Lineare Algebra I

– Klausur – Donnerstag, 21.12.2006, 16:15-18:45 Uhr, Audimax, HG 5

Name, Vorname	
Matrikelnummer	

Wichtig, bitte beachten:

- Bearbeiten Sie die Aufgaben auf den ausgegebenen Blättern; zusätzliches Papier bei der Aufsicht.
- Der Schreibblock darf nicht auseinander genommen werden.
- Geben Sie stichpunktartig Begründungen für Ihre Schlüsse und Rechnungen an.
- Zugelassene Hilfsmittel: Merkblatt.
- Bitte überprüfen Sie Name und Matrikelnummer.

Viel Erfolg!

Aufgabe	1	2	3	4	5	6	7	8	Σ
Punkte	5	3	4	4	4	4	5	3	32
Erreicht									

Aufgabe 1 (5 Punkte). Sei $n \ge 2$. Welche der folgenden Mengen sind Untervektorräume des \mathbb{R} -Vektorraums $\mathbb{R}^{n \times n}$?

- (i) $V_1 = \{ A \in \mathbb{R}^{n \times n} \mid A \text{ ist invertierbar} \}.$
- (ii) $V_2 = \{ A \in \mathbb{R}^{n \times n} \mid A^2 = A \}.$
- (iii) $V_3 = \{ A \in \mathbb{R}^{n \times n} \mid A^t = A \}.$
- (iv) $V_4 = \{ A \in \mathbb{R}^{n \times n} \mid \dim \operatorname{Kern} A \ge 1 \}.$

Aufgabe 2 (3 Punkte). Sei $T: V \to W$ linear, (w_1, \ldots, w_n) ein Erzeugendensystem von W. Zeigen Sie:

T ist surjektiv \iff Zu jedem w_i existiert ein $v_i \in V$ mit $Tv_i = w_i$.

Aufgabe 3 (4 Punkte). Seien $f_1, \ldots, f_n \in Abb(\mathbb{R}, \mathbb{R})$ und $t_1, \ldots, t_n \in \mathbb{R}$, so dass die Vektoren $v_1, \ldots, v_n \in \mathbb{R}^n$ mit

$$v_j = \begin{pmatrix} f_j(t_1) \\ \vdots \\ f_j(t_n) \end{pmatrix}, j = 1, \dots, n$$

lineare unabhängig sind. Zeigen Sie, dass dann auch f_1, \ldots, f_n linear unabhängig sind.

Aufgabe 4 (4 Punkte). Es sei $U \subset \mathbb{R}^n$ der Untervektorraum

$$U := \{ x \in \mathbb{R}^n \mid x_1 + 2x_2 + \ldots + nx_n = 0 \}.$$

Bestimmen Sie die Dimension von U und geben Sie einen Untervektorraum U' von \mathbb{R}^n an mit $U \oplus U' = \mathbb{R}^n$.

Aufgabe 5 (4 Punkte). Gegeben sei die Basis $v^1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $v^2 = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$, $v^3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$

von \mathbb{R}^3 und $U := \operatorname{Span}(v^1, v^2)$. Bestimmen Sie für die Abbildungen

$$T: \mathbb{R}^3 \to \mathbb{R}^2, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \end{pmatrix}$$

und

$$S: U \to \mathbb{R}^2, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 3x_1 - x_2 + 4x_3 \\ x_1 - x_3 \end{pmatrix}$$

jeweils die Matrixdarstellungen $A := M(T; (v^1, v^2, v^3), \mathcal{B}^2)$ und $B := M(S; (v^1, v^2), \mathcal{B}^2)$, wobei \mathcal{B}^2 die Standard-Basis von \mathbb{R}^2 ist.

Aufgabe 6 (4 Punkte). Sei $A \in \mathbb{K}^{m \times n}, \ B \in \mathbb{K}^{n \times p}$ und dim Kern B = s. Zeigen Sie: Rang $AB \leq p - s$.

Aufgabe 7 (5 Punkte). Es sei $A:\mathbb{R}^3\to\mathbb{R}^3$ eine lineare Abbildung mit

$$A = \left(\begin{array}{rrr} -1 & -2 & 2\\ 3 & 4 & -3\\ 2 & 2 & -1 \end{array}\right) .$$

- a) Bestimmen Sie von Bild A und von Kern A jeweils eine Basis.
- b) Zeigen Sie, dass A eine Projektion ist.
- c) Was folgt aus b) für die Dimension von Kern $A \cap \text{Bild } A$?

Aufgabe 8 (3 Punkte). Sei

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 2 \\ -2 & 0 & -1 \\ 2 & 2 & 4 \end{pmatrix} \in \mathbb{R}^{4 \times 3}, \quad b = \begin{pmatrix} 3 \\ 5 \\ 2 \\ 4 \end{pmatrix} \in \mathbb{R}^4.$$

Berechnen Sie Kern A und die Lösungen $x \in \mathbb{R}^3$ von Ax = b.