26^d Winter School in Geometry and Physics

* * * * * *

Special geometries, holonomy and string theory

Ilka Agricola & Thomas Friedrich, Humboldt University Berlin

Geometric structures with parallel characteristic torsion

• Naturally reductive space $(G/H, \nabla^c, T^c)$:

$$\nabla^c \mathbf{T}^c = 0, \quad \nabla^c \mathbf{R}^c = 0.$$

A larger category:

 $(M^n, g, \mathcal{R}, \nabla^c)$ – Riemannian manifolds with a geometric structure admitting a characteristic connection such that

$$\nabla^c \mathbf{T}^c = \mathbf{0}.$$

• The holonomy of the connection ∇^c preserves not only the geometric structure, but also a non-trivial 3-form T^c .

• The condition $\nabla^c \mathbf{T}^c = 0$ implies

$$\delta(\mathbf{T}^c) = 0, \quad d\mathbf{T}^c = 2 \cdot \sigma_{\mathbf{T}^c} = \sum_{i=1}^n (e_i \, \lrcorner \, \mathbf{T}^c) \wedge (e_i \, \lrcorner \, \mathbf{T}^c).$$

 \sim

• The formula for the Casimir operator of the tuple $(M^n, g, \mathcal{R}, \nabla^c)$ simplifies,

$$\Omega = (D^{1/3})^2 - \frac{1}{16} \left(2 \operatorname{Scal}^g + ||\mathbf{T}^c||^2 \right)$$

= $\Delta_{\mathbf{T}^c} + \frac{1}{16} \left(2 \operatorname{Scal}^g + ||\mathbf{T}^c||^2 \right) - \frac{1}{4} (\mathbf{T}^c)^2$
= $\Delta_{\mathbf{T}^c} + \frac{1}{8} \left(2 \, d\mathbf{T}^c + \operatorname{Scal} \right).$

• Ω and $(D^{1/3})^2$ commute with the endomorphism T^c ,

$$\Omega \circ T^{c} = T^{c} \circ \Omega, \quad (D^{1/3})^{2} \circ T^{c} = T^{c} \circ (D^{1/3})^{2}.$$

In the compact case, T^c preserves the kernel of $D^{1/3}$.

First example:

 $(M^{2k+1},g,\eta,\xi,\varphi)$ – Sasakian manifold. It admits a characteristic connection and

$$\mathbf{T}^c = \eta \wedge d\eta, \quad \nabla^c \mathbf{T}^c = 0.$$

Second example:

Any nearly parallel G₂-manifold (M^7, g, ω^3) admits a characteristic connection with $\nabla^c T^c = 0$.

Third example: (Matsumoto/Takamatsu/Gray/Kirichenko, 1970-1978)

Any nearly Kähler manifold admits a characteristic connection with $\nabla^c \mathbf{T}^c = 0$.

In dimension n = 6, this result implies:

Any nearly Kähler M^6 is Einstein, is a spin manifold and the first Chern class vanishes, $c_1(M^6) = 0$.

Counterexamples: G_2 -structure of type \mathcal{W}_3

Consider a G_2 -manifold (M^7, g, ω^3) of pure type \mathcal{W}_3 ,

$$d * \omega^3 = 0$$
, $(d\omega^3, *\omega^3) = 0$.

• The torsion T^c and the parallel spinor Ψ_0 :

$$T^{c} = - * d\omega^{3}, \quad \text{Scal}^{g} = -\frac{1}{2} ||T^{c}||^{2},$$
$$\nabla^{c} \Psi_{0} = 0, \quad T^{c} \cdot \Psi_{0} = 0, \quad \omega^{3} \cdot \Psi_{0} = 0.$$

• In general we have $\nabla^c \mathbf{T}^c \neq 0$,

$$\delta(\mathbf{T}^c) = 0, \quad d\mathbf{T}^c - 2 \cdot \sigma_{\mathbf{T}^c} \neq 0.$$

• The Casimir operator (general formula)

$$\Omega = (D^{1/3})^2 + \frac{1}{8} (dT^c - 2\sigma_{T^c})$$
$$= \Delta_{T^c} + \frac{1}{8} (3 dT^c - 2\sigma_{T^c} - 2 ||T^c||^2)$$

Explicite counterexample: On the manifold $N(1,1) = SU(3)/S^1$ there exist G_2 -structures of pure type W_3 such that the operators

$$\Omega - (D^{1/3})^2, \quad \Omega - \Delta_{\mathrm{T}^c}$$

are negative or positive.

(Ref. Agricola/Friedrich, Math. Ann. and Journ. Geom. Phys., 2004)

A second explicite counterexample:

Consider the 3-dimensional complex solvable group N^6 as well as $M^7 := N^6 \times \mathbb{R}^1$. There exists a left invariant metric and a left invariant G_2 -structure on M^7 such that the structure equations are:

$$de_{1} = de_{2} = de_{7} = 0$$

$$de_{3} = e_{1} \wedge e_{3} - e_{2} \wedge e_{4}, \quad de_{4} = e_{2} \wedge e_{3} + e_{1} \wedge e_{4}$$

$$de_{5} = -e_{1} \wedge e_{5} + e_{2} \wedge e_{6}, \quad de_{6} = -e_{2} \wedge e_{5} - e_{1} \wedge e_{6}.$$

The G_2 -structure is of pure type \mathcal{W}_3 and we obtain:

•
$$T^c = 2 \cdot e_{256} - 2 \cdot e_{234}, \quad \delta(T^c) = 0, \quad dT^c - 2 \cdot \sigma_{T^c} \neq 0.$$

•
$$\operatorname{Scal}^{\nabla^c} = -16$$
, $\operatorname{div}(\operatorname{Ric}^{\nabla^c}) = 0$.

• There are two ∇^c -parallel spinors and any of these satisfies the equation ${\rm T}^c\cdot\Psi=0$.

General working program:

Fix a compact Lie group $G \subset SO(n)$ Study the class of *n*-dimensional Riemannian manifolds (M^n, g) equipped with a G-structure $\mathcal{R} \subset \mathcal{F}(M^n)$ such that the G-structure admits a characteristic connection ∇^c with parallel torsion form,

$$\nabla^c \mathbf{T}^c = \mathbf{0} \; .$$

Results: The case n = 6, $G = U(3) \subset SO(6)$: B. Alexandrov/Th.Friedrich/N. Schoemann, Journ. Geom. Phys. 2005 N. Schoemann, PhD 2006.

The case n = 7, $G = G_2 \subset SO(7)$: Friedrich, preprint in 2006.

Almost hermitian geometries with parallel characteristic torsion

- (M^6, g, J) : almost hermitian 6-manifold, $\mathfrak{so}(6) = \mathfrak{u}(3) \oplus \mathfrak{m}^6$
- $\Gamma \in \mathbb{R}^6 \otimes \mathfrak{m}^6 =_{\mathrm{U}(3)} \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$
- \mathcal{W}_1 nearly Kähler manifolds, $\dim_{\mathbb{R}}(\mathcal{W}_1) = 2$

• $\mathcal{W}_3\oplus\mathcal{W}_4$ – hermitian manifolds $(N_J=0),\ \dim_\mathbb{R}(\mathcal{W}_3)=12$, $\dim_\mathbb{R}(\mathcal{W}_4)=6$

Thm. An almost hermitian manifold admits a characteristic connection if and only if it is of type $W_1 \oplus W_3 \oplus W_4$. This condition is equivalent to the condition that the Nijenhuis tensor N_J is totally skew symmetric. The characteristic torsion is given by

$$\mathbf{T}^c = J(d\,\Omega) + \mathbf{N}_J \; .$$

First case:

The \mathcal{W}_4 -part of Γ does not vanish. Since it is basically a vector field, it induces an action of the abelian group \mathbb{C} .

Thm. A compact, regular hermitian manifold M^6 with ∇^c -parallel characteristic torsion T^c and a nontrivial \mathcal{W}_4 -part of Γ is a T^2 -bundle over a 4-dimensional compact Kähler manifold X^4 . The bundle is defined by two parallel, anti-self dual forms Ω_1, Ω_2 on X^4 such that

$$2 \cdot \Omega_2$$
, $2 \cdot \Omega + 2 \cdot \Omega_1 \in \mathrm{H}^2(X^4; \mathbb{Z})$.

• The admissible Kähler surfaces X^4 are products $\Sigma_1^2 \times \Sigma_2^2$ of 2-dimensional manifolds.

Second case:

 M^6 is of type \mathcal{W}_3 . Then J is integrable and

$$d\Omega = - * \mathbf{T}^c, \ \delta\Omega = 0.$$

The 3-form T^c belongs to the $12\text{-dimensional representation}\ \mathcal{W}_3$ defined by

$$J(\mathbf{T}) = *\mathbf{T}, \quad \tau(\mathbf{T}) = -\mathbf{T},$$

where τ is the action of the central element $\Omega \in \mathfrak{u}(3)$ on 3-forms.

• If $\nabla^c T^c = 0$, then the orbit type of $T^c \in \mathcal{W}_3$ is an invariant of the hermitian manifold M^6 .

Consequence: We need the whole orbit type structure of the 12-dimensional representation W_3 under the action of the 9-dimensional group U(3).

Basic Theorem for the Classification: There are exactly two orbits in W_3 with a non-abelian isotropy group.

Thm: Let M^6 be a compact hermitian manifold of type \mathcal{W}_3 such that

$$\nabla^c \mathbf{T}^c = 0, \quad G_{\mathbf{T}^c} = \mathbf{U}(2).$$

Then M^6 is the twistor space of a 4-dimensional compact selfdual Einstein space with positive scalar curvature. J is the standard complex structure of the twistor space, but the metric is the unique, non-Kählerian Einstein metric of the twistor space.

Remark. There are only two such spaces,

$$M^6 = \mathbb{CP}^3, \quad \mathbb{F}(1,2).$$

Thm. Let M^6 be a compact hermitian manifold of type \mathcal{W}_3 such that

$$\nabla^c \mathbf{T}^c = 0 , \ G_{\mathbf{T}^c} = \mathrm{SO}(3) .$$

Then M^6 is is locally isomorphic to $SL(2,\mathbb{C})$ equipped with a left-invariant hermitian structure.

Strominger equations on this space:

There exists a spinor field Ψ on M^6 such that

$$\operatorname{Ric}^{\nabla^{c}} = -\frac{1}{3} \cdot ||\mathbf{T}^{c}||^{2} \cdot \operatorname{Id} , \quad \delta \mathbf{T}^{c} = 0 ,$$
$$\nabla^{c} \Psi = 0 , \quad \mathbf{T}^{c} \cdot \Psi = 0 .$$

Geometric structures of vectorial type

Ref. Agricola/Friedrich, math.dg/0509147

- (M^n, g, \mathcal{R}) Riemannian manifold with a geometric structure,
- $\mathfrak{so}(n) = \mathfrak{g} \oplus \mathfrak{m}$ the decomposition of the Lie algebra,
- $\Gamma \in \mathbb{R}^n \otimes \mathfrak{m}$ the intrinsic torsion.
- A universal embedding $\mathbb{R}^n \longrightarrow \mathbb{R}^n \otimes \mathfrak{m}$

$$\Theta_1 : \mathbb{R}^n \longrightarrow \mathbb{R}^n \otimes \mathfrak{m}, \quad \Theta_1(\Gamma) = \sum_{i=1}^n e_i \otimes \operatorname{pr}_{\mathfrak{m}}(e_i \wedge \Gamma).$$

Definition: Let M^n be an oriented Riemannian manifold and denote by $\mathcal{F}(M^n)$ its frame bundle. A geometric structure $\mathcal{R} \subset \mathcal{F}(M^n)$ is called of vectorial type if its intrinsic torsion belongs to $\Gamma \in \mathbb{R}^n \subset \mathbb{R}^n \otimes \mathfrak{m}$.

Remark: These geometric structures are usually called \mathcal{W}_4 -structures .

Proposition: If a G-structure is of vectorial type, then there exists a unique metric connection ∇^{vec} of vectorial type in the sense of Cartan and preserving the G-structure. The formula is

$$\nabla_X^{\text{vec}} Y = \nabla_X^g Y - g(X, Y) \cdot \Gamma + g(Y, \Gamma) \cdot X.$$

Conversely, if a G-structure \mathcal{R} admits a connection of vectorial type in the sense of Cartan, then \mathcal{R} is of vectorial type in our sense.

• Consider a conformal change of $g^*:=e^{2f}g$ and define a new G-structure $\mathcal{R}^*\subset \mathcal{F}(M^n,g^*)$ by

$$\mathcal{R}^* = \left\{ (e^{-f} \cdot e_1 , e^{-f} \cdot e_2 \dots , e^{-f} \cdot e_n) : (e_1 , e_2 , \dots , e_n) \in \mathcal{R} \right\}.$$

The intrinsic torsion changes by the element $df \in \mathbb{R}^n \subset \mathbb{R}^n \otimes \mathfrak{m}$,

$$\Gamma^* = \Gamma + df, \quad d\Gamma = d\Gamma^*.$$
 5

On the other side, starting with an arbitrary geometric structure on a compact manifold, the equation

$$0 = \delta^{g^*}(\Gamma^*) = \delta^g(\Gamma) + \Delta(f) + (n-2) \cdot \left((df, \Gamma) + ||df||^2 \right)$$

has a unique solution $f = -\Delta^{-1}(\delta^g(\Gamma))$.

Proposition: An arbitrary geometric structure of vectorial type on a compact manifold admits a conformal change such that the new 1-form is coclosed, $\delta^{g^*}(\Gamma^*) = 0$.

Proposition: Let $G \subset SO(n)$ be a subgroup such that

1. there exists a G-invariant differential form Ω^k of some degree k, and

2. the multiplication $\Omega^k : \Lambda^2(\mathbb{R}^n) \to \Lambda^{k+2}(\mathbb{R}^n)$ is injective.

Then, for any G-structure of vectorial type, the 1-form Γ is closed, $d\Gamma = 0$.

Remark: The groups $G_2 \subset SO(7)$ and $Spin(7) \subset SO(8)$ satisfy the conditions of the Proposition. Consequently, it generalizes results of Cabrera (1995, 1996). Moreover, there are other groups satisfying the conditions, namely $U(n) \subset SO(2n)$ for n > 2 and $Spin(9) \subset SO(16)$.

Remark: $SO(3) \subset SO(5)$ (the irreducible representation) does not admit any invariant differential form. $SO(n-1) \subset SO(n)$ and $U(2) \subset SO(4)$ admit invariant forms, but the second condition of the Proposition is not satisfied. In these geometries the condition $d\Gamma = 0$ is an additional requirement on the geometric structure of vectorial type. **Example:** Consider the subgroup $G = SO(n - 1) \subset SO(n)$. A G-structure on (M^n, g) is a vector field Ω (a 1-form) of length one. The geometric structure is of vectorial type if and only if there exists a vector field Γ (a 1-form) such that

$$0 = \nabla_X^{\text{vec}} \Omega = \nabla_X^g \Omega - g(X, \Omega) \Gamma + g(\Omega, \Gamma) X$$

holds. This condition implies that Ω defines a codimension one foliation on $M^n,$

$$d\Omega = \Omega \wedge \Gamma .$$

Moreover, the second fundamental form of any leave $F^{n-1} \subset M^n$ is given by the formula $II(X) = -g(\Omega, \Gamma) \cdot X$, $X \in TF^{n-1}$. Therefore, the leaves are umbilic. In consequence,

SO(n-1)-structures of vectorial type coincide with umbilic foliations of codimension one.

 Γ satisfies the condition $\Omega \wedge d\Gamma = 0$, but in general it does not have to be closed.

Theorem: Let $G \subset SO(n)$ be a subgroup lifting into the spin group and suppose that there exists a G-invariant spinor $0 \neq \Psi \in \Delta_n$. Moreover, suppose that $n \geq 5$ is at least five. Then Γ is closed, $d\Gamma = 0$. The Ricci tensor is given by

$$\operatorname{Ric}^{g}(X) = (n-2) \nabla_{X}^{g} \Gamma - \delta^{g}(\Gamma) \cdot X + A(X, \Gamma).$$

where the vector $A(X, \Gamma)$ is defined by

 $A(X, \Gamma) := \begin{cases} 0 & \text{if } X \text{ and } \Gamma \text{ are proportional} \\ (n-2)||\Gamma||^2 \cdot X & \text{if } X \text{ and } \Gamma \text{ are orthogonal} \end{cases}$

The scalar curvature Scal^g can be expressed by Γ ,

Scal^g = 2 (1 - n)
$$\delta^{g}(\Gamma)$$
 + (n - 1)(n - 2) $||\Gamma||^{2}$.

20

Remark: The conditions of the latter theorem are satisfied for the groups $G_2 \subset SO(7)$ and $Spin(7) \subset SO(8)$. The subgroups $U(n) \subset SO(2n)$ or $Spin(9) \subset SO(16)$ do *not* satisfy the conditions, there are no invariant spinors.

Corollary: Suppose that the subgroup $G \subset SO(n)$ lifts into the spin group and admits an invariant spinor $0 \neq \Psi \in \Delta_n$. Then, for any G-structure of vectorial type, we have

$$g(\operatorname{Ric}^{g}(\Gamma), \Gamma) = \frac{(n-2)}{2} \cdot \Gamma(||\Gamma||^{2}) - \delta^{g}(\Gamma) \cdot ||\Gamma||^{2}.$$

If the manifold M^n is compact, then

$$\int_{M^n} g(\operatorname{Ric}^g(\Gamma), \Gamma) = \frac{(n-4)}{2} \cdot \int_{M^n} \delta^g(\Gamma) \cdot ||\Gamma||^2.$$

21

Corollary: Let $G \subset SO(n)$ be a subgroup that can be lifted into the spin group and suppose that there exists a spinor G-invariant $0 \neq \Psi \in \Delta_n$ $(n \geq 5)$. Consider a G-structure of vectorial type on a compact manifold and suppose that $\delta^g(\Gamma) = 0$ holds. Then we have

- 1. $\nabla^g \Gamma = 0$.
- 2. $\operatorname{Ric}^{g}(\Gamma) = 0.$
- 3. If X is orthogonal to Γ , then $\operatorname{Ric}^{g}(X) = (n-1) \cdot ||\Gamma||^{2} \cdot X$.
- 4. The scalar curvature is positive

Scal^g =
$$(n-1)(n-2)||\Gamma||^2 > 0$$
.

5. The universal covering $\tilde{M}^n = Y^{n-1} \times \mathbb{R}^1$ splits into \mathbb{R} and an Einstein manifold Y^{n-1} with positive scalar curvature admitting a real Riemannian Killing spinor.

Remark: For $G = G_2$ (n = 7) and G = Spin(7) (n = 8) the latter result has been obtained by Ivanov/Parton/Piccinni, math.dg/0509038.

Geometric structures of vectorial type admitting a characteristic connection

• $\mathcal{R} \subset \mathcal{F}(M^n)$ – a structure of vectorial type admitting a characteristic connection.

- We have two connections ∇^{vec} and ∇^{c} preserving the G-structure.
- The link between Γ and T^c : $2 \cdot (X \wedge \Gamma) + X \, \lrcorner \, T^c \in \mathfrak{g}$.

• In the sense of G-representations, $\mathbb{R}^n \subset \Lambda^3(\mathbb{R}^n)$ is a necessary condition !

Example: For the subgroups $G = SO(3) \subset SO(5)$, $Spin(9) \subset SO(16)$ or $G = F_4 \subset SO(26)$ this condition is not satisfied.

Example: In dimensions n = 7, 8 any G₂- or Spin(7)-structure of vectorial type admits a characteristic connection.

Theorem: Let $G \subset SO(n)$ be a subgroup lifting into the spin group and suppose that there exists a G-invariant spinor $0 \neq \Psi \in \Delta_n$. Consider a G-structure of vectorial type that admits a characteristic connection. Then we have

$$(\Gamma \sqcup T^{c}) \cdot \Psi = 0, \quad \delta(T^{c}) \cdot \Psi = 0, \quad T^{c} \cdot \Psi = \frac{2}{3} (n-1) \Gamma \cdot \Psi,$$

$$(T^{c})^{2} \cdot \Psi = \frac{4}{9} (n-1)^{2} ||\Gamma||^{2} \cdot \Psi,$$

$$dT^{c} \cdot \Psi = \frac{1}{3} (||T^{c}||^{2} - \frac{4}{9} (n-1)^{2} ||\Gamma||^{2} - \operatorname{Scal}^{\nabla^{T^{c}}}) \cdot \Psi,$$

$$2 (n-1) \delta^{g}(\Gamma) = 2 (\frac{4}{9} (n-1)^{2} ||\Gamma||^{2} - ||T^{c}||^{2}) - \operatorname{Scal}^{\nabla^{T^{c}}}.$$

Generalized Hopf structures

• $\mathcal{R} \subset \mathcal{F}(M^n)$ – a structure of vectorial type admitting a characteristic connection.

• The condition $\nabla^{\rm vec}\Gamma=0$ or $\nabla^{\rm vec}T^c=0$ is very restrictive. Indeed, it implies that

$$\delta^g(\Gamma) = (n-1) \cdot ||\Gamma||^2.$$

• The conditions $\nabla^{c}\Gamma = 0$ or $\nabla^{c}T^{c} = 0$ are more interesting.

• In complex geometry, a hermitian manifold of vectorial type such that its characteristic torsion T^c is ∇^c -parallel is called a generalized Hopf manifold. These \mathcal{W}_4 -manifolds have been studied by Vaisman.

Definition: A G-structure $\mathcal{R} \subset \mathcal{F}(M^n)$ of vectorial type and admitting a characteristic connection is called a *generalized Hopf* G-*structure* if $\nabla^{c}\Gamma = 0$ holds. **Theorem:** Suppose that $\Theta : \Lambda^3(\mathbb{R}^n) \to \mathbb{R}^n \otimes \mathfrak{m}$ is injective and let \mathcal{R} be a G-structure of vectorial type admitting a characteristic connection. If $\nabla^c \Gamma = 0$, then

 $\delta^g(\Gamma) = 0, \quad \delta^g(\Gamma^c) = 0, \quad d\Gamma = \Gamma \,\lrcorner\, T^c, \quad 2 \cdot \nabla^g \Gamma = d\Gamma.$

In particular, Γ is a Killing vector field.

Remark: The vector field Γ of a Hopf G-structure is a Killing vector field. Γ is ∇^g -parallel if and only if $d\Gamma = 0$ holds. We discussed sufficient conditions that the vector field of any Hopf G-structure is ∇^g -parallel. This situation occurs for the standard geometries of the groups $G = G_2$, Spin(7) and for U(n), $n \geq 3$.

Interesting problem: Investigate subgroups $G \subset SO(n)$ and Hopf G-structures ($\nabla^{c}\Gamma = 0$) with a non ∇^{g} -parallel vector field.