
Label Ranking by

Learning Pairwise Preferences

Eyke Hüllermeier, a Johannes Fürnkranz b, Weiwei Cheng a,
Klaus Brinker a,

aDepartment of Mathematics and Computer Science, Philipps-Universität
Marburg, Germany

bDepartment of Computer Science, TU Darmstadt, Germany

Abstract

Preference learning is an emerging topic that appears in different guises in the recent
literature. This work focuses on a particular learning scenario called label ranking,
where the problem is to learn a mapping from instances to rankings over a finite
number of labels. Our approach for learning such a mapping, called ranking by
pairwise comparison (RPC), first induces a binary preference relation from suitable
training data using a natural extension of pairwise classification. A ranking is then
derived from the preference relation thus obtained by means of a ranking procedure,
whereby different ranking methods can be used for minimizing different loss func-
tions. In particular, we show that a simple (weighted) voting strategy minimizes
risk with respect to the well-known Spearman rank correlation. We compare RPC
to existing label ranking methods, which are based on scoring individual labels in-
stead of comparing pairs of labels. Both empirically and theoretically, it is shown
that RPC is superior in terms of computational efficiency, and at least competitive
in terms of accuracy.

Key words: ranking, learning from preferences, pairwise classification

Email addresses: eyke@informatik.uni-marburg.de (Eyke Hüllermeier,),
juffi@ke.informatik.tu-darmstadt.de (Johannes Fürnkranz),
cheng@informatik.uni-marburg.de (Weiwei Cheng),
brinker@informatik.uni-marburg.de (Klaus Brinker).

1

1 Introduction

The topic of preferences has recently attracted considerable attention in Artifi-
cial Intelligence (AI) research, notably in fields such as agents, non-monotonic
reasoning, constraint satisfaction, planning, and qualitative decision theory
[20]. 1 Preferences provide a means for specifying desires in a declarative way,
which is a point of critical importance for AI. In fact, consider AI’s paradigm of
a rationally acting (decision-theoretic) agent: The behavior of such an agent
has to be driven by an underlying preference model, and an agent recom-
mending decisions or acting on behalf of a user should clearly reflect that
user’s preferences.

It is hence hardly surprising that methods for learning and predicting pref-
erences in an automatic way are among the very recent research topics in
disciplines such as machine learning, knowledge discovery, and recommender
systems. Many approaches have been subsumed under the terms of ranking
and preference learning, even though some of them are quite different and are
not sufficiently well discriminated by existing terminology. We will thus start
our paper with a clarification of its contribution (Section 2). The learning
scenario that we will consider in this paper assumes a collection of training
examples which are associated with a finite set of decision alternatives. Fol-
lowing the common notation of supervised learning, we shall refer to the latter
as labels. However, contrary to standard classification, a training example is
not assigned a single label, but a set of pairwise preferences between labels
(which neither has to be complete nor entirely consistent), each one expressing
that one label is preferred over another. The goal is to learn to predict a total
order, a ranking, of all possible labels for a new training example.

The ranking by pairwise comparison (RPC) algorithm, which we introduce in
Section 3 of this paper, has a modular structure and works in two phases. First,
pairwise preferences are learned from suitable training data, using a natural
extension of so-called pairwise classification. Then, a ranking is derived from
a set of such preferences by means of a ranking procedure. In Section 4, we
analyze the computational complexity of the RPC algorithm. Then, in Sec-
tion 5, it will be shown that, by using suitable ranking procedures, RPC can
minimize the risk for certain loss functions on rankings. Section 6 is devoted
to an experimental evaluation of RPC and a comparison with alternative ap-
proaches applicable to the same learning problem. The paper closes with a
discussion of related work in Section 7 and concluding remarks in Section 8.
Parts of this paper are based on [26, 27, 36].

1 The increasing activity in this area is also witnessed by several workshops that
have been devoted to preference learning and related topics, such as those at the
NIPS-02, KI-03, SIGIR-03, NIPS-04, GfKl-05, IJCAI-05 and ECAI-2006 conferences
(the second and fifth organized by two of the authors).

2

modeling modeling
utility functions pairwise preferences

object ranking comparison training [62] learning to order things [14]

label ranking constraint classification [30] this work [26]

Table 1
Four different approaches to learning from preference information together with
representative references

2 Learning from Preferences

In this section, we will motivate preference learning 2 as a theoretically inter-
esting and practically relevant subfield of machine learning. One can distin-
guish two types of preference learning problems, namely learning from object
preferences and learning from label preferences, as well as two different ap-
proaches for modeling the preferences, namely by evaluating individual alter-
natives (by means of a utility function), or by comparing (pairs of) competing
alternatives (by means of a preference relation). Table 1 shows the four possi-
ble combinations thus obtained. In this section, we shall discuss these options
and show that our approach, label ranking by pairwise comparison, is still
missing in the literature and hence a novel contribution.

2.1 Learning from Object Preferences

The most frequently studied problem in learning from preferences is to induce
a ranking function r(·) that is able to order any subset O of an underlying class
X of objects. That is, r(·) assumes as input a subset O = {x1 . . . xn} ⊆ X of
objects and returns as output a permutation τ of {1 . . . n}. The interpretation
of this permutation is that object xi is preferred to xj whenever τ(i) < τ(j).
The objects themselves (e.g. websites) are typically characterized by a finite
set of features as in conventional attribute-value learning. The training data
consists of a set of exemplary pairwise preferences. This scenario, summarized
in Figure 1, is also known as “learning to order things” [14].

2 We interpret the term “preference” not literally but in a wide sense as a kind
of order relation. Thus, a � b can indeed mean that alternative a is more liked by
a person than b, but also that a is an algorithm that outperforms b on a certain
problem, that a is an event that is more probable than b, that a is a student finishing
her studies before b, etc.

3

Given:
• a (potentially infinite) reference set of objects X

(each object typically represented by a feature vector)
• a finite set of pairwise preferences xi � xj, (xi, xj) ∈ X × X
Find:
• a ranking function r(·) that assumes as input a set of objects O ⊆ X and

returns a permutation (ranking) of this set

Fig. 1. Learning from object preferences

As an example consider the problem of learning to rank query results of a
search engine [39, 56]. The training information is provided implicitly by the
user who clicks on some of the links in the query result and not on others.
This information can be turned into binary preferences by assuming that the
selected pages are preferred over nearby pages that are not clicked on [40].

2.2 Learning from Label Preferences

In this learning scenario, the problem is to predict, for any instance x (e.g., a
person) from an instance space X , a preference relation �x⊆ L × L among
a finite set L = {λ1 . . . λm} of labels or alternatives, where λi �x λj means
that instance x prefers the label λi to the label λj. More specifically, we are
especially interested in the case where �x is a total strict order, that is, a
ranking of L. Note that a ranking �x can be identified with a permutation
τx of {1 . . .m}, e.g., the permutation τx such that τx(i) < τx(j) whenever
λi �x λj (τ(i) is the position of λi in the ranking). We shall denote the class
of all permutations of {1 . . .m} by Sm. Moreover, by abuse of notation, we shall
sometimes employ the terms “ranking” and “permutation” synonymously.

The training information consists of a set of instances for which (partial)
knowledge about the associated preference relation is available (cf. Figure 2).
More precisely, each training instance x is associated with a subset of all pair-
wise preferences. Thus, even though we assume the existence of an underlying
(“true”) ranking, we do not expect the training data to provide full informa-
tion about that ranking. Besides, in order to increase the practical usefulness
of the approach, we even allow for inconsistencies, such as pairwise preferences
which are conflicting due to observation errors.

As in the case of object ranking, this learning scenario has a large number of
practical applications. In the empirical part, we investigate the task of pre-
dicting a “qualitative” representation of a gene expression profile as measured

4

Given:
• a set of training instances {xk | k = 1 . . . n} ⊆ X

(each instance typically represented by a feature vector)
• a set of labels L = {λi | i = 1 . . .m}
• for each training instance xk: a set of pairwise preferences of the form
λi �xk

λj

Find:
• a ranking function that maps any x ∈ X to a ranking �x of L (permutation
τx ∈ Sm)

Fig. 2. Learning from label preferences

by microarray analysis from phylogenetic profile features [4]. Another appli-
cation scenario is meta-learning, where the task is to rank learning algorithms
according to their suitability for a new dataset, based on the characteristics
of this dataset [11]. Finally, every preference statement in the well-known
CP-nets approach [8], a qualitative graphical representation that reflects con-
ditional dependence and independence of preferences under a ceteris paribus
interpretation, formally corresponds to a label ranking.

In addition, it has been observed by several authors [30, 26, 18] that many
conventional learning problems, such as classification and multi-label classifi-
cation, may be formulated in terms of label preferences:

• Classification: A single class label λi is assigned to each example xk. This
implicitly defines the set of preferences {λi �xk

λj | 1 ≤ j 6= i ≤ m}.
• Multi-label classification: Each training example xk is associated with a

subset Lk ⊆ L of possible labels. This implicitly defines the set of preferences
{λi �xk

λj |λi ∈ Lk, λj ∈ L \ Lk}.

In each of the former scenarios, a ranking model f : X → Sm is learned from
a subset of all possible pairwise preferences. A suitable projection may be ap-
plied to the ranking model (which outputs permutations) as a post-processing
step, for example a projection to the top-rank in classification learning where
only this label is relevant.

2.3 Learning Utility Functions

As mentioned above, one natural way to represent preferences is to evaluate
individual alternatives by means of a (real-valued) utility function. In the
object preferences scenario, such a function is a mapping f : X → R that

5

assigns a utility degree f(x) to each object x and, hence, induces a complete
order on X . In the label preferences scenario, a utility function fi : X → R is
needed for each of the labels λi, i = 1 . . .m. Here, fi(x) is the utility assigned
to alternative λi by instance x. To obtain a ranking for x, the alternatives are
ordered according to these utility scores, i.e., λi �x λj ⇔ fi(x) ≥ fj(x).

If the training data would offer the utility scores directly, preference learning
would reduce to a standard regression problem (up to a monotonic transforma-
tion of the utility values). This information can rarely be assumed, however.
Instead, usually only constraints derived from comparative preference infor-
mation of the form “This object (or label) should have a higher utility score
than that object (or label)” are given. Thus, the challenge for the learner is to
find a function that is as much as possible in agreement with all constraints.

For object ranking approaches, this idea has first been formalized by Tesauro
[62] under the name comparison training. He proposed a symmetric neural-
network architecture that can be trained with representations of two states
and a training signal that indicates which of the two states is preferable. The
elegance of this approach comes from the property that one can replace the
two symmetric components of the network with a single network, which can
subsequently provide a real-valued evaluation of single states. Later works on
learning utility function from object preference data include [64, 34, 39, 29]

Subsequently, we outline two approaches, constraint classification (CC) and
log-linear models for label ranking (LL), that are direct alternatives to our
method of ranking by pairwise comparison, and that we shall later on compare
with.

2.3.1 Constraint Classification

For the case of label ranking, a corresponding method for learning the func-
tions fi(·), i = 1 . . .m, from training data has been proposed in the framework
of constraint classification [30, 31]. Proceeding from linear utility functions

fi(x) =
n∑
k=1

αikxk (2.1)

with label-specific coefficients αik, k = 1 . . . n, a preference λi �x λj translates
into the constraint fi(x)− fj(x) > 0 or, equivalently, fj(x)− fi(x) < 0. Both
constraints, the positive and the negative one, can be expressed in terms of
the sign of an inner product 〈z, α〉, where α = (α11 . . . α1n, α21 . . . αmn) is a
concatenation of all label-specific coefficients. Correspondingly, the vector z
is constructed by mapping the original `-dimensional training example x =
(x1 . . . x`) into an (m× `)-dimensional space: For the positive constraint, x is
copied into the components ((i−1)× `+1) . . . (i× `) and its negation −x into

6

the components ((j−1)×`+1) . . . (j×`); the remaining entries are filled with
0. For the negative constraint, a vector is constructed with the same elements
but reversed signs. Both constraints can be considered as training examples
for a conventional binary classifier in an (m× `)-dimensional space: The first
vector is a positive and the second one a negative example. The corresponding
learner tries to find a separating hyperplane in this space, that is, a suitable
vector α satisfying all constraints. For classifying a new example e, the labels
are ordered according to the response resulting from multiplying e with the
i-th `-element section of the hyperplane vector. To work with more general
types of utility functions, the method can obviously be kernelized.

Alternatively, Har-Peled et al. [30, 31] propose an online version of constraint
classification, namely an iterative algorithm that maintains weight vectors
α1 . . . αm ∈ R` for each label individually. In every iteration, the algorithm
checks each constraint λi �x λj and, in case the associated inequality αi ×
x = fi(x) > fj(x) = αj × x is violated, adapts the weight vectors αi, αj
appropriately. In particular, using perceptron training, the algorithm can be
implemented in terms of a multi-output perceptron in a way quite similar to
the approach of Crammer and Singer [16].

2.3.2 Log-Linear Models for Label Ranking

So-called log-linear models for label ranking have been proposed in Dekel et al.
[18]. Here, utility functions are expressed in terms of linear combinations of a
set of base ranking functions :

fi(x) =
∑
j

αjhj(x, λi),

where a base function hj(·) maps instance/label pairs to real numbers. In-
terestingly, for the special case in which instances are represented as feature
vectors x = (x1 . . . x`) and the base functions are of the form

hkj(x, λ) =

{
xk λ = λj
0 λ 6= λj

(1 ≤ k ≤ `, 1 ≤ j ≤ m), (2.2)

the approach is essentially equivalent to CC, as it amounts to learning class-
specific utility functions (2.1). Algorithmically, however, the underlying op-
timization problem is approached in a different way, namely by means of a
boosting-based algorithm that seeks to minimize a (generalized) ranking error
in an iterative way.

7

2.4 Learning Preference Relations

The key idea of this approach is to model the individual preferences directly
instead of translating them into a utility function. This seems a natural ap-
proach, since it has already been noted that utility scores are difficult to elicit
and observed preferences are usually of the relational type. For example, it is
very hard to ensure a consistent scale even if all utility evaluations are per-
formed by the same user. The situation becomes even more problematic if
utility scores are elicited from different users, which may not have a uniform
scale of their scores [14]. For the learning of preferences, one may bring up a
similar argument. It will typically be easier to learn a separate theory for each
individual preference that compares two objects or two labels and determines
which one is better. Of course, every learned utility function that assigns a
score to a set of labels L induces such a binary preference relation on these
labels.

For object ranking problems, the pairwise approach has been pursued in [14].
The authors propose to solve object ranking problems by learning a binary
preference predicate Q(x, x′), which predicts whether x is preferred to x′ or
vice versa. A final ordering is found in a second phase by deriving a ranking
that is maximally consistent with these predictions.

For label ranking problems, the pairwise approach has been introduced by
Fürnkranz and Hüllermeier [26]. The key idea, to be described in more detail
in Section 3, is to learn, for each pair of labels (λi, λj), a binary predicate
Mij(x) that predicts whether λi �x λj or λj �x λi for an input x. In order to
rank the labels for a new object, predictions for all pairwise label preferences
are obtained and a ranking that is maximally consistent with these preferences
is derived.

3 Label Ranking by Learning Pairwise Preferences

The key idea of ranking by pairwise comparison (RPC) is to reduce the prob-
lem of label ranking to several binary classification problems (Sections 3.1
and 3.2). The predictions of this ensemble of binary classifiers can then be
combined into a ranking using a separate ranking algorithm (Section 3.3).
We consider this modularity of RPC as an important advantage of the ap-
proach. Firstly, the binary classification problems are comparably simple and
efficiently learnable. Secondly, as will become clear in the remainder of the
paper, different ranking algorithms allow the ensemble of pairwise classifiers
to adapt to different loss functions on label rankings without the need for
re-training the pairwise classifiers.

8

3.1 Pairwise Classification

The key idea of pairwise learning is well-known in the context of classification
[24], where it allows one to transform a multi-class classification problem, i.e.,
a problem involving m > 2 classes L = {λ1 . . . λm}, into a number of binary
problems. To this end, a separate model (base learner)Mij is trained for each
pair of labels (λi, λj) ∈ L, 1 ≤ i < j ≤ m; thus, a total number of m(m−1)/2
models is needed. Mij is intended to separate the objects with label λi from
those having label λj. At classification time, a query instance is submitted to
all modelsMij, and their predictions are combined into an overall prediction.
In the simplest case, each prediction of a model Mij is interpreted as a vote
for either λi or λj, and the label with the highest number of votes is proposed
as a final prediction. 3

Pairwise classification has been tried in the areas of statistics [9, 23], neu-
ral networks [44, 45, 55, 48], support vector machines [58, 32, 46, 35], and
others. Typically, the technique learns more accurate theories than the more
commonly used one-against-all classification method, which learns one the-
ory for each class, using the examples of this class as positive examples and
all others as negative examples. 4 Surprisingly, it can be shown that pairwise
classification is also computationally more efficient than one-against-all class
binarization (cf. Section 4).

3.2 Learning Pairwise Preference

The above procedure can be extended to the case of preference learning in a
natural way [26]. Again, a preference (order) information of the form λa �x λb
is turned into a training example (x, y) for the learnerMij, where i = min(a, b)
and j = max(a, b). Moreover, y = 1 if a < b and y = 0 otherwise. Thus, Mij

is intended to learn the mapping that outputs 1 if λi �x λj and 0 if λj �x λi:

x 7→
{

1 if λi �x λj
0 if λj �x λi

. (3.1)

The model is trained with all examples xk for which either λi �xk
λj or

λj �xk
λi is known. Examples for which nothing is known about the preference

between λi and λj are ignored.

3 Ties can be broken in favor or prevalent classes, i.e., according to the class dis-
tribution in the classification setting.
4 Rifkin and Klautau [57] have argued that, at least in the case of support vector
machines, one-against-all can be as effective provided that the binary base classifiers
are carefully tuned.

9

dataset with
preferences for
each example

A1 A2 A3 a>b
1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0

A1 A2 A3 b>c
1 1 1 1
1 1 0 0
0 1 0 0

A1 A2 A3 a>c
1 0 0 1
0 0 0 0
0 1 0 0
0 1 1 1

A1 A2 A3 Pref.
0 0 1 ?

A1 A2 A3 Pref.
0 0 1 a > b > c

a > b | b > c | a > c

A1 A2 A3 Pref.
1 1 1 a > b | b > c
1 1 0 a > b | c > b
1 0 1 b > a
1 0 0 b > a | a > c

A1 A2 A3 Pref.
0 0 0 c > a
0 1 0 c > b | c > a
0 1 1 a > c

Mab Mbc Mac

one dataset
for each

preference

Fig. 3. Schematic illustration of learning by pairwise comparison.

The mapping (3.1) can be realized by any binary classifier. Alternatively, one
may also employ base classifiers that map into the unit interval [0, 1] instead
of {0, 1}, and thereby assign a valued preference relation Rx to every (query)
instance x ∈ X :

Rx(λi, λj) =

{
Mij(x) if i < j

1−Mji(x) if i > j
(3.2)

for all λi 6= λj ∈ L. The output of a [0, 1]-valued classifier can usually be
interpreted as a probability or, more generally, a kind of confidence in the
classification: the closer the output of Mij to 1, the stronger the preference
λi �x λj is supported.

Figure 3 illustrates the entire process for a hypothetical dataset with eight
examples that are described with three binary attributes (A1, A2, A3) and
preferences among three labels (a, b, c). First, the original training set is
transformed into three two-class training sets, one for each possible pair of
labels, containing only those training examples for which the relation between
these two labels is known. Then three binary models,Mab,Mbc, andMac are
trained. In our example, the result could be simple rules like the following:

Mab : a > b if A2 = 1.

Mbc : b > c if A3 = 1.

Mac : a > c if A1 = 1 ∨ A3 = 1.

10

Given a new example with an unkonwn preference structure (shown in the
bottom left of Figure 3), the predictions of these models are then used to
predict a ranking for this example. As we will see in the next section, this is
not always as trivial as in this example.

3.3 Combining Predicted Preferences into a Ranking

Given a predicted preference relation Rx for an instance x, the next ques-
tion is how to derive an associated ranking τx. This question is non-trivial,
since a relation Rx does not always suggest a unique ranking in an unequiv-
ocal way. For example, the learned preference relation need not be transitive
(cf. Section 3.4). In fact, the problem of inducing a ranking from a (valued)
preference relation has received a lot of attention in several research fields,
e.g., in fuzzy preference modeling and (multi-attribute) decision making [22].
In the context of pairwise classification and preference learning, several stud-
ies have empirically compared different ways of combining the predictions of
individual classifiers [66, 2, 38, 25].

A simple though effective strategy is a generalization of the aforementioned
voting strategy: each alternative λi is evaluated by the sum of (weighted) votes

S(λi) =
∑
λj 6=λi

Rx(λi, λj), (3.3)

and all labels are then ordered according to these evaluations, i.e., such that

(λi �x λj)⇒ (S(λi) ≥ S(λj)). (3.4)

Even though this ranking procedure may appear rather ad-hoc at first sight,
we shall give a theoretical justification in Section 5, where it will be shown that
ordering the labels according to (3.3) minimizes a reasonable loss function on
rankings.

3.4 Transitivity

Our pairwise learning scheme as outlined above produces a relation Rx by
learning the preference degrees Rx(λi, λj) independently of each other. In this
regard, one may wonder whether there are no interdependencies between these
degrees that should be taken into account. In particular, as transitivity of
pairwise preferences is one of the most important properties in preference
modeling, an interesting question is whether any sort of transitivity can be
guaranteed for Rx.

11

Obviously, the learned binary preference relation does not necessarily have the
typical properties of order relations. For example, transitivity will in general
not hold, because if λi �x λj and λj �x λk, the independently trained clas-
sifier Mik may still predict λk �x λi. 5 This is not a problem, because the
subsequent ranking phase will convert the intransitive predictive preference
relation into a total preference order.

However, it can be shown that, given the formal assumptions of our setting,
the following weak form of transitivity must be satisfied:

∀ i, j, k ∈ {1 . . .m} : Rx(λi, λj) ≥ Rx(λi, λk) +Rx(λk, λj)− 1. (3.5)

As a consequence of this property, which is proved in Appendix A, the predic-
tions obtained by an ensemble of pairwise learnersMij should actually satisfy
(3.5). In other words, training the learners independently of each other is in-
deed not fully legitimate. Fortunately, our experience so far has shown that
the probability to violate (3.5) is not very high. Still, forcing (3.5) to hold is
a potential point of improvement and part of ongoing work.

4 Complexity Analysis

In this section, we will generalize previous results on the efficiency of pairwise
classification to preference learning. In particular, we will show that this ap-
proach can be expected to be computationally more efficient than alternative
approaches like constraint classification that try to model the preference learn-
ing problem as a single binary classification problem in a higher-dimensional
space (cf. Section 2.3).

4.1 Ranking by Pairwise Comparison

First, we will bound the number of training examples used by the pairwise
approach. Let |Pk| be the number of preferences that are associated with
example xk. Throughout this section, we denote by d = 1/n · ∑k |Pk| the
average number of preferences over all examples.

Lemma 1 The total number of training examples constructed by RPC is n ·d,

5 In fact, not even symmetry needs to hold if Mij and Mji are different models,
which is, e.g., the case for rule learning algorithms [24]. This situation may be
compared with round robin sports tournament, where individual results do not
necessarily conform to the final ranking that is computed from them.

12

which is bounded by n ·m(m− 1)/2, i.e.,

n∑
k=1

|Pk| = n · d ≤ n · m(m− 1)

2

Proof: Each of the n training examples will be added to all |Pk| binary train-
ing sets that correspond to one of its preferences. Thus, the total number of
training examples is

∑n
k=1 |Pk| = n · d. This is bounded from above by the size

of a complete set of preferences n ·m(m− 1)/2. 2

The special case for classification, where the number of training examples grow
only linearly with the number of classes [24], can be obtained as a corollary of
this theorem, because for classification, each class label expands to d = m− 1
preferences.

As a consequence, it follows immediately that RPC using a base algorithm
with a linear run-time complexity O(n) has a total run-time of O(d ·n). More
interesting is the general case.

Theorem 1 For a base learner with complexity O(na), the complexity of RPC
is O(d · na).

Proof: Let nij be the number of training examples for model Mij. Each
example corresponds to a single preference, i.e.,

∑
1≤i<j≤m

nij =
n∑
k=1

|Pk| = d · n

and the total learning complexity is
∑O(naij). We now obtain

∑O(naij)

O(d · na)
=

1

d

∑ O(naij)

O(na)
=

1

d

∑
O
((

nij
n

)a)
≤

≤ 1

d

∑
O(

nij
n

) =

∑O(nij)

d · O(n)
=
O(
∑
nij)

O(d · n)
=
O(d · n)

O(d · n)
= O(1)

The inequality holds because each example can have at most one preference
involving the pair of labels (λi, λj). Thus, nij ≤ n. 2

Again, we obtain as a corollary that the complexity of pairwise classification
is only linear in the number of classes O(m ·na), for which an incomplete proof
was previously given in [24].

13

4.2 Constraint Classification and Log-Linear Models

For comparison, CC converts each example into a set of examples, one positive
and one negative for each preference. This construction leads to the following
complexity.

Theorem 2 For a base learner with complexity O(na), the total complexity
of constraint classification is O(da · na).

Proof: CC transforms the original training data into a set of 2
∑n
k=1 |Pk| =

2dn examples, which means that CC constructs twice as many training ex-
amples as RPC. If this problem is solved with a base learner with complexity
O(na), the total complexity is O((2dn)a) = O(da · na). 2

Moreover, the newly constructed examples are projected into a space that has
m times as many attributes as the original space.

A direct comparison is less obvious for the online version of CC whose com-
plexity strongly depends on the number of iterations needed to achieve con-
vergence. In a single iteration, the algorithm checks all constraints for every
instance and, in case a constraint is violated, adapts the weight vector corre-
spondingly. The complexity is hence O(n · d · ` · T), where ` is the number of
attributes of an instance (dimension of the instance space) and T the number
of iterations.

For the same reason, it is difficult to compare RPC with the boosting-based
algorithm proposed for log-linear models by Dekel et al. [18]. In each iteration,
the algorithm essentially updates the weights that are associated with each
instance and preference constraint. In the label ranking setting considered
here, the complexity of this step is O(d ·n). Moreover, the algorithm maintains
weight coefficients for each base ranking function. If specified as in (2.2), the
number of these functions is m · `. Therefore, the total complexity of LL is
O((d · n+m · `) · T), with T the number of iterations.

4.3 Discussion

In summary, the overall complexity of pairwise label ranking depends on the
average number of preferences that are given for each training example. While
being quadratic in the number of labels if a complete ranking is given, it is only
linear for the classification setting. In any case, it is no more expensive than
constraint classification and can be considerably cheaper if the complexity of
the base learner is super-linear (i.e., a > 1). The comparison between RPC
and LL is less obvious and essentially depends on how nα relates to n ·T (note

14

that, implicitly, T also depends on n, as larger data sets typically need more
iterations).

A possible disadvantage of RPC concerns the large number of classifiers that
have to be stored. Assuming an input space X of dimensionality ` and simple
linear classifiers as base learners, the pairwise approach has to store O(` ·m2)
parameters, whereas both CC and LL only need to store O(` ·m) parameters
to represent their ranking model. (During training, however, the boosting-
based optimization algorithm in LL must also store a typically much higher
number of n · d parameters, one for each preference constraint.)

As all the model parameters have to be used for deriving a label ranking, this
may also affect the prediction time. However, for the classification setting, it
was shown in [52] that a more efficient algorithm yields the same predictions as
voting in almost linear time (≈ O(` ·m)). To what extent this algorithm can
be generalized to label ranking is currently under investigation. As ranking is
basically a sorting of all possible labels, we expect that this can be done in
log-linear time (O(` ·m logm)).

5 Risk Minimization

Even though the approach to pairwise ranking as outlined in Section 3 appears
intuitively appealing, one might argue that it lacks a solid foundation and
remains ad-hoc to some extent. For example, one might easily think of ranking
procedures other than (3.3), leading to different predictions. In any case, one
might wonder whether the rankings predicted on the basis of (3.2) and (3.3) do
have any kind of optimality property. An affirmative answer to this question
will be given in this section.

5.1 Preliminaries

Recall that, in the setting of label ranking, we associate every instance x from
an instance space X with a ranking of a finite set of class labels L = {λ1 . . . λm}
or, equivalently, with a permutation τx ∈ Sm (where Sm denotes the class of all
permutations of {1 . . .m}). More specifically, and in analogy with the setting
of conventional classification, every instance is associated with a probability
distribution over the class of rankings (permutations) Sm. That is, for every
instance x, there exists a probability distribution P(· |x) such that, for every
τ ∈ Sm, P(τ |x) is the probability to observe the ranking τ as an output, given
the instance x as an input.

15

The quality of a model M (induced by a learning algorithm) is commonly
measured in terms of its expected loss or risk

E (D(y,M(x))) , (5.1)

where D(·) is a loss or distance function, M(x) denotes the prediction made
by the model for the instance x, and y is the true outcome. The expectation
E is taken over X × Y , where Y is the output space; 6 in our case, Y is given
by Sm.

5.2 Spearman’s Rank Correlation

An important and frequently applied similarity measure for rankings is the
Spearman rank correlation, originally proposed by Spearman [61] as a non-
parametric rank statistic to measure the strength of the associations between
two variables [47]. It is defined as follows

1− 6D(τ, τ ′)

m(m2 − 1)
(5.2)

as a linear transformation (normalization) of the sum of squared rank distances

D(τ ′, τ)
df
=

m∑
i=1

(τ ′(i)− τ(i))
2

(5.3)

to the interval [−1, 1]. As will now be shown, RPC is a risk minimizer with
respect to (5.3) (and hence Spearman rank correlation) as a distance measure
under the condition that the binary models Mij provide correct probability
estimates, i.e.,

Rx(λi, λj) =Mij(x) = P(λi �x λj). (5.4)

That is, if (5.4) holds, then RPC yields a risk minimizing prediction

τ̂x = arg min
τ∈Sm

∑
τ ′∈Sm

D(τ, τ ′) · P(τ ′ |x) (5.5)

if D(·) is given by (5.3). Admittedly, (5.4) is a relatively strong assumption, as
it requires the pairwise preference probabilities to be perfectly learnable. Yet,
the result (5.5) sheds light on the aggregation properties of our technique under
ideal conditions and provides a valuable basis for further analysis. In fact,
recalling that RPC consists of two steps, namely pairwise learning and ranking,
it is clear that in order to study properties of the latter, some assumptions
about the result of the former step have to be made. And even though (5.4)
might at best hold approximately in practice, it seems to be at least as natural
as any other assumption about the output of the ensemble of pairwise learners.

6 The existence of a probability measure over X × Y must of course be assumed.

16

Lemma 2 Let si, i = 1 . . .m, be real numbers such that 0 ≤ s1 ≤ s2 . . . ≤ sm.
Then, for all permutations τ ∈ Sm,

m∑
i=1

(i− si)2 ≤
m∑
i=1

(i− sτ(i))2 (5.6)

Proof: We have

m∑
i=1

(i− sτ(i))2 =
m∑
i=1

(i− si + si − sτ(i))2

=
m∑
i=1

(i− si)2 + 2
m∑
i=1

(i− si)(si − sτ(i)) +
m∑
i=1

(si − sτ(i))2.

Expanding the last equation and exploiting that
∑m
i=1 s

2
i =

∑m
i=1 s

2
τ(i) yields

m∑
i=1

(i− sτ(i))2 =
m∑
i=1

(i− si)2 + 2
m∑
i=1

i si − 2
m∑
i=1

i sτ(i).

On the right-hand side of the last equation, only the last term
∑m
i=1 i sτ(i)

depends on τ . This term is maximal for τ(i) = i, because si ≤ sj for i < j,
and therefore maxi=1...mmsi = msm, maxi=1...m−1(m − 1)si = (m − 1)sm−1,
etc. Thus, the difference of the two sums is always positive, and the right-hand
side is larger than or equal to

∑m
i=1(i− si)2, which proves the lemma. 2

Lemma 3 Let P(· |x) be a probability distribution over Sm. Moreover, let

si
df
= m−

∑
j 6=i

P(λi �x λj) (5.7)

with

P(λi �x λj) =
∑

τ : τ(i)<τ(j)

P(τ |x). (5.8)

Then, si =
∑
τ P(τ |x) τ(i).

Proof: We have

si = m−
∑
j 6=i

P(λi �x λj)

= 1 +
∑
j 6=i

(1− P(λi �x λj))

= 1 +
∑
j 6=i

P(λj �x λi)

= 1 +
∑
j 6=i

∑
τ : τ(j)<τ(i)

P(τ |x)

17

= 1 +
∑
τ

P(τ |x)
∑
j 6=i

{
1 if τ(i) > τ(j)

0 if τ(i) < τ(j)

= 1 +
∑
τ

P(τ |x)(τ(i)− 1)

=
∑
τ

P(τ |x) τ(i)

2

Note that si ≤ sj is equivalent to S(λi) ≥ S(λj) (as defined in (3.3)) under
the assumption (5.4). Thus, ranking the alternatives according to S(λi) (in
decreasing order) is equivalent to ranking them according to si (in increasing
order).

Theorem 3 The expected distance

E(D(τ ′, τ) | x) =
∑
τ

P(τ | x) ·D(τ ′, τ) =
∑
τ

P(τ | x)
m∑
i=1

(τ ′(i)− τ(i))2

becomes minimal by choosing τ ′ such that τ ′(i) ≤ τ ′(j) whenever si ≤ sj, with
si given by (5.7).

Proof: We have

E(D(τ ′, τ) | x) =
∑
τ

P(τ | x)
m∑
i=1

(τ ′(i)− τ(i))2

=
m∑
i=1

∑
τ

P(τ | x)(τ ′(i)− τ(i))2

=
m∑
i=1

∑
τ

P(τ | x)(τ ′(i)− si + si − τ(i))2

=
m∑
i=1

∑
τ

P(τ | x)
[
(τ(i)− si)2 − 2(τ(i)− si)(si − τ ′(i))

+(si − τ ′(i))2
]

=
m∑
i=1

[∑
τ

P(τ | x)(τ(i)− si)2 − 2(si − τ ′(i)) ·

·
∑
τ

P(τ | x)(τ(i)− si) +
∑
τ

P(τ | x)(si − τ ′(i))2

]

In the last equation, the mid-term on the right-hand side becomes 0 according
to Lemma 3. Moreover, the last term obviously simplifies to (si − τ ′(i))2, and
the first term is a constant c =

∑
τ P(τ | x)(τ(i) − si)2 that does not depend

on τ ′. Thus, we obtain E(D(τ ′, τ) | x) = c+
∑m
i=1(si− τ ′(i))2 and the theorem

follows from Lemma 2. 2

18

5.3 Kendall’s tau

The above result shows that our approach to label ranking in the form pre-
sented in Section 3 is particularly tailored to (5.3) as a loss function. We like
to point out, however, that RPC is not restricted to this measure but can also
minimize other loss functions. As mentioned previously, this can be accom-
plished by replacing the ranking procedure in the second step of RPC in a
suitable way. To illustrate, consider the well-known Kendall tau measure [42]
as an alternative loss function. This measure essentially calculates the number
of pairwise rank inversions on labels to measure the ordinal correlation of two
rankings; more formally, with

D(τ ′, τ)
df
= #{(i, j) | i < j, τ(i) > τ(j) ∧ τ ′(i) < τ ′(j)} (5.9)

denoting the number of discordant pairs of items (labels), the Kendall tau
coefficient is given by 1− 4D(τ ′, τ)/(m(m− 1)), that is, by a linear scaling of
D(τ ′, τ) to the interval [−1,+1].

Now, for every ranking τ ′,

E(D(τ ′, τ) | x) =
∑
τ∈Sm

P(τ)×D(τ ′, τ) (5.10)

=
∑
τ∈Sm

P(τ | x)×
∑

i<j | τ ′(i)<τ ′(j)

{
1 if τ(i) > τ(j)

0 if τ(i) < τ(j)

=
∑

i<j | τ ′(i)<τ ′(j)

∑
τ∈Sm

P(τ | x)×
{

1 if τ(i) > τ(j)

0 if τ(i) < τ(j)

=
∑

i<j | τ ′(i)<τ ′(j)
P(λi �x λj)

Thus, knowing the pairwise probabilities P(λi �x λj) is again enough to derive
the expected loss for every ranking τ ′. In other words, RPC can also make
predictions which are optimal for (5.9) as an underlying loss function. To this
end, only the ranking procedure has to be adapted while the same pairwise
probabilities (predictions of the pairwise learners) can be used.

Finding the ranking that minimizes (5.10) is formally equivalent to solving the
graph-theoretical feedback arc set problem (for weighted tournaments) which
is known to be NP complete [3]. Of course, in the context of label ranking,
this result should be put into perspective, because the set of class labels is
typically of small to moderate size. Nevertheless, from a computational point
of view, the ranking procedure that minimizes Kendall’s tau is definitely more
complex than the procedure for minimizing Spearman’s rank correlation.

19

5.4 Connections with Voting Theory

It is worth mentioning that the voting strategy in RPC, as discussed in Sec-
tion 5.2, is closely related to the so-called Borda-count, a voting rule that
is well-known in social choice theory [10]: Suppose that the preferences of n
voters are expressed in terms of rankings τ1, τ2 . . . τn of m alternatives. From
a ranking τi, the following scores are derived for the alternatives: The best
alternative receives m−1 points, the second best m−2 points, and so on. The
overall score of an alternative is the sum of points that it has received from
all voters, and a representative ranking τ̂ (aggregation of the single voters’
rankings) is obtained by ordering the alternatives according to these scores.

Now, it is readily verified that the result obtained by this procedure corre-
sponds exactly to the result of RPC if the probability distribution over the
class Sm of rankings is defined by the corresponding relative frequencies. In
other words, the ranking τ̂ obtained by RPC minimizes the sum of all dis-
tances:

τ̂ = arg min
τ∈Sm

n∑
i=1

D(τ, τi). (5.11)

A ranking of that kind is sometimes called central ranking. 7

In connection with social choice theory it is also interesting to note that RPC
does not satisfy the so-called Condorcet criterion: As the pairwise preferences
in our above example show, it is thoroughly possible that an alternative (in
this case λ1) is preferred in all pairwise comparisons (R(λ1, λ2) > .5 and
R(λ1, λ3) > .5) without being the overall winner of the election (top-label
in the ranking). Of course, this apparently paradoxical property is not only
relevant for ranking but also for classification. In this context, it has already
been recognized by Hastie and Tibshirani [32].

Another distance (similarity) measure for rankings, which plays an important
role in voting theory, is the aforementioned Kendall tau. When using the num-
ber of discordant pairs (5.9) as a distance measure D(·) in (5.11), τ̂ is also
called the Kemeny-optimal ranking. Kendall’s tau is intuitively quite appeal-
ing and Kemeny-optimal rankings have several nice properties. However, as
noted earlier, one drawback of using Kendall’s tau instead of rank correlation
as a distance measure in (5.11) is a loss of computational efficiency. In fact,
the computation of Kemeny-optimal rankings is known to be NP-hard [6].

7 See, e.g., Marden’s book [49], which also contains results closely related to our
results from Section 5.2.

20

6 Empirical Evaluation

The experimental evaluation presented in this section compares, in terms of
accuracy and computational efficiency, ranking by pairwise comparison (RPC)
with weighted voting to the constraint classification (CC) approach and log-
linear models for label ranking (LL) as outlined, respectively, in Sections 2.3.1
and 2.3.2. CC in particular is a natural counterpart to compare with, as its ap-
proach is orthogonal to ours: instead of breaking up the label ranking problem
into a set of small pairwise learning problems, as we do, CC embeds the origi-
nal problem into a single learning problem in a high-dimensional feature space.
We implemented CC with support vector machines using a linear kernel as a
binary classifier (CC-SVM). 8 Apart from CC in its original version, we also
included an online-variant (CC-P) as proposed in [30], using a noise-tolerant
perceptron algorithm as a base learner [41]. 9

To guarantee a fair comparison, we use LL with (2.2) as base ranking func-
tions, which means that it is based on the same underlying model class as
CC. Moreover, we implement RPC with simple logistic regression as a base
learner, 10 which comes down to fitting a linear model and using the logistic
link function (logit(π) = log(π/(1 − π))) to derive [0, 1]-valued scores, the
type of model output requested in RPC. Essentially, all three approaches are
therefore based on linear models and, in fact, they all produce linear decision
boundaries between classes. 11 Nevertheless, to guarantee full comparability
between RPC and CC, we also implemented the latter with logistic regression
as a base learner (CC-LR).

6.1 Datasets

To provide a comprehensive analysis under varying conditions, we considered
different scenarios that can be roughly categorized as real-world and semi-
synthetic.

The real-world scenario originates from the bioinformatics fields where ranking
and multilabeled data, respectively, can frequently be found. More precisely,
our experiments considered two types of genetic data, namely phylogenetic

8 We employed the implementation offered by the Weka machine learning package
[65] in its default setting. To obtain a ranking of labels, classification scores were
transformed into (pseudo-)probabilities using a logistic regression technique [54].
9 This algorithm is based on the “alpha-trick”. We set the corresponding parameter
α to 500.
10 Again, we used the implementation offered by the Weka package.
11 All linear models also incorporate a bias term.

21

Table 2
Statistics for the semi-synthetic and real datasets
dataset #examples #classes #features
iris 150 3 4
wine 178 3 13
glass 214 6 9
vowel 528 11 10
vehicle 846 4 18
spo 2465 11 24
heat 2465 6 24
ddt 2465 4 24
cold 2465 4 24
diau 2465 7 24

profiles and DNA microarray expression data for the Yeast genome. 12 The
genome consists of 2465 genes, and each gene is represented by an associated
phylogenetic profile of length 24. Using these profiles as input features, we
investigated the task of predicting a “qualitative” representation of an expres-
sion profile: Actually, the expression profile of a gene is an ordered sequence of
real-valued measurements, such as (2.1, 3.5, 0.7,−2.5), where each value rep-
resents the expression level of that gene measured at a particular point of
time. A qualitative representation can be obtained by converting the expres-
sion levels into ranks, i.e., ordering the time points (= labels) according to
the associated expression values. In the above example, the qualitative profile
would be given by (2, 1, 3, 4), which means that the highest expression was
observed at time point 2, the second-highest at time point 1, and so on. The
use of qualitative profiles of that kind, and the Spearman correlation as a
similarity measure between them, was motivated in [4], both biologically and
from a data analysis point of view.

We used data from five microarray experiments (spo, heat, dtt, cold, diau),
giving rise to five prediction problems all using the same input features but dif-
ferent target rankings. It is worth mentioning that these experiments involve
different numbers of measurements, ranging from 4 to 11; see Table 2. 13 Since
in our context, each measurement corresponds to a label, we obtain ranking
problems of quite different complexity. Besides, even though the original mea-
surements are real-valued, there are expression profiles containing ties which
were broken randomly.

In order to complement the former real-world scenario with problems origi-

12 This data is publicly available at http://www1.cs.columbia.edu/compbio/
exp-phylo
13 We excluded three additional subproblems with more measurements due to the
prohibitive computational demands of the constraint classification approach.

22

nating from several different domains, the following multiclass datasets from
the UCI Repository of machine learning databases [7] and the Statlog collec-
tion [50] were included in the experimental evaluation: iris, wine, glass, vowel,
vehicle (a summary of dataset properties is given in Table 2). These datasets
were also used in a recent experimental study on multiclass support vector
machines [35].

For each of these four multiclass datasets, a corresponding ranking dataset was
generated in the following manner: We trained a naive Bayes classifier 14 on the
respective dataset. Then, for each example, all the labels present in the dataset
were ordered with respect to decreasing predicted class probabilities (in the
case of ties, labels with lower indices are ranked first). Thus, by substituting
the single labels contained in the original multiclass datasets with the complete
rankings, we obtain the label ranking datasets required for our experiments.
The fundamental underlying learning problem may also be viewed as learning
a qualitative replication of the probability estimates of a naive Bayes classifier.

6.2 Experimental Results

6.2.1 Complete Preference Information

In the experiments, the actual true rankings on the test sets were compared
to the corresponding predicted rankings. For each of the approaches, we re-
port the average accuracy in terms of both Spearman’s rank correlation and
Kendall’s tau. This is necessary because, as we showed in Section 5, RPC with
weighted voting as a ranking procedure is especially tailored toward mimiz-
ing the Spearman rank correlation, while CC and LL are more focused on
the Kendall tau measure: Minimization of the 0/1-loss on the expanded set
of (binary) classification examples yields an implicit minimization of the em-
pirical Kendall tau statistic of the label ranking function on the training set.
It is true, however, that all distance (similarity) measures on rankings are of
course more or less closely related. 15

The results of a cross validation study (10-fold, 5 repeats), shown in Tables 3
and 4, are clearly in favor of RPC and CC in its online version. These two
methods are on a par and outperform the other methods on all datasets ex-
cept wine, for which LL yields the highest accuracy. These results are further
corroborated by the standard classification accuracy on the multiclass data
(probability to place the true class on the topmost rank), which is reported in
Table 5.

14 We employed the implementation for naive Bayes classification on numerical
datasets (NaiveBayesSimple) contained in the Weka machine learning package [65].
15 For example, it has recently been shown in [15] that optimizing rank correlation
yields a 5-approximation to the ranking which is optimal for the Kendall measure.

23

Table 3
Experimental results (mean and standard deviation) in terms of Kendall’s tau.

data RPC CC-P CC-LR CC-SVM LL
iris .885 ± .068 .836 ± .089 .836 ± .063 .812 ± .071 .818 ± .088

wine .921 ± .053 .933 ± .043 .755 ± .111 .932 ± .057 .942 ± .043

glass .882 ± .042 .846 ± .045 .834 ± .052 .820 ± .064 .817 ± .060

vowel .647 ± .019 .623 ± .019 .583 ± .019 .594 ± .020 .601 ± .021

vehicle .854 ± .025 .855 ± .022 .830 ± .025 .817 ± .025 .770 ± .037

spo .140 ± .023 .138 ± .022 .122 ± .022 .121 ± .020 .132 ± .024

heat .125 ± .024 .126 ± .023 .124 ± .024 .117 ± .023 .125 ± .025

dtt .174 ± .034 .180 ± .037 .158 ± .033 .154 ± .045 .167 ± .034

cold .221 ± .028 .220 ± .029 .196 ± .029 .193 ± .040 .209 ± .028

diau .332 ± .019 .330 ± .019 .299 ± .022 .297 ± .019 .321 ± .020

Table 4
Experimental results (mean and standard deviation) in terms of Spearman’s rank
correlation.

data RPC CC-P CC-LR CC-SVM LL
iris .910 ± .058 .863 ± .086 .874 ± .052 .856 ± .057 .843 ± .089

wine .938 ± .045 .949 ± .033 .800 ± .102 .942 ± .052 .956 ± .034

glass .918 ± .036 .889 ± .043 .879 ± .048 .860 ± .062 .859 ± .060

vowel .760 ± .020 .746 ± .021 .712 ± .020 .724 ± .021 .732 ± .022

vehicle .888 ± .020 .891 ± .019 .873 ± .022 .864 ± .023 .820 ± .036

spo .176 ± .030 .178 ± .030 .156 ± .029 .156 ± .026 .167 ± .030

heat .156 ± .030 .156 ± .029 .154 ± .029 .148 ± .027 .155 ± .031

dtt .199 ± .040 .205 ± .041 .183 ± .038 .178 ± .054 .193 ± .038

cold .265 ± .033 .265 ± .034 .234 ± .035 .235 ± .050 .251 ± .033

diau .422 ± .023 .418 ± .023 .377 ± .026 .377 ± .022 .406 ± .025

Table 5
Experimental results (mean and standard deviation) in terms of standard classifi-
cation rate.

data RPC CC-P CC-LR CC-SVM LL
iris .952 ± .050 .933 ± .069 .907 ± .075 .911 ± .076 .916 ± .076

wine .945 ± .051 .970 ± .042 .927 ± .043 .948 ± .057 .962 ± .044

glass .767 ± .091 .715 ± .089 .706 ± .092 .696 ± .099 .706 ± .093

vowel .507 ± .056 .425 ± .062 .445 ± .063 .433 ± .064 .407 ± .067

vehicle .895 ± .028 .895 ± .034 .868 ± .035 .865 ± .033 .851 ± .037

In terms of training time, RPC is the clear winner, as can be seen in Table 6. 16

16 Experiments were conducted on a PC Intel Core2 6600 2,4 Ghz with 2GB RAM.
We stopped the iteration in LL as soon as the sum of absolute changes of the
weights was smaller than 10−7; empirically, this was found to be the largest value
that guaranteed stability of the model performance.

24

Table 6
Time (in ms) needed for training (left) and testing (mean and standard deviation).
data RPC CC-P LL RPC CC-P LL
iris 18 ± 11 48 ± 10 833 ± 587 0.6 ± 3.2 0.0 ± 0.0 0.0 ± 0.0

wine 59 ± 16 22 ± 14 575 ± 376 0.6 ± 3.1 0.3 ± 2.3 0.3 ± 2.3

glass 132 ± 15 605 ± 52 1529 ± 850 1.6 ± 4.8 0.0 ± 0.0 0.3 ± 2.3

vowel 927 ± 24 12467 ± 595 36063 ± 22897 13.7 ± 5.1 0.3 ± 2.1 0.6 ± 3.1

vehicle 439 ± 24 1810 ± 177 2177 ± 1339 1.6 ± 4.8 0.0 ± 0.0 0.0 ± 0.0

spo 10953 ± 95 343506 ± 27190 61826 ± 33946 90.5 ± 5.8 0.9 ± 3.8 10.3 ± 8.1

heat 3069 ± 39 61206 ± 3648 16552 ± 9415 26.5 ± 7.3 0.6 ± 3.2 3.7 ± 6.7

dtt 1226 ± 31 19592 ± 1133 2510 ± 1340 10.2 ± 7.4 0.3 ± 2.1 2.8 ± 6.0

cold 1209 ± 32 20936 ± 1358 3045 ± 2001 10.6 ± 7.4 0.0 ± 0.0 3.4 ± 6.5

diau 4325 ± 38 83967 ± 9849 27441 ± 12686 34.7 ± 6.6 1.2 ± 4.3 4.1 ± 7.0

In compliance with our theoretical results, the original version of CC, here
implemented as CC-SVM and CC-LR, was found to be quite problematic
from this point of view, as it becomes extremely expensive for data sets with
many attributes or many labels. For example, the trainings time for CC-SVM
was almost 5 hours for vowel, and more than 7 days for the spo data; we
therefore abstained from a detailed analysis and exposition of results for these
variants. As expected, RPC is slightly less efficient than LL and CC-P in terms
of testing time (see also Table 6), even though these times are extremely small
throughout and clearly negligible in comparison with the training times.

6.2.2 Incomplete Preference Information

In Section 6.2.1, we provided an empirical study on learning label ranking
functions assuming that the complete ranking is available for each example in
the training set. However, in practical settings, we will often not have access
to a total order of all possible labels for an object. Instead, in many cases,
only a few pairs of preferences are known for each object.

To model incomplete preferences, we modified the training data as follows: A
biased coin was flipped for every label in a ranking in order to decide whether
to keep or delete that label; the probability for a deletion is p. Thus, a ranking
such as λ1 � λ2 � λ3 � λ4 � λ5 may be reduced to λ1 � λ3 � λ4, and
hence, pairwise preferences are generated only from the latter (note that, as
a pairwise preference “survives” only with probability (1 − p)2, the average
percentage of preferences in the training data decreases much faster with p
than the average number of labels). Of course, the rankings produced in this
way are of varying size.

Fig. 4 shows the experimental results for RPC, LL, and CC-P, the online vari-

25

Fig. 4. Results for the datasets in Table 2 in the missing label scenario: Accuracy in
terms of Kendall’s tau as a function of the (expected) percentage of missing labels
(note that different figures have different scales).

ant of CC. More precisely, the figures show the accuracy in terms of Kendall’s
tau (which are qualitatively very similar to those for Spearman’s rank corre-
lation) as a function of the probability p. As expected, the accuracy decreases

26

with an increasing amount of missing preference information, even though all
three methods can deal with missing preference information remarkably well.
Still, there seems to be a clear rank order: LL is the least sensitive method,
and CC appears to be a bit less sensitive than RPC. Our explanation for
this finding is that, due to training a quadratic instead of a linear number of
models, RPC is in a sense more flexible than LL and CC. This flexibility is an
advantage if enough training data is available but may turn out as a disadvan-
tages if this is not the case. This may also explain the superior performance of
LL on the wine data, which has relatively few instances. Finally, we mention
that almost identical curves are obtained when sampling complete training
examples with a suitable sampling rate. Roughly speaking, training on a few
instances with complete preference information is comparable to training on
more instances with partial preference information, provided the (expected)
total number of pairwise preferences is the same.

7 Related Work

As noted in Section 6, the work on constraint classification [30, 31] appears
to be a natural counterpart to our algorithm. In the same section, we have
also discussed the log-linear models for label ranking proposed by Dekel et al.
[18]. As both CC and LL are directly applicable to the label ranking problem
studied in this paper, we compared RPC empirically with these approaches.
The subsequent review will focus on other key works related to label ranking
and pairwise decomposition techniques that have recently appeared in the
literature; a somewhat more exhaustive literature survey can be found in [13].

We are not aware of any other work that, as our method, approaches the
label ranking problem by learning pairwise preference predicates Rx(λi, λj),
1 ≤ i < j ≤ m, and, thereby, reduces the problem to one of ranking on
the basis of a preference relation. Instead, all existing methods, including
CC and LL, essentially follow the idea of learning utility or scoring functions
f1(·) . . . fm(·) that can be used for inducing a label ranking: Given an input
x, each label λi is evaluated in terms of a score fi(x), and the labels are then
ordered according to these scores.

In passing, we note that, for the (important) special case in which we combine
pairwise preferences in RPC by means of a simple voting strategy, it is true
that we eventually compute a kind of score for each label as well, namely

fi(x) =
∑

1≤j 6=i≤m
Rx(λi, λj), (7.1)

27

that may, at least at first sight, appear comparable to the utility functions

fi(x) =
∑
j

αjhj(x, λi) (7.2)

used in LL. However, despite a formal resemblance, one should note that (7.1)
is not directly comparable to (7.2). In particular, our “base functions” are
preference predicates (L × L → [0, 1] mappings) instead of scoring functions
(X × L → R mappings). Moreover, as opposed to (7.2), the number of these
functions is predetermined by the number of labels (m), and each of them has
the same relevance (i.e., weighing coefficients αi are not needed).

Shalev-Shwartz and Singer [60] learn utility functions fi(·) on the basis of a
different type of training information, namely real values g(λi) that reflect
the relevance of the labels λi for an input x. Binary preferences between la-
bels λi and λj are then weighted by the difference g(λi) − g(λj), and this
value is considered as a degree of importance of ordering λi ahead of λj. This
framework hence deviates from a purely qualitative setting in which preference
information is modeled in the form of order relations.

Another interesting generalization of the utility-based approach to label rank-
ing is the framework of Aiolli [1], that allows one to specify both qualitative
and quantitative preference constraints on utility functions. In addition to the
pairwise preference constraints that we also use (and which he interprets as
constraints on a utility function), Aiolli [1] also allows constraints of the type
λi �x τ , which means that the value of the utility function fi(x) > ti, where
ti is a numerical threshold.

There has also been some previous work on the theoretical foundations of label
ranking. We already mentioned above that Dekel et al. [18] introduced a gener-
alized ranking error, which assumes a procedure for decomposing a preference
graph into subgraphs, and defines the generalized error as the fraction of sub-
graphs that are not exactly in agreement with the learned utility function.
Ha and Haddawy [28] discuss a variety of different ranking loss functions and
introduce a different extension of Kendall’s tau. With respect to predictive
performance, Usunier et al. [63] analyze the generalization properties of bi-
nary classifiers trained on interdependent data for certain types of structured
learning problems such as bipartite ranking.

As mentioned in Section 2, label ranking via pairwise preference models may
be viewed as a generalization of various other learning tasks. There has been
a considerable amount of recent work on many of such tasks. In particular,
pairwise classification has been studied in-depth in the area of support vector
machines [35, and references therein]. We refer to [24, Section 8] for a brief
survey of work on pairwise classification, and its relation to other learning
class binarization techniques.

28

Another special scenario is the application of label ranking algorithms to multi-
label problems. For example, Crammer and Singer [17] consider a variety of
on-line learning algorithms for the problem of ranking possible labels in a
multi-label text categorization task. They investigate a set of algorithms that
maintain a prototype for each possible label, and order the labels of an exam-
ple according to the response signal returned by each of the prototypes. [12]
demonstrates a general technique that not only allows one to rank all possi-
ble labels in multi-label problem, but also to select an appropriate threshold
between relevant and irrelevant labels.

It is well-known that pairwise classification is a special case of Error Correcting
Output Codes (ECOC) [19] or, more precisely, their generalization that has
been introduced in [2]. Even though ECOC allows for a more flexible decompo-
sition of the original problem into simpler ones, the pairwise approach has the
advantage that it provides a fixed, domain-independent and non-stochastic de-
composition with a good overall performance. In several experimental studies,
including [2], it performed en par or better with competing decoding matri-
ces. While finding a good encoding matrix still is an open problem [53], it
can be said that pairwise classification is among the most efficient decoding
schemes. Even though we have to train a quadratic number of classifiers, both
training (and to some extent also testing) can be performed in linear time as
discussed in Section 4. ECOC matrices that produce the necessary redundancy
by defining more binary prediction problems than labels are more expensive
to train.

What is more important here, however, is that the pairwise case seems to
have special advantages in connection with ranking and preference learning
problems. In particular, it has a clearly defined semantics in terms of pairwise
comparison between alternatives and, as we discussed in Section 3, produces
as output a binary preference relation, which is an established concept in pref-
erence modeling and decision theory. As opposed to this, the semantics of
a model that compares more than two classes, namely a subset of positive
with a subset of negative ones, as it is possible in ECOC, is quite unclear.
For example, while a prediction λ3 � λ2 obviously indicates that λ3 is ranked
before λ2, several interpretations are conceivable for a prediction such as, say,
{λ3, λ5} � {λ1, λ2}. Without going into further detail, we mention that all
these interpretations seem to produce serious complications, either with re-
gard to the training of models or the decoding step, or both. In any case,
generalizing the pairwise approach in the label ranking setting appears to be
much more difficult than in the classification setting, where an information
about class membership can easily be generalized from single labels (the in-
stance belongs to λ3) to a set of labels (the instance belongs to λ3 or λ5). The
main reason is that, in label ranking, a single piece of information does not
concern a class membership but preference (order) information that naturally
relates to pairs of labels.

29

8 Conclusions

In this paper, we have introduced a learning algorithm for the label ranking
problem and investigated its properties both theoretically and empirically. The
merits of our method, called ranking by pairwise comparison (RPC), can be
summarized as follows:

• Firstly, we find that RPC is a simple yet intuitively appealing and elegant
approach, especially as it is a natural generalization of pairwise classifica-
tion. Besides, RPC is completely in line with preference modeling based on
binary preference relations, an established approach in decision theory.
• Secondly, the modular conception of RPC allows for combining different

(pairwise) learning and ranking methods in a convenient way. For example,
different loss functions can be minimized by simply changing the ranking
procedure but without the need to retrain the binary models (see Section 5).
• Thirdly, RPC is superior to alternative approaches with regard to efficiency

and computational complexity, as we have shown both theoretically and
experimentally (cf. Sections 4 and 6), while being at least competitive in
terms of prediction quality.
• Fourthly, while existing label ranking methods are inherently restricted to

linear models, RPC is quite general regarding the choice of a base learner,
as in principle every binary classifier can be used.

Finally, we note that RPC also appears attractive with regard to an extension
of the label ranking problem to the learning of more general preference rela-
tions on the label set L. In fact, in many practical applications it might be
reasonable to relax the assumption of strictness, i.e., to allow for indifference
between labels, or even to represent preferences in terms of partial instead of
total orders. The learning of pairwise preference predicates is then definitely
more suitable than utility-based methods, since a utility function necessarily
induces a total order and, therefore, cannot represent partial orders. Exten-
sions of this kind constitute important aspects of ongoing work.

Acknowledgments

We would like to thank the anonymous reviewers for their insightful comments
that helped to considerably improve this paper. This research was supported
by the German Research Foundation (DFG).

30

A Transitivity Properties of Pairwise Preferences

Our pairwise learning scheme introduced in Section 3 produces a preference
relation Rx in a first step, which is then used for inducing a ranking τx. As
transitivity of pairwise preferences is one of the most important properties in
preference modeling, an interesting question is whether any sort of transitiv-
ity can be guaranteed for Rx. Indeed, even though the pairwise preferences
induced by a single ranking are obviously transitive, it is less clear whether
this property is preserved when “merging” different rankings in a probabilistic
way.

In fact, recall that every instance x ∈ X is associated with a probability
distribution over Sm (cf. Section 5.1). Such a distribution induces a unique
probability distribution for pairwise preferences via

pij = P(λi � λj) =
∑

τ∈Sm : τ(i)<τ(j)

P(τ). (A.1)

An interesting finding is that the pairwise preferences (A.1) do indeed satisfy
a form of transitivity, albeit a relatively weak one:

∀ i, j, k ∈ {1 . . .m} : pik ≥ pij + pjk − 1 (A.2)

More formally, we can prove the following theorem.

Theorem 4 Consider any probability distribution on the set of rankings Sm.
The pairwise preferences induced by this distribution via (A.1) satisfy (A.2).

Proof: Consider any three labels λi, λj, λk. Obviously, there is no need to
distinguish the rankings which put these labels in the same order. Thus, we
can partition Sm into six equivalence classes Sijk, Sikj . . . Skij, where Sijk =
{τ ∈ Sm | τ(i) < τ(j) < τ(k)} and the other classes are defined analogously.
Let

qijk
df
= P(Sijk) =

∑
τ∈Sm : τ(i)<τ(j)<τ(k)

P(τ)

and q = (qijk, qikj, qjik, qjki, qkij, qkji)
> ∈ [0, 1]6.

Now, consider probabilities p = (pij, pjk, pik)
> for the pairwise probabilities

(A.1). Finding a distribution on rankings which induces these probabilities
obviously comes down to solving a system of linear equations of the form
A× q = p, where A is a matrix of dimension 3× 6 with 0/1 entries, and

qijk + qikj + qjik + qjki + qkij + qkji = 1.

31

The set of solutions to this problem can be expressed as

qijk
qikj
qjik
qjki
qkij
qkji

=

pij + pjk − 1 + v

1− pjk − u− v
pik − pij + u

1− pik − u− v
u

v

where u, v ∈ [0, 1]. Additionally, the components of q must be non-negative.
If this is satisfied for u = v = 0, then pik ≥ pij (fourth entry) and (A.2) holds.
In the case where non-negativity is violated, either pij + pjk < 1 or pik < pij.
In the second case, u must be increased to (at least) pij− pik, and one obtains
the solution vector

(pij + pjk − 1, 1 + pik − (pij + pjk), 0, 1− pij, pij − pik, 0)>

which is non-negative if and only if pik ≥ pij +pjk−1. In the first case, v must
be increased to (at least) 1− (pij + pjk), and one obtains the solution vector

(0, pij, pik − pij, pij + pjk − pik, 0, 1− (pij + pjk))
>

which is non-negative if and only if pik ≤ pij + pjk. This latter inequality is
equivalent to pkj ≥ pkj + pji − 1, where pkj = 1 − pjk, so the transitivity
property (A.2) now holds for the reciprocal probabilities. In a similar way one
verifies that (A.2) must hold in the case where both pij+pjk < 1 and pik < pij.
In summary, a probability distribution on Sm which induces the probabilities
pij, pjk, pik exists if and only if these probabilities satisfy (A.2). 2

It is interesting to note that (A.2) is a special type of >-transitivity. A so-
called t-norm is a generalized logical conjunction, namely a binary operator
> : [0, 1]2 → [0, 1] which is associative, commutative, monotone, and satisfies
>(0, x) = 0, >(1, x) = x for all x. Operators of that kind have been introduced
in the context of probabilistic metric spaces [59] and have been studied inten-
sively in fuzzy set theory in recent years [43]. A binary relation R ⊂ A×A is
called >-transitive if it satisfies R(a, c) ≥ >(R(a, b),R(b, c)) for all a, b, c ∈ A.
Therefore, what the condition (A.2) expresses is just >-transitivity with re-
spect to the Lukasiewicz t-norm which is defined by>(x, y) = max(x+y−1, 0).
An interesting idea to guarantee this condition to hold is hence to replace the
original ensemble of pairwise predictions by its >-transitive closure [51], where
> is the aforementioned Lukasiewicz t-norm.

32

References

[1] Fabio Aiolli A preference model for structured supervised learning tasks.
In Proceedings of the Fifth IEEE International Conference on Data Min-
ing (ICDM-05), pp. 557–560. IEEE Computer Society, 2005.

[2] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing mul-
ticlass to binary: A unifying approach for margin classifiers. Journal of
Machine Learning Research, 1:113–141, 2000.

[3] Noga Alon. Ranking Tournaments. SIAM Journal on Discrete Mathe-
matics 20(1), pp. 137–142.

[4] Rajarajeswari Balasubramaniyan, Eyke Hüllermeier, Nils Weskamp, and
Jörg Kämper. Clustering of gene expression data using a local shape-
based similarity measure. Bioinformatics, 21(7):1069–1077, 2005.

[5] Michael O. Ball and Ulrich Derigs. An analysis of alternative strategies
for implementing matching algorithms. Networks, 13:517–549, 1983.

[6] John J. Bartholdi III, Craig A. Tovey, and Michael A. Trick. Voting
schemes for which it can be difficult to tell who won the election. Social
Choice and Welfare, 6(2):157–165, 1989.

[7] Catherine L. Blake and Christopher J. Merz. UCI repository of machine
learning databases, 1998. Data available at http://www.ics.uci.edu/

~mlearn/MLRepository.html.
[8] Craig Boutilier, Ronen Brafman, Carmel Domshlak, Holger Hoos, David

Poole. CP-nets: A Tool for Representing and Reasoning with Conditional
Ceteris Paribus Preference Statements. Journal of Artificial Intelligence
Research 21:135–191, 2004.

[9] Ralph A. Bradley and Milton E. Terry The rank analysis of incomplete
block designs — I. The method of paired comparisons. Biometrika, 39:
324–345, 1952.

[10] Steven J. Brams and Peter C. Fishburn. Voting procedures. In K. J.
Arrow, A. K. Sen, and K. Suzumura (eds.) Handbook of Social Choice
and Welfare (Vol. 1), chapter 4. Elsevier, 2002.

[11] Pavel B. Brazdil, Carlos Soares, and J. P. da Costa. Ranking learning
algorithms: Using IBL and meta-learning on accuracy and time results.
Machine Learning, 50(3):251–277, March 2003.

[12] Klaus Brinker, Johannes Fürnkranz, Eyke Hüllermeier. A unified model
for multilabel classification and ranking. In Proceedings of the 17th Euro-
pean Conference on Artificial Intelligence (ECAI-06), pp. 489-493, 2006.

[13] Klaus Brinker, Johannes Fürnkranz, Eyke Hüllermeier. Label Ranking
by Learning Pairwise Preferences. Technical Report TUD-KE-2007-01,
Knowledge Engineering Group, TU Darmstadt, 2007.

[14] William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning
to order things. Journal of Artificial Intelligence Research, 10:243–270,
1999.

[15] Don Coppersmith, Lisa Fleischer, and Atri Rudra. Ordering by weighted
number of wins gives a good ranking for weighted tournaments. Pro-

33

ceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
776–782, 2006.

[16] Koby Crammer and Yoram Singer. Ultraconservative online algorithms
for multiclass problems. Journal of Machine Learning Research, 3:951–
991, 2003.

[17] Koby Crammer and Yoram Singer. A family of additive online algorithms
for category ranking. Journal of Machine Learning Research, 3:1025–
1058, 2003.

[18] Ofer Dekel, Christopher D. Manning, and Yoram Singer. Log-Linear
Models for Label Ranking. In S. Thrun, L. K. Saul, and B. Schölkopf
(eds.) Advances in Neural Information Processing Systems 16 (NIPS-
2003), MIT Press 2004.

[19] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning
problems via error-correcting output codes. Journal of Artificial Intelli-
gence Research, 2:263–286, 1995.

[20] Jon Doyle. Prospects for preferences. Computational Intelligence, 20(2):
111–136, 2004.

[21] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank ag-
gregation methods for the Web. In Proceedings of the 10th International
World Wide Web Conference, pp. 613–622, 2001.

[22] János Fodor and Marc Roubens. Fuzzy Preference Modelling and Multi-
criteria Decision Support. Kluwer Academic Publishers, 1994.

[23] Jerome H. Friedman. Another approach to polychotomous classification.
Technical report, Department of Statistics, Stanford University, Stanford,
CA, 1996.

[24] Johannes Fürnkranz. Round robin classification. Journal of Machine
Learning Research, 2:721–747, 2002.

[25] Johannes Fürnkranz. Round robin ensembles. Intelligent Data Analysis,
7(5):385–404, 2003.

[26] Johannes Fürnkranz and Eyke Hüllermeier. Pairwise preference learning
and ranking. In N. Lavrač, D. Gamberger, H. Blockeel, and L. Todorovski
(eds.) Proceedings of the 14th European Conference on Machine Learning
(ECML-03), volume 2837 of Lecture Notes in Artificial Intelligence, pp.
145–156, Cavtat, Croatia, 2003. Springer-Verlag.

[27] Johannes Fürnkranz and Eyke Hüllermeier. Preference learning.
Künstliche Intelligenz, 19(1):60–61, 2005.

[28] Vu Ha and Peter Haddawy. Similarity of personal preferences: Theoretical
foundations and empirical analysis. Artificial Intelligence, 146:149–173,
2003.

[29] Peter Haddawy, Vu Ha, Angelo Restificar, Benjamin Geisler, and John
Miyamoto. Preference elicitation via theory refinement. Journal of Ma-
chine Learning Research, 4:317–337, 2003.

[30] Sariel Har-Peled, Dan Roth, and Dav Zimak. Constraint classification: A
new approach to multiclass classification. In N. Cesa-Bianchi, M. Numao,
and R. Reischuk (eds.) Proceedings of the 13th International Conference

34

on Algorithmic Learning Theory (ALT-02), pp. 365–379, Lübeck, Ger-
many, 2002. Springer.

[31] Sariel Har-Peled, Dan Roth, and Dav Zimak. Constraint classification
for multiclass classification and ranking. In Suzanna Becker, Sebastian
Thrun, and Klaus Obermayer (eds.) Advances in Neural Information Pro-
cessing Systems 15 (NIPS-02), pp. 785–792, 2003.

[32] Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling.
In M.I. Jordan, M.J. Kearns, and S.A. Solla (eds.) Advances in Neural
Information Processing Systems 10 (NIPS-97), pp. 507–513. MIT Press,
1998.

[33] Ralf Herbrich and Thore Graepel. Large scale bayes point machines. In
Todd K. Leen, Thomas G. Dietterich, and Volker Tresp (eds.) Advances
in Neural Information Processing Systems 13 (NIPS 2000), pp. 528–534.
MIT Press, 2001.

[34] Ralf Herbrich, Thore Graepel, Peter Bollmann-Sdorra, and Klaus Ober-
mayer. Supervised learning of preference relations. In Proceedings des
Fachgruppentreffens Maschinelles Lernen (FGML-98), pp. 43–47, 1998.

[35] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multi-
class support vector machines. IEEE Transactions on Neural Networks,
13(2):415–425, March 2002.

[36] Eyke Hüllermeier and Johannes Fürnkranz. Ranking by pairwise com-
parison: A note on risk minimization. In Proceedings of the IEEE In-
ternational Conference on Fuzzy Systems (FUZZ-IEEE-04), Budapest,
Hungary, 2004.

[37] Eyke Hüllermeier and Johannes Fürnkranz. Learning label preferences:
Ranking error versus position error. In Advances in Intelligent Data Anal-
ysis: Proceedings of the 6th International Symposium (IDA-05), pp. 180–
191. Springer-Verlag, 2005.

[38] Eyke Hüllermeier and Johannes Fürnkranz. Comparison of ranking pro-
cedures in pairwise preference learning. In Proceedings of the 10th Inter-
national Conference on Information Processing and Management of Un-
certainty in Knowledge-Based Systems (IPMU-04), Perugia, Italy, 2004.

[39] Thorsten Joachims. Optimizing search engines using clickthrough data.
In Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-02), pp. 133–142. ACM
Press, 2002.

[40] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and
Geri Gay. Accurately interpreting clickthrough data as implicit feedback.
In Proceedings of the 28th Annual International ACM Conference on Re-
search and Development in Information Retrieval (SIGIR-05), 2005.

[41] Roni Khardon and Gabriel Wachman. Noise Tolerant Variants of the
Perceptron Algorithm. The Journal of Machine Learning Research, 8:227–
248, 2007.

[42] Maurice G. Kendall. Rank correlation methods. Charles Griffin, London,
1955.

35

[43] Erich-Peter Klement, Radko Mesiar and Endre Pap. Triangular Norms.
Kluwer Academic Publishers, 2002.

[44] Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. Single-layer learning
revisited: A stepwise procedure for building and training a neural network.
In F. Fogelman Soulié and J. Hérault (eds.) Neurocomputing: Algorithms,
Architectures and Applications, volume F68 of NATO ASI Series, pp. 41–
50. Springer-Verlag, 1990.

[45] Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. Handwritten digit
recognition by neural networks with single-layer training. IEEE Trans-
actions on Neural Networks, 3(6):962–968, 1992.

[46] Ulrich H.-G. Kreßel. Pairwise classification and support vector machines.
In B. Schölkopf, C.J.C. Burges, and A.J. Smola (eds.) Advances in Kernel
Methods: Support Vector Learning, chapter 15, pp. 255–268. MIT Press,
Cambridge, MA, 1999.

[47] Erich L. Lehmann and H. J. M. D’Abrera. Nonparametrics: Statistical
Methods Based on Ranks, rev. ed. Prentice-Hall, Englewood Cliffs, NJ,
1998.

[48] Bao-Liang Lu and Masami Ito. Task decomposition and module com-
bination based on class relations: A modular neural network for pattern
classification. IEEE Transactions on Neural Networks, 10(5):1244–1256,
September 1999.

[49] John I. Marden. Analyzing and Modeling Rank data. Chapman & Hall,
London, 1995.

[50] Donald Michie, David J. Spiegelhalter, and C. C. Taylor. Machine Learn-
ing, Neural and Statistical Classification. Ellis Horwood, 1994. Data
available at ftp://ftp.ncc.up.pt/pub/statlog/.

[51] Helga Naessens, Hans De Meyer, and Bernard De Baets. Algorithms for
the computation of T-transitive closures. IEEE Trans. on Fuzzy Systems
10:541–551, 2002.

[52] Sang-Hyeun Park and Johannes Fürnkranz. Efficient Pairwise Classi-
fication. In Proceedings of the 17th European Conference on Machine
Learning (ECML-07), pp. 658–665, Warsaw, Poland, September 2007.
Springer-Verlag.

[53] Edgar Pimenta, João Gama, and André Carvalho. Pursuing the best
ECOC dimension for multiclass problems. In Proceedings of the 20th
International Florida Artificial Intelligence Research Society Conference
(FLAIRS-07), pp. 622–627, 2007.

[54] John Platt. Probabilistic outputs for support vector machines and com-
parison to regularized likelihood methods. In A.J. Smola, P. Bartlett,
B. Schoelkopf, and D. Schuurmans, (eds.) Advances in Large Margin Clas-
sifiers, pp. 61–74, Cambridge, MA, 1999. MIT Press.

[55] David Price, Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. Pair-
wise neural network classifiers with probabilistic outputs. In G. Tesauro,
D. Touretzky, and T. Leen (eds.) Advances in Neural Information Pro-
cessing Systems 7 (NIPS-94), pp. 1109–1116. MIT Press, 1995.

36

[56] Filip Radlinski and Thorsten Joachims. Learning to rank from implicit
feedback. In Proceedings of the ACM Conference on Knowledge Discovery
and Data Mining (KDD-05), 2005.

[57] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification.
Journal of Machine Learning Research, 5:101–141, 2004.

[58] Michael S. Schmidt and Herbert Gish. Speaker identification via support
vector classifiers. In Proceedings of the 21st IEEE International Confer-
ence Conference on Acoustics, Speech, and Signal Processing (ICASSP-
96), pp. 105–108, Atlanta, GA, 1996.

[59] B. Schweizer and A. Sklar. Probabilistic Metric Spaces, North-Holland,
New York, 1983.

[60] Shai Shalev-Shwartz and Yoram Singer. Efficient Learning of Label Rank-
ing by Soft Projections onto Polyhedra. Journal of Machine Learning
Research, 7:15671599, 2006.

[61] Charles Spearman. The proof and measurement of association between
two things. American Journal of Psychology, 15:72–101, 1904.

[62] Gerald Tesauro. Connectionist learning of expert preferences by com-
parison training. In D. Touretzky (ed.) Advances in Neural Information
Processing Systems 1 (NIPS-88), pp. 99–106. Morgan Kaufmann, 1989.

[63] Nicolas Usunier, Massih-Reza Amini, and Patrick Gallinari. Generaliza-
tion error bounds for classifiers trained with interdependent data. In Y.
Weiss, B. Schölkopf, and J. Platt (eds.) Advances in Neural Information
Processing Systems 18 (NIPS 2005), pp. 1369–1376. MIT Press, 2006.

[64] Jun Wang. Artificial neural networks versus natural neural networks:
A connectionist paradigm for preference assessment. Decision Support
Systems, 11:415–429, 1994.

[65] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning
tools with Java implementations. Morgan Kaufmann, San Francisco, 2000.

[66] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. Probability estimates
for multi-class classification by pairwise coupling. Journal of Machine
Learning Research, 5(Aug):975–1005, 2004.

37

