Srni 26th Winter School Geometry and Physics

```
* * * * * *
```

Special geometries and superstring theory

III: Weitzenböck formulas for special geometries

Ilka Agricola \& Thomas Friedrich (Humboldt University Berlin)
Contains results of joint work with:
Simon Chiossi, Stefan Ivanov, Anna Fino, Eui Chul Kim, Niels Schoemann

VolkswagenStiftung

Summary

A. Strominger, 1986: $\left(M^{n}, g\right)$ Riemannian Spin mfd (set dilaton=const) with a 3 -form $T \in \Lambda^{3}\left(\mathbb{R}^{n}\right)$ (field strength) and a spinor field Ψ (supersymmetry) such that

- Bosonic eq.: $\operatorname{Ric}^{\nabla}=0, \quad \delta T=0$
- Fermionic eq.: $\nabla \Psi=0, \quad T \cdot \Psi=0$ with respect to the metric connection with antisymmetric torsion T

$$
\left.\nabla_{X} Y:=\nabla_{X}^{g} Y+\frac{1}{2} T(X, Y,-), \quad \nabla_{X} \psi:=\nabla_{X}^{g} \psi+\frac{1}{4}(X\lrcorner T\right) \cdot \psi
$$

This lecture: * Naturally reductive spaces and Kostant's cubic Dirac operator

* Generalisation: Weitzenböck formulas and a Casimir operator on non homogeneous spaces

Example: Naturally reductive spaces

- Homogeneous non symmetric spaces provide a rich source for manifolds with characteristic connection [$=$ unique G-inv. metric ∇ with skew torsion]

Consider $M=G / H$ with isotropy repr. $\mathrm{Ad}: H \rightarrow \mathrm{SO}(\mathfrak{m})$.
Lie algebra: $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m},\langle$,$\rangle a pos. def. scalar product on \mathfrak{m}$.
The PFB $G \rightarrow G / H$ induces a distinguished connection on G / H, the so-called canonical connection ∇^{1}. Its torsion is

$$
T^{1}(X, Y, Z)=-\left\langle[X, Y]_{\mathfrak{m}}, Z\right\rangle \quad(=0 \text { for } M \text { symmetric })
$$

Dfn. The metric \langle,$\rangle is called naturally reductive if T^{1}$ defines a 3 -form,

$$
\left\langle[X, Y]_{\mathfrak{m}}, Z\right\rangle+\left\langle Y,[X, Z]_{\mathfrak{m}}\right\rangle=0 \text { for all } X, Y, Z \in \mathfrak{m}
$$

They generalize symmetric spaces: $\nabla^{1} T^{1}=0, \nabla^{1} \mathcal{R}^{1}=0$.

A oneparametric family of connections

Dfn. $\quad \nabla_{X}^{t} Y:=\nabla_{X}^{g} Y-\frac{t}{2}[X, Y]_{\mathfrak{m}}$ for $X, Y \in \mathfrak{m}$.
Torsion: $T^{t}(X, Y)=-t[X, Y]_{\mathfrak{m}}$.
Special t values: $\bullet \underline{t=0}$: LC connection

- $t=1$: canonical connection
- $t=1 / 3$: "Kostant-Slebarski connection"
M spin manifold \Rightarrow lift ∇^{t} into spinor bundle, associated Dirac operator:

$$
\not D^{t} \psi=\sum_{i=1}^{n} Z_{i}(\psi)+\frac{1-t}{2} H \cdot \psi \quad\left(Z_{1}, \ldots, Z_{n}: \text { ONB of } \mathfrak{m}\right)
$$

H : the element in the Clifford algebra induced by torsion:

$$
H:=\frac{3}{2} \sum_{i<j<k}\left\langle\left[Z_{i}, Z_{j}\right]_{\mathfrak{m}}, Z_{k}\right\rangle Z_{i} \cdot Z_{j} \cdot Z_{k}
$$

The symmetric case

Want: Weitzenböck formula for $\left(D^{t}\right)^{2}$.
For M symmetric $([\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h})$, one would have:
Thm (Parthasarathy, 1972). $\quad(D)^{2}=\Omega_{\mathfrak{g}}+\frac{1}{8}$ Scal,
with $\Omega_{\mathfrak{g}}$: Casimir operator of \mathfrak{g}.

Consequences:

- Computation of spectrum of $D D$
- Realisation of discrete series representations in the (twisted) kernel of $\not D$ for G non compact
- Character formulas (interpret character as an index)

In the homogeneous non symmetric case, this formula does no longer hold!

The general Kostant-Parthasarathy formula

Thm [Kostant, '99 / IA, '01]. For $n \geq 5$ and arbitrary t :

$$
\begin{aligned}
& \left(\not D^{t}\right)^{2} \psi=\Omega_{G}(\psi)+\frac{1}{4}(3 t-1) \sum_{i, j, k}\left\langle\left[Z_{i}, Z_{j}\right]_{\mathfrak{m}}, Z_{k}\right\rangle Z_{i} \cdot Z_{j} \cdot Z_{k}(\psi) \\
& -\frac{1}{2} \sum_{i<j<k<l}\left\langle Z_{i}, \mathcal{J}_{\mathfrak{h}}\left(Z_{j}, Z_{k}, Z_{l}\right)+\frac{9(1-t)^{2}}{4} \mathcal{J}_{\mathfrak{m}}\left(Z_{j}, Z_{k}, Z_{l}\right)\right\rangle Z_{i} \cdot Z_{j} \cdot Z_{k} \cdot Z_{l} \cdot \psi \\
& +\frac{1}{8}\left(\sum_{i, j}\left\|\left[Z_{i}, Z_{j}\right]\right\|_{\mathfrak{h}}+\frac{3(1-t)^{2}}{4} \sum_{i, j}\left\|\left[Z_{i}, Z_{j}\right]\right\|_{\mathfrak{m}}\right) \psi
\end{aligned}
$$

Notation:

- $\mathcal{J}_{\mathfrak{m}}(X, Y, Z):=\left[X,[Y, Z]_{\mathfrak{m}}\right]_{\mathfrak{m}}+$ cyclic
- $\mathcal{J}_{\mathfrak{h}}(X, Y, Z):=\left[X,[Y, Z]_{\mathfrak{h}}\right]+$ cyclic
- Q : the unique $\operatorname{Ad} G$-invariant continuation of \langle,$\rangle to \mathfrak{g}$. It satisfies:

$$
\mathfrak{h} \perp \mathfrak{m},\left.\quad Q\right|_{\mathfrak{m}}=\langle,\rangle,\left.Q\right|_{\mathfrak{h}} \text { not degenerate }
$$

The Kostant-Parthasarathy formula for $t=1 / 3$

Thm [Kostant, '99 / IA, '01]. For $n \geq 5$ and $t=1 / 3$:

$$
\left(\not D^{1 / 3}\right)^{2} \psi=\Omega_{G}(\psi)+\frac{1}{8}(*) \psi
$$

where $(*)$ denotes the scalar

$$
(*)=\sum_{i, j}\left\|\left[Z_{i}, Z_{j}\right]\right\|_{\mathfrak{h}}+\frac{1}{3} \sum_{i, j}\left\|\left[Z_{i}, Z_{j}\right]\right\|_{\mathfrak{m}} .
$$

It can be rewritten as

$$
(*)=Q\left(\varrho_{G}, \varrho_{G}\right)-Q_{\mathfrak{h}}\left(\varrho_{H}, \varrho_{H}\right)
$$

and is thus always strictly positive.

First applications

Corollary. If ψ satisfies $\nabla^{t} \psi=0$ and $T^{t} \cdot \psi=0$ on $M=G / H$, then $t=0$ and ∇^{t} is the LC connection.
. . . purely mathematical applications:
Corollary. On $M=G / H$, there exists a G-invariant differential operator of first order which has no symmetric counterpart:

$$
\mathcal{D}(\psi):=\sum_{i, j, k}\left\langle\left[Z_{i}, Z_{j}\right]_{\mathfrak{m}}, Z_{k}\right\rangle Z_{i} \cdot Z_{j} \cdot Z_{k}(\psi)
$$

Corollary. If the Casimir operator is non negative, the first eigenvalue $\lambda^{1 / 3}$ satisfies $\left(\lambda^{1 / 3}\right)^{2} \geq(*) / 8$. In particular, $\not D^{1 / 3}$ has then no kernel.
N.B. Character formulas generalize, too \rightarrow splitting of H-representations into families with similar properties

- Realisation of infinite dimensional representations for G non compact inside kernels of twisted Dirac operators [> 2003, Zierau-Mehdi ...]
- Computation of the spectrum of $\left(\not D^{1 / 3}\right)^{2}$
N.B. Consider lift of isotropy representation, $\widetilde{A} d: H \rightarrow \operatorname{Spin}(\mathfrak{m})$:

Assume that it contains the trivial representation. Any such spinor induces a section of the spinor bundle $S=G \times_{\kappa(\widetilde{A d})} \Delta_{n}$ if viewed as a constant map $G \rightarrow \Delta_{n}$.

These are exactly the parallel spinors of the canonical connection!

Another application: Construction of Lie algebras

Kostant's work was based on the following extension idea for Lie algebras. We formulate his work geometrically:

Let M^{n} be an Ambrose-Singer manifold, i. e.. a Riemannian manifold with a connection ∇ with antisymmetric torsion T s.t.

$$
\nabla T=0, \quad \nabla \mathcal{R}=0
$$

Assumption: Universal cover of G_{T} is compact.
$\Rightarrow M^{n}$ is regular and locally isometric to a homogeneous space G / G_{T}. The Lie algebra of G is $\mathfrak{g}:=\mathfrak{g}_{T} \oplus \mathbb{R}^{n}$ and its commutator has to be
[Cleyton/Swann, 2002]

$$
[A+X, B+Y]:=([A, B]-\mathcal{R}(X, Y))+(A Y-B X-T(X, Y))
$$

Bianchil $\Rightarrow \mathcal{R}$ is unique:

Lemma. The curvature of ∇ is proportional to the orthogonal projection onto \mathfrak{g}_{T},

$$
\mathcal{R}: \Lambda^{2}\left(\mathbb{R}^{n}\right)=\mathfrak{s o}(n) \longrightarrow \mathfrak{g}_{T}, \quad \mathcal{R}(X, Y)=4 \operatorname{pr}_{\mathfrak{g}_{T}}(X \wedge Y)
$$

Choose an ONF of 2-forms ω_{i} for \mathfrak{g}_{T}.
Lemma. The commutator above defines an extension of \mathfrak{g}_{T} iff

$$
T^{2}+4 \sum \omega_{i}^{2}
$$

is a scalar in the Clifford algebra of \mathbb{R}^{n}. [a priori: parts of degree $4+$ scalar]

- this identity can be understood as a Kostant-Parthasarathy type formula for the symbol of the operator $D^{1 / 3}$.

Construction of naturally reductive spaces

General construction:

Consider $M=G / H$ with restriction of the Killing form to \mathfrak{m} :

$$
\beta(X, Y):=-\operatorname{tr}\left(X^{t} Y\right),\langle X, Y\rangle=\beta(X, Y) \text { for } X, Y \in \mathfrak{m} .
$$

Suppose that \mathfrak{m} is an orthogonal sum $\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ such that

$$
\left[\mathfrak{h}, \mathfrak{m}_{2}\right]=0,\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right] \subset \mathfrak{m}_{2} .
$$

Then the new metric, depending on a parameter $s>0$

$$
\langle X, Y\rangle_{s}= \begin{cases}0 & \text { for } X \in \mathfrak{m}_{1}, Y \in \mathfrak{m}_{2} \\ \langle X, Y\rangle & \text { for } X, Y \in \mathfrak{m}_{1} \\ s \cdot\langle X, Y\rangle & \text { for } X, Y \in \mathfrak{m}_{2}\end{cases}
$$

is naturally reductive for $s \neq 1 \mathrm{w} . \mathrm{r} . \mathrm{t}$. the realisation as

$$
M=\left(G \times M_{2}\right) /\left(H \times M_{2}\right)=: \bar{G} / \bar{H}
$$

Jensen metrics on the Stiefel manifold

$M^{5}=G / H$ with $G=S O(4), H=\operatorname{SO}(2)$ and embed H in G as $\left[\begin{array}{c|c}1 & 0 \\ \hline 0 & \mathrm{SO}(2)\end{array}\right]$. Then $\mathfrak{s o}(4)=\mathfrak{s o}(2)+\mathfrak{m}$ with $\left(a \in \mathbb{R}, \quad X \in \mathcal{M}_{2,2}(\mathbb{R})\right)$

$$
\mathfrak{m}=\left\{\left[\begin{array}{rr|r}
0 & -a & -X^{t} \\
a & 0 & -X^{2} \\
\hline X & 0 & 0 \\
\hline X & 0 & 0
\end{array}\right]=:(a, X)\right\}
$$

Set $\mathfrak{m}_{1}:=\{(0, X)\}$ and $\mathfrak{m}_{2}:=\{(a, 0)\} \Rightarrow$ new metric

$$
\langle(a, X),(b, Y)\rangle_{s}=\frac{1}{2} \beta(X, Y)+\frac{s}{2} a \cdot b .
$$

Properties: - Two ∇^{0}-parallel spinors for $s=1$, none for other values of t and s;

- $\operatorname{Ric}^{0}=(2-s) \operatorname{diag}(0,1,1,1,1)$, Ricci-flat only for $s=2$ und $t=0$.

The square of the Dirac operator

Extend this to non-homogeneous mnfds!

- $\left(M^{n}, g, \nabla\right)$ - Riemannian spin mnfd, $T \in \Lambda^{3}\left(M^{n}\right)$ torsion of ∇,

$$
\nabla_{X} Y:=\nabla_{X}^{g} Y+\frac{1}{2} T(X, Y,-)
$$

- Lift into spinor bundle:

$$
\left.\nabla_{X} \psi:=\nabla_{X}^{g} \psi+\frac{1}{4}(X\lrcorner T\right) \cdot \psi
$$

- A first order differential operator: $\left.\mathcal{D} \psi:=\sum_{k=1}^{n}\left(e_{k}\right\lrcorner T\right) \cdot \nabla_{e_{k}} \psi$
- A 4-form from T [appeared in Bianchi I]: $\left.\left.\sigma_{\mathrm{T}}:=\frac{1}{2} \sum_{k=1}^{n}\left(e_{k}\right\lrcorner T\right) \wedge\left(e_{k}\right\lrcorner T\right)$
- DD: Dirac operator of connection ∇ with torsion T
- $\not D^{1 / 3}$: Dirac operator of connection with torsion $T / 3$.
"Classical" Weitzenböck Formula:

$$
D^{2}=\Delta_{T}+\frac{3}{4} d \mathrm{~T}-\frac{1}{2} \sigma_{T}+\frac{1}{2} \delta T-\mathcal{D}+\frac{1}{4} \mathrm{Scal}^{\nabla} .
$$

Rescaled Weitzenböck Formula:

$$
\left(D^{1 / 3}\right)^{2}=\Delta_{T}+\frac{1}{4} d T+\frac{1}{4} \text { Scal }^{g}-\frac{1}{8}\|T\|^{2}
$$

[1/3-Rescaling: Slebarski ('87), Bismut ('89), Kostant ('99), IA ('02), IA \& TF ('03)]
A Vanishing Thm. Let $\left(M^{n}, g, T\right)$ be a compact Riemannian spin mnfd with $\mathrm{Scal}^{g} \leq 0$, and suppose $d T$ acts on spinors as a negative endomorphism. If there exists a spinor $\psi \neq 0$ in the kernel of Δ_{T}, then $T=0=\mathrm{Scal}^{g}$, and ψ is parallel w.r.t. the LC connection.

Corollary. On a Calabi-Yau or Joyce mnfd (Scal ${ }^{g}=0$), a metric connection with closed torsion $(d T=0)$ can have parallel spinors only for $\mathrm{T}=0$.
\Rightarrow "Rigidity" of vacuum solutions under deformation of the connection
N.B. Different situation if M^{n} is not compact:

Consider solvmanifolds $Y^{7}=N \times \mathbb{R}, \mathfrak{n}$: nilpotent 6-dim. Lie algebra $\left(\neq \mathfrak{h}_{3} \oplus \mathfrak{h}_{3}\right) \Rightarrow$
[Chiossi/Fino, 2004]

1) N carries "half flat" $\mathrm{SU}(3)$ structure,
2) Y carries a G_{2} structure (ω, g) with antisymmetric torsion,
3) Y carries - after a conformal change of the metric - an integrable G_{2} structure ($\tilde{\omega}, \tilde{g}$). In particular, \tilde{g} is Ricci flat und admits (at least) one LC-parallel spinor.

Thm ('05). For $\mathfrak{n} \cong\left(0,0, e_{15}, e_{25}, 0, e_{12}\right)$, there exists on $(Y, \tilde{\omega}, \tilde{g})$ a oneparametric family $\left(T_{h}, \psi_{h}\right) \in \Lambda^{3}(Y) \times S(Y)$ s. t. every connection ∇^{h} with torsion T_{h} satisfies:

$$
\nabla^{h} \psi_{h}=0
$$

For $h=1: \quad T_{h}=0, \nabla^{h}=\nabla^{g}$ und ψ_{h} coincides with the LC-parallel spinor.

Parallel spinors in oneparametric families

Define the family of connections

$$
\left.\nabla_{X}^{s} \psi:=\nabla_{X}^{g} \psi+s \cdot(X\lrcorner \mathrm{T}\right) \cdot \psi
$$

Q: For which values of s can there be parallel spinors ?
Example. G a simple Lie group, g its biinvariant metric and the torsion form

$$
T(X, Y, Z):=g([X, Y], Z)
$$

The connections $\nabla^{ \pm 1 / 4}$ are flat. In particular, there exist $\nabla^{ \pm 1 / 4}$-parallel spinor fields.

Thm. Assume M compact. Every ∇^{s}-parallel spinor ψ satisfies the eq.

$$
64 s^{2} \int_{M^{n}}\left\langle\sigma_{\mathrm{T}} \cdot \psi, \psi\right\rangle+\int_{M^{n}} \operatorname{Scal}^{s} \cdot\|\psi\|^{2}=0
$$

If the mean values $\left\langle\sigma_{\mathrm{T}} \cdot \psi, \psi\right\rangle$ does not vanish, the parameter s is given by

$$
s=\frac{1}{8} \int_{M^{n}}\langle d \mathrm{~T} \cdot \psi, \psi\rangle / \int_{M^{n}}\left\langle\sigma_{\mathrm{T}} \cdot \psi, \psi\right\rangle .
$$

If $\left\langle\sigma_{\mathrm{T}} \cdot \psi, \psi\right\rangle=0$, the parameter s depens only on the Riemannian scalar curvature and the length of T,

$$
0=\int_{M^{n}} \mathrm{Scal}^{s}=\int_{M^{n}} \mathrm{Scal}^{g}-24 s^{2} \int_{M^{n}}\|\mathrm{~T}\|^{2}
$$

Corollary. If the 4 -forms $d \mathrm{~T}$ and σ_{T} are proportional, there exist at most three parameter values with ∇^{s}-parallel spinors.

- On the Aloff-Wallach spaces $M^{7}:=N(1,1)=\mathrm{SU}(3) / \mathrm{SU}(2)$, there exist examples of G_{2}-structures such that s and $-s$ admit parallel spinors.

Sometimes, the value of s is fixed through the geometry of M :

Thm. On a 5-dimensional Sasaki mnfd, only the characteristic connection can have parallel spinors.

The Casimir operator of a characteristic connection

($\left.M^{n}, g, \nabla, T\right)$: Riemannian manifold with torsion.
Dfn. The Casimir operator acting on spinor fields is defined by

$$
\begin{aligned}
\Omega & :=\left(D^{1 / 3}\right)^{2}+\frac{1}{8}\left(d T-2 \sigma_{T}\right)+\frac{1}{4} \delta(T)-\frac{1}{8} \mathrm{Scal}^{g}-\frac{1}{16}\|T\|^{2} \\
& =\Delta_{T}+\frac{1}{8}\left(3 d T-2 \sigma_{\mathrm{T}}+2 \delta(\mathrm{~T})+\mathrm{Scal}\right) .
\end{aligned}
$$

Motivation: For a naturally reductive space and its canonical connection, Ω coincides with the usual Casimir operator.

Example: For the Levi-Civita connection $(T=0)$, we obtain:

$$
\Omega=\left(D^{g}\right)^{2}-\frac{1}{8} \mathrm{Scal}^{g}=\Delta^{g}+\frac{1}{8} \mathrm{Scal}^{g}
$$

Proposition. The kernel of the Casimir operator contains all ∇-parallel spinors.

The case $\nabla T=0: \Omega$ then simplifies,

$$
\begin{aligned}
\Omega & =\left(D^{1 / 3}\right)^{2}-\frac{1}{16}\left(2 \mathrm{Scal}^{g}+\|T\|^{2}\right) \\
& =\Delta_{T}+\frac{1}{16}\left(2 \mathrm{Scal}^{g}+\|T\|^{2}\right)-\frac{1}{4} T^{2} \\
& =\Delta_{T}+\frac{1}{8}(2 d T+\text { Scal }) .
\end{aligned}
$$

Proposition. (M^{n}, g, ∇) compact, $\nabla T=0$. If

$$
2 \mathrm{Scal}^{g} \leq-\|T\|^{2} \quad \text { or } \quad 2 \mathrm{Scal}^{g} \geq 4 T^{2}-\|T\|^{2}
$$

holds, the Casimir operator is non-negative.
Proposition. If $\nabla T=0, \Omega$ and $\left(D^{1 / 3}\right)^{2}$ commute with T,

$$
\Omega \circ T=T \circ \Omega, \quad\left(D^{1 / 3}\right)^{2} \circ T=T \circ\left(D^{1 / 3}\right)^{2} .
$$

In the compact case, T preserves the kernel of $D^{1 / 3}$.

5-Dimensional Sasakian Manifolds

- M^{5} : a 5-dimensional Sasakian manifold, η its contact structure.
- Consider characteristic connection with torsion T :

$$
\begin{aligned}
\nabla T & =0, \quad T=\eta \wedge d \eta=2\left(e_{12}+e_{34}\right) \wedge e_{5} \\
T^{2} & =8-8 e_{1234}, \quad T=\operatorname{diag}(4,0,0,-4)
\end{aligned}
$$

\Rightarrow the Casimir operator splits into $\Omega=\Omega_{0} \oplus \Omega_{4} \oplus \Omega_{-4}$,

$$
\begin{aligned}
& \Omega_{0}=\Delta_{T}+\frac{1}{8} \mathrm{Scal}^{g}+\frac{1}{2}=\left(D^{1 / 3}\right)^{2}-\frac{1}{8} \mathrm{Scal}^{g}-\frac{1}{2} \\
& \Omega_{ \pm 4}=\Delta_{T}+\frac{1}{8} \mathrm{Scal}^{g}-\frac{7}{2}=\left(D^{1 / 3}\right)^{2}-\frac{1}{8} \mathrm{Scal}^{g}-\frac{1}{2}
\end{aligned}
$$

- If $\mathrm{Scal}^{g} \neq-4, \operatorname{Ker}\left(\Omega_{0}\right)=0$.
- If $\mathrm{Scal}^{g}<-4$ or $\mathrm{Scal}^{g}>28, \operatorname{Ker}\left(\Omega_{ \pm 4}\right)=0$.
- The interesting cases: $-4 \leq \mathrm{Scal}^{g} \leq 28$.

$$
\text { If Scal }{ }^{g}=-4: \quad \Omega_{0}=\Delta_{T}=\left(D^{1 / 3}\right)^{2}, \quad \Omega_{ \pm 4}=\Delta_{T}-4=\left(D^{1 / 3}\right)^{2}
$$

- The kernel of Ω_{0} coincides with the space of ∇-parallel spinors ψ such that $T \cdot \psi=0$.
[Examples: TF/Ivanov, 2002]
- Spinors in both kernels $\operatorname{Ker}\left(\Omega_{0}\right)$ and $\operatorname{Ker}\left(\Omega_{ \pm 4}\right)$ exist on the 5 dimensional Heisenberg group

$$
\begin{aligned}
& e_{1}=d x_{1} / 2, \quad e_{2}=d y_{1} / 2, \quad e_{3}=d x_{2} / 2, \quad e_{4}=d y_{2} / 2 \\
& e_{5}=\eta:=\left(d z-y_{1} d x_{1}-y_{2} d x_{2}\right) / 2
\end{aligned}
$$

- Spinors in the kernel of $\Omega_{ \pm 4}$ occur on Sasakian η-Einstein manifolds of type $\operatorname{Ric}^{g}=-2 \cdot g+6 \cdot \eta \otimes \eta$
[Examples: TF/Kim, 2000]
If $S c a l^{g}=28: \Omega_{0}=\Delta_{T}+4=\left(D^{1 / 3}\right)^{2}-4, \quad \Omega_{ \pm 4}=\Delta_{T}=\left(D^{1 / 3}\right)^{2}-4$.
- The kernel of $\Omega_{ \pm 4}$ coincides with the space of ∇-parallel spinors ψ such that $T \cdot \psi= \pm 4 \psi$.

Einstein-Sasaki manifolds, $\mathrm{Scal}^{g}=20$:

$$
\Omega_{0}=\Delta_{T}+3, \quad \Omega_{ \pm 4}=\Delta_{T}-1=\left(D^{1 / 3}\right)^{2}-3
$$

Thm. The Casimir operator of a compact 5-dimensional Einstein-Sasaki manifold has trivial kernel.

Example: Stiefel manifold $\mathrm{V}_{4,2}=\mathrm{SO}(4) / \mathrm{SO}(2)$ with its Einstein-Sasaki metric. There exist Riemannian Killing spinors. The Casimir operator is equivalent to the operators

$$
\Omega_{0}=-3 \sum_{\alpha=1}^{5} X_{\alpha}^{2}+3, \quad \Omega_{ \pm 4}=-3 \sum_{\alpha=1}^{5} X_{\alpha}^{2}-\frac{3}{4} \pm \sqrt{3} i \cdot X_{5}
$$

acting on functions $f: \operatorname{SO}(4) \rightarrow \mathbb{C}$ satisfying the quasi-periodicity conditions $E_{34}(f)= \pm i f$ and $E_{34}(f)=0$, respectively.

6-Dimensional nearly Kähler manifolds

- $\left(M^{6}, g, J\right)$: 6-dimensional nearly Kähler manifold, Kähler form Ω.
- M^{6} is Einstein, $\operatorname{Ric}^{g}=\frac{5 a}{2} g, \quad a>0$.
- Consider its characteristic connection with torsion $T=N / 4$:

$$
\nabla T=0, \quad \operatorname{Ric}^{\nabla}=2 a g, \quad 2 \sigma_{T}=d T=a \Omega \wedge \Omega, \quad\|T\|^{2}=2 a
$$

- We compute

$$
\begin{gathered}
2 d T+\text { Scal }=16 a \cdot \operatorname{diag}(0,0,1,1,1,1,1,1) \\
\Omega=\Delta_{T}+\frac{1}{8}(2 d T+\text { Scal })=\left(D^{1 / 3}\right)^{2}-2 a
\end{gathered}
$$

- If M^{6} is compact, then $\operatorname{Ker}(\Omega)=\operatorname{Ker}(\nabla)=\{$ Killingspinors $\}$ and

$$
\left(D^{1 / 3}\right)^{2} \geq \frac{2}{15} \mathrm{Scal}^{g}=2 \cdot a>0
$$

7-Dimensional G_{2}-manifolds

- $\left(M^{7}, g, \omega\right)$ cocalibrated G_{2}-manifold (type $W_{3} \oplus W_{4} \Leftrightarrow d * \omega=0$), and suppose that $(d \omega, * \omega)$ is constant.
- Its characteristic connection:

$$
T=-* d \omega+\frac{1}{6}(d \omega, * \omega) \cdot \omega, \quad \delta(T)=0
$$

- Main difference to the previous examples: $\nabla T \neq 0, d T \neq 2 \sigma_{T}$.
- Scalar curvature: Scal $^{g}=2(T, \omega)^{2}-\frac{1}{2}\|T\|^{2}$.
- The parallel spinor ψ_{0} corresponding to ω satisfies

$$
\nabla \psi_{0}=0, \quad T \cdot \psi_{0}=-\frac{1}{6}(d \omega, * \omega) \cdot \psi_{0}
$$

- Casimir operator:

$$
\begin{aligned}
\Omega & =\left(D^{1 / 3}\right)^{2}-\frac{1}{4}(T, \omega)^{2}+\frac{1}{8}\left(d T-2 \sigma_{T}\right) \\
& =\Delta_{T}+\frac{1}{4}(T, \omega)^{2}+\frac{1}{8}\left(3 d T-2 \sigma_{T}-2\|T\|^{2}\right)
\end{aligned}
$$

Nearly parallel G_{2}-structures (type W_{1}): $d \omega=-a(* \omega)$.

$$
\Omega=\left(D^{1 / 3}\right)^{2}-\frac{49}{144} a^{2}
$$

Thm. Let $\left(M^{7}, g, \omega\right)$ be a compact, nearly parallel G_{2}-manifold and denote by ∇ its characteristic connection. The kernel of the Casimir operator of the triple $\left(M^{7}, g, \nabla\right)$ coincides with the space of ∇-parallel spinors,

$$
\operatorname{Ker}(\Omega)=\left\{\psi: \nabla \psi=0, T \cdot \psi=\frac{7}{6} a \cdot \psi\right\}=\operatorname{Ker}(\nabla)
$$

