Srni 26th Winter School Geometry and Physics

* * * * * *

Special geometries and superstring theory

III: Weitzenböck formulas for special geometries

Ilka Agricola & Thomas Friedrich (Humboldt University Berlin)

Contains results of joint work with:

Simon Chiossi, Stefan Ivanov, Anna Fino, Eui Chul Kim, Niels Schoemann

Summary

A. Strominger, 1986: (M^n, g) Riemannian Spin mfd (set dilaton=const) with a 3-form $T \in \Lambda^3(\mathbb{R}^n)$ (field strength) and a spinor field Ψ (supersymmetry) such that

- Bosonic eq.: $\operatorname{Ric}^{\nabla} = 0, \quad \delta T = 0$
- Fermionic eq.: $\nabla \Psi = 0$, $T \cdot \Psi = 0$

with respect to the metric connection with antisymmetric torsion T

$$\nabla_X Y := \nabla_X^g Y + \frac{1}{2} T(X, Y, -), \quad \nabla_X \psi := \nabla_X^g \psi + \frac{1}{4} (X \sqcup T) \cdot \psi.$$

This lecture: * Naturally reductive spaces and Kostant's cubic Dirac operator

* Generalisation: Weitzenböck formulas and a Casimir operator on non homogeneous spaces

Example: Naturally reductive spaces

• Homogeneous *non symmetric* spaces provide a rich source for manifolds with characteristic connection [= unique G-inv. metric ∇ with skew torsion]

Consider M = G/H with isotropy repr. Ad : $H \to SO(\mathfrak{m})$.

Lie algebra: $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, \langle , \rangle a pos. def. scalar product on \mathfrak{m} .

The PFB $G \to G/H$ induces a distinguished connection on G/H, the so-called *canonical connection* ∇^1 . Its torsion is

$$T^{1}(X,Y,Z) = -\langle [X,Y]_{\mathfrak{m}},Z \rangle$$
 $(=0 \text{ for } M \text{ symmetric})$

Dfn. The metric \langle , \rangle is called *naturally reductive* if T^1 defines a 3-form,

 $\langle [X,Y]_{\mathfrak{m}},Z\rangle + \langle Y,[X,Z]_{\mathfrak{m}}\rangle = 0$ for all $X,Y,Z \in \mathfrak{m}$.

They generalize symmetric spaces: $\nabla^1 T^1 = 0, \nabla^1 \mathcal{R}^1 = 0$.

A oneparametric family of connections

Dfn.
$$\nabla^t_X Y := \nabla^g_X Y - \frac{t}{2} [X, Y]_{\mathfrak{m}}$$
 for $X, Y \in \mathfrak{m}$.

Torsion: $T^t(X, Y) = -t[X, Y]_{\mathfrak{m}}$.

Special t values: • t = 0: LC connection

• t = 1: canonical connection

• t = 1/3: "Kostant-Slebarski connection"

M spin manifold \Rightarrow lift ∇^t into spinor bundle, associated Dirac operator:

$$\mathbb{D}^{t}\psi = \sum_{i=1}^{n} Z_{i}(\psi) + \frac{1-t}{2}H \cdot \psi \qquad (Z_{1}, \dots, Z_{n}: \text{ ONB of } \mathfrak{m}),$$

H: the element in the Clifford algebra induced by torsion:

$$H := \frac{3}{2} \sum_{i < j < k} \langle [Z_i, Z_j]_{\mathfrak{m}}, Z_k \rangle Z_i \cdot Z_j \cdot Z_k$$

4

The symmetric case

<u>Want:</u> Weitzenböck formula for $(D^t)^2$.

For M symmetric ($[\mathfrak{m},\mathfrak{m}] \subset \mathfrak{h}$), one would have:

Thm (Parthasarathy, 1972). $(D)^2 = \Omega_g + \frac{1}{8} \text{Scal},$

with $\Omega_{\mathfrak{g}}$: Casimir operator of \mathfrak{g} .

Consequences:

• Computation of spectrum of $ot\!\!D$

• Realisation of discrete series representations in the (twisted) kernel of $D \hspace{-1.5mm}/$ for G non compact

• Character formulas (interpret character as an index)

In the homogeneous *non symmetric* case, this formula does no longer hold!

The general Kostant-Parthasarathy formula

Thm [Kostant, '99 / IA, '01]. For $n \ge 5$ and arbitrary t:

Notation:

- $\mathcal{J}_{\mathfrak{m}}(X, Y, Z) := [X, [Y, Z]_{\mathfrak{m}}]_{\mathfrak{m}} + \text{cyclic}$
- $\mathcal{J}_{\mathfrak{h}}(X, Y, Z) := [X, [Y, Z]_{\mathfrak{h}}] + \text{cyclic}$
- Q : the unique $\operatorname{Ad} G$ -invariant continuation of $\langle \ , \ \rangle$ to \mathfrak{g} . It satisfies:

$$\mathfrak{h}\perp\mathfrak{m}, ~~ Qigert_{\mathfrak{m}}=\langle\,,\,
angle\,,~ Qigert_{\mathfrak{h}}$$
 not degenerate

The Kostant-Parthasarathy formula for t = 1/3

Thm [Kostant, '99 / IA, '01]. For $n \ge 5$ and t = 1/3:

$$(\not\!\!D^{1/3})^2 \psi = \Omega_G(\psi) + \frac{1}{8}(*) \psi,$$

where (*) denotes the scalar

$$(*) = \sum_{i,j} ||[Z_i, Z_j]||_{\mathfrak{h}} + \frac{1}{3} \sum_{i,j} ||[Z_i, Z_j]||_{\mathfrak{m}}.$$

It can be rewritten as

$$(*) = Q(\varrho_G, \varrho_G) - Q_{\mathfrak{h}}(\varrho_H, \varrho_H)$$

and is thus *always* strictly positive.

First applications

Corollary. If ψ satisfies $\nabla^t \psi = 0$ and $T^t \cdot \psi = 0$ on M = G/H, then t = 0 and ∇^t is the LC connection.

. . . purely mathematical applications:

Corollary. On M = G/H, there exists a *G*-invariant differential operator of first order which has no symmetric counterpart:

$$\mathcal{D}(\psi) := \sum_{i,j,k} \langle [Z_i, Z_j]_{\mathfrak{m}}, Z_k \rangle Z_i \cdot Z_j \cdot Z_k(\psi) \, .$$

Corollary. If the Casimir operator is non negative, the first eigenvalue $\lambda^{1/3}$ satisfies $(\lambda^{1/3})^2 \ge (*)/8$. In particular, $D^{1/3}$ has then no kernel.

N.B. Character formulas generalize, too \rightarrow splitting of *H*-representations into families with similar properties

[> 1999: Kostant, Sternberg, Ramond, Brink. . .] 8

• Realisation of infinite dimensional representations for G non compact inside kernels of twisted Dirac operators [> 2003, Zierau-Mehdi . . .]

• Computation of the spectrum of $(D \!\!\!\!/^{1/3})^2$

N.B. Consider lift of isotropy representation, $\widetilde{\mathrm{Ad}} : H \to \mathrm{Spin}(\mathfrak{m})$:

Assume that it contains the trivial representation. Any such spinor induces a section of the spinor bundle $S = G \times_{\kappa(\widetilde{Ad})} \Delta_n$ if viewed as a constant map $G \to \Delta_n$.

These are exactly the *parallel spinors of the canonical connection*!

Another application: Construction of Lie algebras

Kostant's work was based on the following extension idea for Lie algebras. We formulate his work geometrically:

Let M^n be an *Ambrose-Singer manifold*, i.e., a Riemannian manifold with a connection ∇ with antisymmetric torsion T s.t.

$$\nabla T = 0, \quad \nabla \mathcal{R} = 0.$$

Assumption: Universal cover of G_T is compact.

 $\Rightarrow M^n$ is regular and locally isometric to a homogeneous space G/G_T . The Lie algebra of G is $\mathfrak{g} := \mathfrak{g}_T \oplus \mathbb{R}^n$ and its commutator has to be

[Cleyton/Swann, 2002]

$$[A + X, B + Y] := ([A, B] - \mathcal{R}(X, Y)) + (AY - BX - T(X, Y)).$$

Bianchi I $\Rightarrow \mathcal{R}$ is *unique*:

Lemma. The curvature of ∇ is proportional to the orthogonal projection onto \mathfrak{g}_T ,

$$\mathcal{R} : \Lambda^2(\mathbb{R}^n) = \mathfrak{so}(n) \longrightarrow \mathfrak{g}_T, \quad \mathcal{R}(X,Y) = 4 \operatorname{pr}_{\mathfrak{g}_T}(X \wedge Y).$$

Choose an ONF of 2-forms ω_i for \mathfrak{g}_T .

Lemma. The commutator above defines an extension of \mathfrak{g}_T iff

$$T^2 + 4\sum \omega_i^2$$

is a scalar in the Clifford algebra of \mathbb{R}^n . [a priori: parts of degree 4 + scalar]

– this identity can be understood as a Kostant-Parthasarathy type formula for the symbol of the operator $D^{1/3}$.

Construction of naturally reductive spaces

General construction:

Consider M = G/H with restriction of the Killing form to \mathfrak{m} :

$$\beta(X,Y) := -\operatorname{tr}(X^tY), \ \langle X,Y \rangle = \beta(X,Y) \text{ for } X,Y \in \mathfrak{m}.$$

Suppose that \mathfrak{m} is an orthogonal sum $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2$ such that $[\mathfrak{h}, \mathfrak{m}_2] = 0, \ [\mathfrak{m}_2, \mathfrak{m}_2] \subset \mathfrak{m}_2.$

Then the new metric, depending on a parameter
$$s > 0$$

 $\langle X, Y \rangle_s = \begin{cases} 0 & \text{for } X \in \mathfrak{m}_1, Y \in \mathfrak{m}_2 \\ \langle X, Y \rangle & \text{for } X, Y \in \mathfrak{m}_1 \\ s \cdot \langle X, Y \rangle & \text{for } X, Y \in \mathfrak{m}_2 \end{cases}$

is naturally reductive for $s \neq 1$ w.r.t. the realisation as $M = (G \times M_2)/(H \times M_2) =: \overline{G}/\overline{H}.$

[Chavel, 1969; Ziller / D'Atri, 1979] ¹²

Jensen metrics on the Stiefel manifold

 $M^{5} = G/H \text{ with } G = SO(4), H = SO(2) \text{ and embed } H \text{ in } G \text{ as} \\ \left[\begin{array}{c|c} 1 & 0 \\ \hline 0 & SO(2) \end{array} \right]. \text{ Then } \mathfrak{so}(4) = \mathfrak{so}(2) + \mathfrak{m} \text{ with } (a \in \mathbb{R}, X \in \mathcal{M}_{2,2}(\mathbb{R})) \end{array}$

$$\mathfrak{m} = \left\{ \begin{bmatrix} 0 & -a & & \\ a & 0 & & -X^t \\ \hline & a & 0 & & \\ \hline & X & & 0 & 0 \\ & & & 0 & 0 \end{bmatrix} =: (a, X) \right\}$$

Set $\mathfrak{m}_1 := \{(0, X)\}$ and $\mathfrak{m}_2 := \{(a, 0)\} \Rightarrow$ new metric

$$\langle (a, X), (b, Y) \rangle_{s} = \frac{1}{2} \beta(X, Y) + \frac{s}{2} a \cdot b.$$

Properties: • Two ∇^0 -parallel spinors for s = 1, none for other values of t and s;

• $\operatorname{Ric}^{0} = (2 - s)\operatorname{diag}(0, 1, 1, 1, 1)$, Ricci-flat only for s = 2 und t = 0.

The square of the Dirac operator

Extend this to non-homogeneous mnfds!

• (M^n, g, ∇) – Riemannian spin mnfd, $T \in \Lambda^3(M^n)$ torsion of ∇ ,

$$\nabla_X Y := \nabla_X^g Y + \frac{1}{2}T(X, Y, -)$$

• Lift into spinor bundle: $\nabla_X \psi := \nabla_X^g \psi + \frac{1}{4} (X \sqcup T) \cdot \psi$

• A first order differential operator: $\mathcal{D}\psi := \sum_{k=1}^{n} (e_k \, \lrcorner \, T) \cdot \nabla_{e_k} \psi$

• A 4-form from T [appeared in Bianchi I]: $\sigma_T := \frac{1}{2} \sum_{k=1}^n (e_k \sqcup T) \land (e_k \sqcup T)$

- D: Dirac operator of connection ∇ with torsion T
- $D^{1/3}$: Dirac operator of connection with torsion T/3.

"Classical" Weitzenböck Formula:

$$D^{2} = \Delta_{T} + \frac{3}{4}dT - \frac{1}{2}\sigma_{T} + \frac{1}{2}\delta T - \mathcal{D} + \frac{1}{4}\mathrm{Scal}^{\nabla}$$

Rescaled Weitzenböck Formula:

$$(D^{1/3})^2 = \Delta_T + \frac{1}{4}dT + \frac{1}{4}\mathrm{Scal}^g - \frac{1}{8}||T||^2.$$

[1/3-Rescaling: Slebarski ('87), Bismut ('89), Kostant ('99), IA ('02), IA & TF ('03)]

A Vanishing Thm. Let (M^n, g, T) be a compact Riemannian spin mnfd with $\operatorname{Scal}^g \leq 0$, and suppose dT acts on spinors as a negative endomorphism. If there exists a spinor $\psi \neq 0$ in the kernel of Δ_T , then $T = 0 = \operatorname{Scal}^g$, and ψ is parallel w.r.t. the LC connection.

Corollary. On a Calabi-Yau or Joyce mnfd ($\text{Scal}^g = 0$), a metric connection with closed torsion (dT = 0) can have parallel spinors only for T = 0.

 \Rightarrow "Rigidity" of vacuum solutions under deformation of the connection

N.B. Different situation if M^n is not compact:

Consider solvmanifolds $Y^7 = N \times \mathbb{R}$, \mathfrak{n} : nilpotent 6-dim. Lie algebra $(\neq \mathfrak{h}_3 \oplus \mathfrak{h}_3) \Rightarrow$ [Chiossi/Fino, 2004]

1) N carries "half flat" SU(3) structure,

2) Y carries a G_2 structure (ω, g) with antisymmetric torsion,

3) Y carries – after a conformal change of the metric – an *integrable* G_2 structure $(\tilde{\omega}, \tilde{g})$. In particular, \tilde{g} is Ricci flat und admits (at least) one LC-parallel spinor.

Thm ('05). For $\mathfrak{n} \cong (0, 0, e_{15}, e_{25}, 0, e_{12})$, there exists on $(Y, \tilde{\omega}, \tilde{g})$ a oneparametric family $(T_h, \psi_h) \in \Lambda^3(Y) \times S(Y)$ s.t. every connection ∇^h with torsion T_h satisfies:

$$\nabla^h \psi_h = 0.$$

For h = 1: $T_h = 0, \nabla^h = \nabla^g$ und ψ_h coincides with the LC-parallel spinor.

Parallel spinors in oneparametric families

Define the family of connections

$$\nabla^s_X \psi := \nabla^g_X \psi + s \cdot (X \sqcup \mathbf{T}) \cdot \psi$$

Q: For which values of s can there be parallel spinors ?

Example. G a simple Lie group, g its biinvariant metric and the torsion form

$$T(X, Y, Z) := g([X, Y], Z).$$

The connections $\nabla^{\pm 1/4}$ are flat. In particular, there exist $\nabla^{\pm 1/4}$ -parallel spinor fields.

Thm. Assume M compact. Every ∇^s -parallel spinor ψ satisfies the eq.

$$64 s^2 \int_{M^n} \langle \sigma_{\mathrm{T}} \cdot \psi, \psi \rangle + \int_{M^n} \mathrm{Scal}^s \cdot ||\psi||^2 = 0.$$

If the mean values $\langle \sigma_{\rm T}\cdot\psi\,,\,\psi\rangle$ does not vanish, the parameter s is given by

$$s = \frac{1}{8} \int_{M^n} \langle d\mathbf{T} \cdot \psi, \psi \rangle \Big/ \int_{M^n} \langle \sigma_{\mathbf{T}} \cdot \psi, \psi \rangle.$$

If $\langle \sigma_T \cdot \psi, \psi \rangle = 0$, the parameter *s* depens only on the Riemannian scalar curvature and the length of *T*,

$$0 = \int_{M^n} \text{Scal}^s = \int_{M^n} \text{Scal}^g - 24s^2 \int_{M^n} ||\mathbf{T}||^2 \, ds^2 \,$$

Corollary. If the 4-forms dT and σ_T are proportional, there exist at most three parameter values with ∇^s -parallel spinors.

• On the Aloff-Wallach spaces $M^7 := N(1,1) = SU(3)/SU(2)$, there exist examples of G_2 -structures such that s and -s admit parallel spinors.

Sometimes, the value of s is fixed through the geometry of M:

Thm. On a 5-dimensional Sasaki mnfd, only the characteristic connection can have parallel spinors.

The Casimir operator of a characteristic connection

 (M^n, g, ∇, T) : Riemannian manifold with torsion.

Dfn. The **Casimir operator** acting on spinor fields is defined by

$$\Omega := (D^{1/3})^2 + \frac{1}{8}(dT - 2\sigma_T) + \frac{1}{4}\delta(T) - \frac{1}{8}\mathrm{Scal}^g - \frac{1}{16}||T||^2$$
$$= \Delta_T + \frac{1}{8}(3dT - 2\sigma_T + 2\delta(T) + \mathrm{Scal}).$$

Motivation: For a naturally reductive space and its canonical connection, Ω coincides with the usual Casimir operator.

Example: For the Levi-Civita connection (T = 0), we obtain:

$$\Omega = (D^g)^2 - \frac{1}{8}\operatorname{Scal}^g = \Delta^g + \frac{1}{8}\operatorname{Scal}^g$$

Proposition. The kernel of the Casimir operator contains all ∇ -parallel spinors.

The case $\nabla T = 0$: Ω then simplifies,

$$\Omega = (D^{1/3})^2 - \frac{1}{16} \left(2 \operatorname{Scal}^g + ||T||^2 \right)$$
$$= \Delta_T + \frac{1}{16} \left(2 \operatorname{Scal}^g + ||T||^2 \right) - \frac{1}{4} T^2$$
$$= \Delta_T + \frac{1}{8} \left(2 \, dT + \operatorname{Scal} \right) \,.$$

Proposition. (M^n, g, ∇) compact, $\nabla T = 0$. If

 $2 \operatorname{Scal}^g \leq -||T||^2$ or $2 \operatorname{Scal}^g \geq 4 T^2 - ||T||^2$

holds, the Casimir operator is non-negative.

Proposition. If $\nabla T = 0$, Ω and $(D^{1/3})^2$ commute with T,

$$\Omega \circ T = T \circ \Omega , \quad (D^{1/3})^2 \circ T = T \circ (D^{1/3})^2$$

In the compact case, T preserves the kernel of $D^{1/3}$.

5-Dimensional Sasakian Manifolds

- M^5 : a 5-dimensional Sasakian manifold, η its contact structure.
- Consider characteristic connection with torsion T:

$$\nabla T = 0, \quad T = \eta \wedge d\eta = 2(e_{12} + e_{34}) \wedge e_5,$$

$$T^2 = 8 - 8e_{1234}, \quad T = \text{diag}(4, 0, 0, -4).$$

 \Rightarrow the Casimir operator splits into $\Omega = \Omega_0 \oplus \Omega_4 \oplus \Omega_{-4}$,

$$\Omega_0 = \Delta_T + \frac{1}{8}\operatorname{Scal}^g + \frac{1}{2} = (D^{1/3})^2 - \frac{1}{8}\operatorname{Scal}^g - \frac{1}{2},$$

$$\Omega_{\pm 4} = \Delta_T + \frac{1}{8}\operatorname{Scal}^g - \frac{7}{2} = (D^{1/3})^2 - \frac{1}{8}\operatorname{Scal}^g - \frac{1}{2}.$$

If $\operatorname{Scal}^g \neq -4$, $\operatorname{Ker}(\Omega_0) = 0.$

- If $\operatorname{Scal}^g < -4$ or $\operatorname{Scal}^g > 28$, $\operatorname{Ker}(\Omega_{\pm 4}) = 0$.
- The interesting cases: $-4 \leq \text{Scal}^g \leq 28$.

If
$$\operatorname{Scal}^g = -4$$
: $\Omega_0 = \Delta_T = (D^{1/3})^2$, $\Omega_{\pm 4} = \Delta_T - 4 = (D^{1/3})^2$.

• The kernel of Ω_0 coincides with the space of ∇ -parallel spinors ψ such that $T \cdot \psi = 0$. [Examples: TF/Ivanov, 2002]

• Spinors in both kernels $Ker(\Omega_0)$ and $Ker(\Omega_{\pm 4})$ exist on the 5-dimensional Heisenberg group

$$e_1 = dx_1/2, \quad e_2 = dy_1/2, \quad e_3 = dx_2/2, \quad e_4 = dy_2/2,$$

 $e_5 = \eta := (dz - y_1 dx_1 - y_2 dx_2)/2.$

• Spinors in the kernel of $\Omega_{\pm 4}$ occur on Sasakian η -Einstein manifolds of type $\operatorname{Ric}^g = -2 \cdot g + 6 \cdot \eta \otimes \eta$ [Examples: TF/Kim, 2000]

If $\operatorname{Scal}^g = 28$: $\Omega_0 = \Delta_T + 4 = (D^{1/3})^2 - 4$, $\Omega_{\pm 4} = \Delta_T = (D^{1/3})^2 - 4$.

• The kernel of $\Omega_{\pm 4}$ coincides with the space of ∇ -parallel spinors ψ such that $T \cdot \psi = \pm 4\psi$.

Einstein-Sasaki manifolds, $Scal^g = 20$:

$$\Omega_0 = \Delta_T + 3$$
, $\Omega_{\pm 4} = \Delta_T - 1 = (D^{1/3})^2 - 3$.

Thm. The Casimir operator of a compact 5-dimensional Einstein-Sasaki manifold has trivial kernel.

Example: Stiefel manifold $V_{4,2} = SO(4)/SO(2)$ with its Einstein-Sasaki metric. There exist Riemannian Killing spinors. The Casimir operator is equivalent to the operators

$$\Omega_0 = -3\sum_{\alpha=1}^5 X_{\alpha}^2 + 3, \quad \Omega_{\pm 4} = -3\sum_{\alpha=1}^5 X_{\alpha}^2 - \frac{3}{4} \pm \sqrt{3}i \cdot X_5$$

acting on functions $f : SO(4) \to \mathbb{C}$ satisfying the quasi-periodicity conditions $E_{34}(f) = \pm i f$ and $E_{34}(f) = 0$, respectively.

6-Dimensional nearly Kähler manifolds

• (M^6, g, J) : 6-dimensional nearly Kähler manifold, Kähler form Ω .

•
$$M^6$$
 is Einstein, $\operatorname{Ric}^g = \frac{5a}{2}g$, $a > 0$.

• Consider its characteristic connection with torsion T = N/4:

$$\nabla T = 0$$
, $\operatorname{Ric}^{\nabla} = 2a g$, $2\sigma_T = dT = a \Omega \wedge \Omega$, $||T||^2 = 2a$.

• We compute

$$2 dT + \text{Scal} = 16 a \cdot \text{diag}(0, 0, 1, 1, 1, 1, 1, 1).$$

$$\Omega = \Delta_T + \frac{1}{8}(2\,dT + \text{Scal}) = (D^{1/3})^2 - 2\,a$$

• If M^6 is compact, then $Ker(\Omega) = Ker(\nabla) = {Killingspinors}$ and

$$(D^{1/3})^2 \ge \frac{2}{15} \operatorname{Scal}^g = 2 \cdot a > 0.$$

7-Dimensional G₂-manifolds

• (M^7, g, ω) cocalibrated G_2 -manifold (type $W_3 \oplus W_4 \Leftrightarrow d * \omega = 0$), and suppose that $(d\omega, *\omega)$ is constant.

• Its characteristic connection:

$$T = - * d\omega + \frac{1}{6} (d\omega, *\omega) \cdot \omega, \quad \delta(T) = 0.$$

- Main difference to the previous examples: $\nabla T \neq 0, \ dT \neq 2\sigma_T$.
- Scalar curvature: $\operatorname{Scal}^g = 2(T, \omega)^2 \frac{1}{2}||T||^2$.
- The parallel spinor ψ_0 corresponding to ω satisfies

$$\nabla \psi_0 = 0, \quad T \cdot \psi_0 = -\frac{1}{6} (d\omega, *\omega) \cdot \psi_0.$$

• Casimir operator:

$$\Omega = (D^{1/3})^2 - \frac{1}{4}(T, \omega)^2 + \frac{1}{8}(dT - 2\sigma_T)$$
$$= \Delta_T + \frac{1}{4}(T, \omega)^2 + \frac{1}{8}(3dT - 2\sigma_T - 2||T||^2).$$

Nearly parallel G_2 -structures (type W_1): $d\omega = -a(*\omega)$.

$$\Omega = (D^{1/3})^2 - \frac{49}{144}a^2.$$

Thm. Let (M^7, g, ω) be a compact, nearly parallel G₂-manifold and denote by ∇ its characteristic connection. The kernel of the Casimir operator of the triple (M^7, g, ∇) coincides with the space of ∇ -parallel spinors,

$$\operatorname{Ker}(\Omega) = \left\{ \psi : \nabla \psi = 0, \ T \cdot \psi = \frac{7}{6} a \cdot \psi \right\} = \operatorname{Ker}(\nabla).$$

26