}^7 \cong \mathfrak{g}_2 \oplus \mathbb{R}^7$. Intrinsic torsion Γ lies in $\mathbb{R}^7 \otimes \mathfrak{m}^7 \cong \mathbb{R}^1 \oplus \mathfrak{g}_2 \oplus S_0(\mathbb{R}^7) \oplus \mathbb{R}^7 =: \bigoplus_{i=1}^4 W_i$ \Rightarrow four classes of geometric G_2 structures [Fernandez-Gray, '82] • Decomposition of 3-forms: $\Lambda^3(\mathbb{R}^7) = \mathbb{R}^1 \oplus S_0(\mathbb{R}^7) \oplus \mathbb{R}^7$.

 G_2 is the isotropy group of a generic element of $\omega \in \Lambda^3(\mathbb{R}^7)$:

$$G_2 = \{A \in SO(7) \mid A \cdot \omega = \omega\}.$$

Thm. A 7-dimensional Riemannian mfd (M^7, g, ω) with a fixed G_2 structure $\omega \in \Lambda^3(M^7)$ has a G_2 -invariant characteristic connection ∇

 $\Leftrightarrow \text{ the } \mathfrak{g}_2 \text{ component of } \Gamma \text{ vanishes}$ $\Leftrightarrow \text{ There exists a VF } \beta \text{ with } \delta \omega = -\beta \, \lrcorner \, \omega$

The torsion of ∇ is then $T = -* d\omega - \frac{1}{6}(d\omega, *\omega)\omega + *(\beta \wedge \omega)$, and ∇ admits (at least) one parallel spinor.

Examples: Explicit constructions of G_2 structures:

[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki. . .]

$$\begin{split} M^{7}: \ 3\text{-Sasaki mnfd, corresponds} \\ \text{to } \mathrm{SU}(2) \subset G_{2} \subset \mathrm{SO}(7). \\ \bullet \text{ Has } 3 \text{ compatible contact} \\ \text{structures } \eta_{i} \in T^{*}M^{7} \text{ and } 3 \\ \text{Killing spinors } \psi_{i} \Rightarrow \text{Ansatz:} \\ T &= \sum_{i,j=1}^{3} \alpha_{ij}\eta_{i} \wedge \eta_{j} + \gamma \eta_{1} \wedge \eta_{2} \wedge \eta_{3}, \\ \psi &= \sum_{i=1}^{3} \mu_{i}\psi_{i}. \end{split}$$

Thm ('03). Every 7-dimensional 3-Sasaki mnfd admits a \mathbb{P}^2 -family of metric connections with antisymmetric torsion and parallel spinors. Its holonomy is G_2 .

 \Rightarrow First <u>constructive</u> global existence thm for supersymmetries!

Example: U(n) structures in dimension 2n

Thm. An almost hermitian manifold (M^{2n}, g, J) admits a U(n)-invariant characteristic connection if and only if the Nijenhuis tensor

$$N(X, Y, Z) := g(N(X, Y), Z)$$

is skew-symmetric. Its torsion is then

$$T(X, Y, Z) = -d\Omega(JX, JY, JZ) + N(X, Y, Z).$$

In particular for $\underline{n=3}$: [Gray-Hervella]

- $\mathfrak{so}(6) = \mathfrak{u}(3) \oplus \mathfrak{m}^6$, $\Gamma \in \mathbb{R}^6 \otimes \mathfrak{m}^6 \big|_{\mathrm{U}(3)} \cong W_1^2 \oplus W_2^{16} \oplus W_3^{12} \oplus W_4^6$
- N is skew-symmetric $\Leftrightarrow \Gamma$ has no W_2 -part
- $\Gamma \in W_1$: nearly Kähler manifolds $(S^6, S^3 \times S^3, F(1, 2), \mathbb{CP}^3)$

•
$$\Gamma \in W_3 \oplus W_4$$
: hermitian manifolds $(N = 0)$

Example: Naturally reductive spaces

• Homogeneous *non symmetric* spaces provide a rich source for manifolds with characteristic connection.

Consider M = G/H with isotropy repr. Ad : $H \to SO(\mathfrak{m})$.

Lie algebra: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, \langle , \rangle a p.d. scalar product on \mathfrak{m} .

The PFB $G \to G/H$ induces a distinguished connection on G/H, the so-called *canonical connection* ∇^1 . Its torsion is

$$T^1(X,Y,Z) = -\langle [X,Y]_{\mathfrak{m}},Z \rangle.$$

Dfn. The metric \langle , \rangle is called *naturally reductive* if T^1 defines a 3-form,

 $\langle [X,Y]_{\mathfrak{m}},Z\rangle + \langle Y,[X,Z]_{\mathfrak{m}}\rangle = 0 \text{ for all } X,Y,Z \in \mathfrak{m}.$

They generalize symmetric spaces: $\nabla^1 T^1 = 0, \nabla^1 \mathcal{R}^1 = 0$.

A oneparametric family of connections

Dfn.
$$\nabla^t_X Y := \nabla^g_X Y - \frac{t}{2} [X, Y]_{\mathfrak{m}}$$
 for $X, Y \in \mathfrak{m}$.

Torsion: $T^t(X, Y) = -t[X, Y]_{\mathfrak{m}}$.

Special t values: • t = 0: LC connection

• t = 1: canonical connection

• t = 1/3: "Kostant-Slebarski connection"

M spin manifold \Rightarrow lift ∇^t into Spinor bundle, associated Dirac operator:

$$\mathbb{D}^t \psi = \sum_{i=1}^n Z_i(\psi) + \frac{1-t}{2} H \cdot \psi \qquad (Z_1, \dots, Z_n: \text{ ONB of } \mathfrak{m}),$$

H: the element in the Clifford algebra induced by torsion:

$$H := \frac{3}{2} \sum_{i < j < k} \langle [Z_i, Z_j]_{\mathfrak{m}}, Z_k \rangle Z_i \cdot Z_j \cdot Z_k$$

19

The symmetric case

<u>Want:</u> Weitzenböck formula for $(D^t)^2$.

For M symmetric ($[\mathfrak{m},\mathfrak{m}] \subset \mathfrak{h}$), one would have:

Thm (Parthasarathy, 1972). $(D)^2 = \Omega_g + \frac{1}{8} \text{Scal},$

with $\Omega_{\mathfrak{g}}$: Casimir operator of \mathfrak{g} .

Consequences:

• Computation of spectrum of $ot\!\!D$

• Realisation of discrete series representations in the (twisted) kernel of $D \hspace{-1.5mm}/$ for G non compact

• Character formulas (interpret character as an index)

In the homogeneous *non symmetric* case, this formula does no longer hold!

The general Kostant-Parthasarathy formula

Thm [Kostant, '99 / IA, '01]. For $n \ge 5$ and arbitrary t:

Notation:

- $\mathcal{J}_{\mathfrak{m}}(X, Y, Z) := [X, [Y, Z]_{\mathfrak{m}}]_{\mathfrak{m}} + \text{cyclic}$
- $\mathcal{J}_{\mathfrak{h}}(X, Y, Z) := [X, [Y, Z]_{\mathfrak{h}}] + \text{cyclic}$
- Q : the unique $\operatorname{Ad} G$ -invariant continuation of $\langle \ , \ \rangle$ to \mathfrak{g} . It satisfies:

$$\mathfrak{h}\perp\mathfrak{m}, ~ \left. Q \right|_{\mathfrak{m}} = \langle \, , \,
angle \, , \, \left. Q \right|_{\mathfrak{h}}$$
 not degenerate

The Kostant-Parthasarathy formula for t = 1/3

Thm [Kostant, '99 / IA, '01]. For $n \ge 5$ and t = 1/3:

$$(\not\!\!D^{1/3})^2 \psi = \Omega_G(\psi) + \frac{1}{8}(*) \psi,$$

where (*) denotes the scalar

$$(*) = \sum_{i,j} ||[Z_i, Z_j]||_{\mathfrak{h}} + \frac{1}{3} \sum_{i,j} ||[Z_i, Z_j]||_{\mathfrak{m}}.$$

It can be rewritten as

$$(*) = Q(\varrho_G, \varrho_G) - Q_{\mathfrak{h}}(\varrho_H, \varrho_H)$$

and is thus *always* strictly positive.

First applications

Corollary ('01). If ψ satisfies $\nabla^t \psi = 0$ and $T^t \cdot \psi = 0$ on M = G/H, then t = 0 and ∇^t is the LC connection.

... purely mathematical applications:

Corollary ('01). On M = G/H, there exists a *G*-invariant differential operator of first order which has no symmetric counterpart:

$$\mathcal{D}(\psi) := \sum_{i,j,k} \langle [Z_i, Z_j]_{\mathfrak{m}}, Z_k \rangle Z_i \cdot Z_j \cdot Z_k(\psi) \,.$$

Corollary ('01). If the Casimir operator is non negative, the first eigenvalue $\lambda^{1/3}$ satisfies $(\lambda^{1/3})^2 \ge (*)/8$. In particular, $\mathbb{D}^{1/3}$ has then no kernel.

N.B. Character formulas generalize, too \rightarrow splitting of *H*-representations into families with similar properties

[> 1999: Kostant, Sternberg, Ramond, Brink. . .] 23

• Realisation of infinite dimensional representations for G non compact inside kernels of twisted Dirac operators [> 2003, Zierau-Mehdi . . .]

• Computation of the spectrum of $(D \!\!\!\!/^{1/3})^2$

N.B. Consider lift of isotropy representation, $\widetilde{\mathrm{Ad}} : H \to \mathrm{Spin}(\mathfrak{m})$:

Assume that it contains the trivial representation. Any such spinor induces a section of the spinor bundle $S = G \times_{\kappa(\widetilde{Ad})} \Delta_n$ if viewed as a constant map $G \to \Delta_n$.

These are exactly the *parallel spinors of the canonical connection*!

Another application: Construction of Lie algebras

Kostant's work was based on the following extension idea for Lie algebras. We formulate his work geometrically:

Let M^n be an *Ambrose-Singer manifold*, i.e., a Riemannian manifold with a connection ∇ with antisymmetric torsion T s.t.

$$\nabla T = 0, \quad \nabla \mathcal{R} = 0.$$

Assumption: Universal cover of G_T is compact.

 $\Rightarrow M^n$ is regular and locally isometric to a homogeneous space G/G_T . The Lie algebra of G is $\mathfrak{g} := \mathfrak{g}_T \oplus \mathbb{R}^n$ with the commutator

[Cleyton/Swann, 2002]

$$[A + X, B + Y] := ([A, B] - \mathcal{R}(X, Y)) + (AY - BX - T(X, Y)).$$

Bianchi I $\Rightarrow \mathcal{R}$ is *unique*:

Lemma. The curvature of ∇ is proportional to the orthogonal projection onto \mathfrak{g}_T ,

$$\mathcal{R} : \Lambda^2(\mathbb{R}^n) = \mathfrak{so}(n) \longrightarrow \mathfrak{g}_T, \quad \mathcal{R}(X,Y) = 4 \operatorname{pr}_{\mathfrak{g}_T}(X \wedge Y).$$

Choose an ONF of 2-forms ω_i for \mathfrak{g}_T .

Lemma. The commutator defines an extension of \mathfrak{g}_T iff

$$T^2 + 4\sum \omega_i^2$$

is a scalar in the Clifford algebra of \mathbb{R}^n .

[a priori: parts of degree 4 + scalar]

– this identity can be understood as a Kostant-Parthasarathy type formula for the symbol of the operator $D^{1/3}$.

Construction of naturally reductive spaces

General construction:

Consider M = G/H with restriction of the Killing form to \mathfrak{m} :

$$\beta(X,Y) := -\operatorname{tr}(X^tY), \ \langle X,Y \rangle = \beta(X,Y) \text{ for } X,Y \in \mathfrak{m}.$$

Suppose that \mathfrak{m} is an orthogonal sum $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2$ such that $[\mathfrak{h}, \mathfrak{m}_2] = 0, \ [\mathfrak{m}_2, \mathfrak{m}_2] \subset \mathfrak{m}_2.$

Then the new metric, depending on a parameter
$$s > 0$$

 $\langle X, Y \rangle_s = \begin{cases} 0 & \text{for } X \in \mathfrak{m}_1, Y \in \mathfrak{m}_2 \\ \langle X, Y \rangle & \text{for } X, Y \in \mathfrak{m}_1 \\ s \cdot \langle X, Y \rangle & \text{for } X, Y \in \mathfrak{m}_2 \end{cases}$

is naturally reductive for $s \neq 1$ w.r.t. the realisation as $M = (G \times M_2)/(H \times M_2) =: \overline{G}/\overline{H}.$

[Chavel, 1969; Ziller / D'Atri, 1979] ²⁷

Jensen metrics

 $M^{5} = G/H \text{ with } G = SO(4), H = SO(2) \text{ and embed } H \text{ in } G \text{ as} \\ \left[\begin{array}{c|c} 1 & 0 \\ \hline 0 & SO(2) \end{array} \right]. \text{ Then } \mathfrak{so}(4) = \mathfrak{so}(2) + \mathfrak{m} \text{ with } (a \in \mathbb{R}, X \in \mathcal{M}_{2,2}(\mathbb{R})) \end{array}$

$$\mathfrak{m} = \left\{ \begin{bmatrix} 0 & -a & & \\ -X^t & & \\ \hline & X & & 0 & 0 \\ & X & & 0 & 0 \end{bmatrix} =: (a, X) \right\}$$

Set $\mathfrak{m}_1 := \{(0, X)\}$ and $\mathfrak{m}_2 := \{(a, 0)\} \Rightarrow$ new metric

$$\langle (a, X), (b, Y) \rangle_s = \frac{1}{2} \beta(X, Y) + \frac{s}{2} a \cdot b.$$

Properties: • Two ∇^0 -parallel spinors for s = 1, none for other values of t and s;

• $\operatorname{Ric}^{0} = (2 - s)\operatorname{diag}(0, 1, 1, 1, 1)$, Ricci-flat only for s = 2 und t = 0.